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Preface

The purpose of this monograph is to describe a functorial embedding of
the category of admissible k[G]-representations of a locally profinite topo-
logical group G into the derived category of the additive category of the
admissible k[G]-monomial module category1, based on the family of com-
pact open modulo the centre subgroups.

By virtue of the Langlands Programme (see, for example, [1] and [2])
the representation theory of locally profinite topological groups is related
in a very important manner to modern number theory and arithmetic-
algebraic geometry ([3], [52]). There are many facets to this relationship
(for example, there are more than 40 sources in the biography of this mono-
graph which deal with some feature of this relationship).

I shall concentrate, for simplicity, on the locally profinite groups asso-
ciated with GLn. However in Chapter Thirteen (Appendix IV) I briefly
indicate how the main construction generalises to an admissible represen-
tation of an arbitrary locally profinite group.

After the local field case, motivated by the Langlands Programme, next
one is interested in monomial resolutions of a number of other settings:

(i) The admissible representations of the semi-direct product of GLn
with a Galois group occur in the phenomenon of Galois base change (aka
Galois descent; [7] and [91]).

(ii) The restricted tensor product of admissible representations in the
local field case occur in the construction of adèlic automorphic representa-
tions and their connection with modular forms and Hecke operators ([67]
and [51]).

(iii) The local Langlands correspondence involves Deligne representa-
tions of the local Weil group [40].

1Experts in the Langlands Programme may be interested to learn, before going

any further, that when G is a locally p-adic Lie group the monomial category is closely

related to the category of topological modules over a sort of enlarged Hecke algebra with
generators ((K,ψ), g, (H,φ)) with H,K compact open modulo the centre and (K,ψ) ≤
(gHg−1, (g−1)∗(φ)) subject to the multiplcation and relations which are described (for

G finite) in Chapter One, §1.
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(iv) The local correspondence is characterised in terms of invariants
such as ε-factors and L-functions which participate in the local functional
equation as developed in Tate’s thesis ([86] and [142]).

In each of (i)-(iv) I have attempted to give at least an example of
how monomial resolutions are constructed and fit in to the overall picture.
Sometimes these examples are just given for GL2 - perhaps out of lack of
time and, more often, an indication of the threadbare state of my expertise.

This monograph contains a partial fulfilment of a mathematical ambi-
tion which I have harboured since 1986, which is my cue for a brief scrap of
long-forgotten history! In the 1940’s Richard Brauer proved his famous In-
duction Theorem for representations in characteristic zero of a finite group.
In particular, explicit induction theorems (e.g. Artin’s Induction Theorem
[126]) are important in the derivation of Brauer relations between class
numbers and orders of units [31]. Around 1946 Brauer posed the problem
of deriving an explicit formula for his induction theorem analogous to that
of Artin’s induction theorem (see the footnote [113] p.71). In a series of re-
sults Dwork, Langlands and Deligne derived results which essentially solve
Brauer’s problem for solvable groups ([57], [48] and [89]).

Using a topological construction which originated in terms of formu-
lae in the stable homotopy category, I gave the first explicit formula to
solve Brauer’s problem ([121] and [122]). Monomial resolutions for finite-
dimensional complex representations of compact Lie groups were implicit
in my original formula because it was the Euler characteristic of a topo-
logically constructed chain complex of monomial modules (i.e. sums of
modules induced from lines). This point of view was particularly stressed
in [121] and [124]. At that time my ambition was to construct explicit
monomial resolutions for (a) finite-dimensional Galois representations and
(b) for admissible representations of GLnK when K was a local field and
thence to attempt to go back and forth (as then predicted by the Langlands
correspondence, since proved by Mike Harris and Richard Taylor) capital-
ising on the fact that monomial resolutions are built from one-dimensional
representations to which the local class field theory correspondence applies.

The two main obstacles to this ambition were (a) insufficient expertise
concerning admissible representations of locally profinite groups and (b)
complete ignorance of the correct categorical setting. The crucial advance
made by Robert Boltje in [19] was to to overcome obstacle (b) by describing
the (additive) category k[G]mon in whose derived category monomial res-
olutions naturally live and to develop all the techniques for working there
when G is finite.

It is straightforward to extend k[G]mon to the case where G is a lo-
cally profinite group which is compact open modulo the centre such as
K∗ ·GLnOK in GLnK when K is a local field. By good fortune Ian Leary
had, around 2001, pointed out to me the properties of the Baum-Connes
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space E(G, C) (see Chapter Thirteen, Appendix IV) and that the Bruhat-
Tits building for GLnK almost equals E(GLnK, C) when K is a local field.
This fact implies, if C is the family of compact open modulo the centre sub-
groups, that given a sheaf of functorial monomial resolutions for groups in C
on E(GLnK, C) one may construct a double complex to give a k[GLnK]mon-
monomial resolution of any admissible k-representation V of GLnK having
a fixed central character.

The construction of monomial resolutions for arbitrary admissible k-
representations V of arbitrary locally profinite groups follows once one has
the sheaf. This is given by the functorial bar-monomial resolution for the
restrictions of V to subgroups of G which lie in C, the family of compact
open modulo the centre subgroups. The difficulty of verifying that the bar-
monomial resolution is indeed a monomial resolution is overcome by using
extensions of the recognition criteria of [19].

Without going into technical details, a monomial resolution M∗ −→ V
gives rise to an exact “resolution” sequence of k-vector spaces of the form

. . . −→M
((H,φ))
i −→M

((H,φ))
i−1 −→ . . . −→M

((H,φ))
0 −→ V (H,φ) −→ 0

for each continuous character φ : H −→ k∗ where H ∈ C and k is an
algebraically closed field. When G is, for example, adèlic GL2 and V is an
automorphic representation then V (H,φ)’s (the subspace of V where H acts
via φ) include the classical spaces of modular forms. Hence the interest in
setting (ii) mentioned above. Hecke operators

[JgH] : V (H,φ) −→ V (H′,φ′)

famously operate on spaces of modular forms. Hence the question arises
whether [JgH] may be extended to the above “resolution” for each (H,φ).

One of my favourite mathematical discoveries is the Shintani corre-
spondence of [117] which is a bijection between Galois invariant complex
irreducibles ofGLnFq and irreducibles of the Galois-fixed subgroupGLnFq′ .
For classical algebraic groups this is a consequence of Lang’s Theorem, as
explained in [53] (see also [54] and Chapter Eight, §3). In the case of
local fields the analogue is Galois base change for admissible irreducibles
of GLnK as mentioned in setting (i) above. By virtue of a theorem of
Tate, a Galois invariant admissible irreducible representation V is the same
as one which extends to an admissible irreducible representation of the
semi-direct product of the Galois group with GLnK. This extension is
unique up to twists by one-dimensional characters. Hence the question
arises of constructing monomial resolutions of admissible representations of
such semi-direct products.

For finite-dimensional representations of a finite group G monomial res-
olutions were defined and shown to exist, unique in the derived category of
k[G]mon in [19]. However, even in this case the functorial bar-monomial
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resolution of Chapter One was previously unknown. It immediately extends
the monomial resolutions to finite dimensional representations of absolute
Galois groups and Weil groups. In the Langlands correspondence, as men-
tioned in setting (iii) above, Deligne representations of Weil groups are
important in order to complete the correspondence on the Galois side. A
Deligne representation is a finite dimensional representation of the Weil
group together with a nilpotent endomorphism. Hence the question arises
of constructing monomial resolutions of Deligne representations.

The local functional equation, as described in [86] and [142], is impor-
tant in the characterisation of the Langlands correspondence, as mentioned
in setting (iv) above. It uses the Fourier transform on vector spaces of
eigendistributions. Hence the question arises of deriving functional equa-
tions in spaces of eigendistributions for each term in a monomial resolution.

This monograph is organised in the following manner. Details of the
contents of each chapter are given in the chapter’s introduction.

In Chapter One we shall recapitulate the theory of the category of k[G]-
monomial modules and monomial resolutions of finitely generated k[G]-
modules. When G is a finite group this material is due to Robert Boltje
[19]. We shall be concerned (with a view eventually to treating the case
of G a locally p-adic Lie group in later chapters) with the extension to the
case where G is finite modulo the centre.

In Chapter Two we shall consider, in the local field case, the existence
and structure of the monomial resolution of an admissible k-representation
V of GL2K with central character φ. The monomial resolution constructed
in this case is unique in the derived category of k[GL2K],φmon.

There are two (possibly important) incongruous sections which I have
included in Chapter Two. These are §7 and §8 concerning a “descent con-
struction” which is a quotient monomial complex that one may construct
from a monomial resolution. Chapter Ten, Appendix I was written sev-
eral years before the majority of this monograph and contains a tediously
lengthy, explicit analysis of the example of Shintani descent afforded by the
Galois group Gal(F4/F2) acting on GL2F4. These calculations allow one
to calculate (in §6 and §7 of Appendix I) the Euler characteristic of the
monomial resolutions of an extension of the Galois invariant irreducibles to
the semi-direct product of the Galois group with PGL2F4. In §8 of Appen-
dix I the Euler characteristic of the descent construction is calculated when
mapped to the representation ring and its data compared with the Shintani
descent formula for this example. Even though the relevance and utility of
the descent construction is highly speculative, I thought I should attempt
to point out what it might be good for in the context of settings (i)-(iv).
Accordingly Chapter Two §7 describes the descent construction in general
and §8 gives the (−)((J,λ))-data of the descent construction monomial com-
plex in an example of an involutory outer automorphism of the dihedral
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group of order eight and in the Shintani descent example of Chapter Ten,
Appendix I.

In Chapter Three one encounters the profound relation between auto-
morphic representations and modular forms in [[51], [62], [67], [80]], for
example. The topic is a breath-taking mathematical story of local-global
flavour which has proved so important in number theory and arithmetic-
algebraic geometry. Having already introduced monomial resolutions in the
admissible local case, in this chapter I shall give a brief sketch of their in-
troduction for global automorphic representations via the Tensor Product
Theorem.

In Chapter Four I shall verify Conjecture 3.3 for GLnK for all n ≥ 2
where K is a p-adic local field. For GL2K this was accomplished (in Chap-
ter Two, Theorem 4.9 and Corollary 4.10) by means of explicit formulae, in
order to introduce the ideas of the general proof gradually. In this chapter
I shall adopt a similar gradual approach, going into considerable detail in
the GL3K case before giving the general case.

For GL2K the proof of Chapter Two Conjecture 3.3 was accomplished
by constructing a double complex in k[GL2K],φmon using several
bar-monomial resolutions together with a simplicial action on the tree for
GL2K. For GL2K, by some low-dimensional good fortune, the construc-
tion of the differential in the double complex was made particularly easy
(see the introduction to Chapter Two). For GLnK with n ≥ 3 we have
to use in a crucial way the naturality of the bar-monomial resolutions in
order to apply the construction of the monomial complex given in Chapter
Two §3. This requires a simplicial action on a space Y which, for GLnK
with n ≥ 2, we take to be the Bruhat-Tits building. Such buildings are
constructed from BN-pairs.

In Chapter Five we recall the definition and properties of Deligne rep-
resentations of the Weil group. In Conjecture 2.4 we describe the bar-
monomial resolution resolution for a finite-dimensional Deligne representa-
tion (ρ, V,n). The verification of Conjecture 2.4 should be straightforward
but for the time being, out of laziness, I have left it unproved.

In [85] a Gauss sum is attached to each finite-dimensional complex
irreducible representation V of GLnFq. The Kondo-Gauss sum is a scalar
d × d-matrix where d = dimC(V ). In Chapter Twelve (Appendix III, §3)
I recapitulate the construction of [85] but using the formulae in terms of
character values, which simultaneously removes the irreducibility condition
and reveals the functorial properties (e.g. invariance under induction; see
Appendix III, Theorem 3.2).

In Chapter Six the theme is the association of ε-factors, L-functions and
Kondo-style invariants to the terms in a monomial resolution of an admissi-
ble representation V of GLnK when K is a p-adic local field. The examples
here suggest that eventually one may be able to construct the ε-factors and
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L-functions of [66] by merely applying variations of my constructions to
the monomial modules which occur in the monomial resolution of V and
taking the Euler characteristic.

Chapter Seven recalls how Hecke operators

[JgH] : V (H,φ) −→ V (H′,φ′)

are defined in terms of the Double Coset Formula and explains how they
fit in with the exact sequences

M
((H,φ))
∗ −→ V (H,φ) −→ 0

which originate from a monomial resolution of the representation V . The
chapter explains the conditions under which [JgH] extends to the entire
chain complex and gives a solitary illustrative example. In particular the
latter may apply to the adèlic case of an automorphic representation. Then,
if J,H are the usual congruence subgroups Γ0(N),Γ1(N), the [JgH]’s are
the classical Hecke operators and the V (H,φ)’s are spaces of modular forms
([51] §11.2).

Throughout this monograph Galois base change keeps being mentioned
(particularly in Chapter Ten, Appendix I). Analogues of base change for
representations are known in the context of modular forms ( [55], [56],
[81], [107], [91]; see ([39] pp.84-88 and pp.90-103)) and are predicted in
the global Langlands Programme. As explained in Chapter Eight §2, func-
toriality of automorphic Galois base change would lead quickly to base
change for modular forms. Therefore, Chapter Eight §1 is concerned with
examples to illustrate the possibility of functoriality of Galois base change
in the simpler context of [117]. To establish functoriality of base change in
the case of Shintani descent one would need a different approach to the main
result of [117]. With this in mind, Chapter Eight §3 sketches the original
proof and then establishes the equivalence with a family of integrality con-
ditions. Chapter Eight §4 introduces some curious polynomials with integer
coefficients which were suggested by the discussion of §3. Chapter Eight §5
is a reminder for homotopy theorists and stable homotopy theorists of the
functorial topological constructions which should exist as a consequence of
(and as evidence for) functoriality of Shintani base change. Chapter Eight
§6 examines an example of the inverse Shintani correspondence, where one
starts with an irreducible for GLsFq and receives one for GLsFqn . The
section finishes by posing a question, related to base change functoriality,
about constructing a resolution of the target irreducible from the monomial
resolution of the input irreducible.

Chapter Ten (Appendix I) contains more explicit detail than any reader
might conceivably want concerning Shintani descent from Galois invariant
complex irreducible representations of GL2F4 to GL2F2. On the other
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hand, inter alia, it introduces a “descent algorithm” which may be of im-
portance in connection with Galois descent. The “descent algorithm” is a
procedure to construct an approximation to a monomial complex forG×HG

from a monomial resolution for an admissible representation of G ∝ H, the
semi-direct product of G acting on H.

As I have mentioned earlier, Chapter Ten, Appendix I was written
several years before most of this monograph. This is not strictly true in
relation to Appendix I, §11 which derives tables of (−)((J,λ))-data for use
in the descent construction examples of Chapter Two §7 and §8.

Chapter Eleven (Appendix II) consists of a version of the calculation,
by Deligne and Henniart, of wildly ramified local root numbers modulo p-
primary roots of unity where p is the residue characteristic. In this mono-
graph it is relevant to the setting (iv) above. My hope is that a similar
argument will allow one to construct ε-factors for admissible complex rep-
resentations of GLnK (at least modulo p-primary roots of unity when K
is local) term by term in the monomial resolution. In the case of complex
admissible representations (as proved in Chapter One, §6) the monomial
resolution has a “finite type” PK-adic filtration whose associated graded
Euler characteristics are therefore finite. Included here because of its rele-
vance, Appendix II has been gathering dust on my home page for several
years, which accounts for its abstract!

Chapter Twelve (Appendix III) recalls in §1 the characterisation of irre-
ducible complex representations of the symmetric groups and finite general
linear groups, together with the construction of their zeta functions. Also
the formulae for and the functorial properties of Kondo-Gauss sums [85]
are explained.

Chapter Thirteen (Appendix IV) assures the reader, without going into
a single detail, that replacing GLnK and its Bruhat-Tits building by any
locally p-adic Lie group and its Tammo tom Dieck space (a.k.a. its Baum-
Connes space) E(G, C), where C is the family of compact modulo the centre
subgroups H ⊆ G, results in a construction of functorial monomial resolu-
tions for any admissible representation V of G with a fixed central character
φ. The construction is accomplished by a direct imitation of that of Chapter
Four.

As far as I know the embedding of the category of admissible represen-
tations into the monomial derived category is new, even in the case of finite
groups. Apologies for my ignorance (characteristic of out of touch retirees,
particularly in the UK) if it is not.

The research in this monograph was partially supported by a Lever-
hulme Emeritus Professorial Fellowship. I am very grateful to the Lever-
hulme Foundation without whose contribution I would have had no chance
of travel to seek the advice of experts of this sort of representation theory.
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I am especially very grateful to Jim Arthur, Paul Baum, Tobias Berger,
Ken Brown, Paul Buckingham, Gerald Cliff, Ivan Fesenko, Guy Henniart,
Florian Herzig, Steve Kudla, Ian Leary, Rob Kurinczuk, Jayanta Manohar-
mayum, Tom Oliver, Roger Plymen, Peter Schneider, Alexander Stasinski,
Al Weiss for their interest and for their suggestions. As mentioned earlier,
this monograph is intended to introduce the embedding of representations
of locally p-adic Lie groups into the derived category of k[G]mon and to give
some nascent examples. In a further article I hope to explain the “Bernstein
centre” [14] through the eyes of k[G]mon. The reader might also find this
project interesting - it may not work out (I have not had the opportunity
to consult a haruspex!2)

Victor Snaith, FRSC, FFI, University of Sheffield,
November 2016.

2An augury who foretells with the aid of the sacrifice of medium-sized farm animals.



CHAPTER 1

Finite Modulo The Centre Groups

In this chapter we shall recapitulate the theory of the category of k[G]-
monomial modules and monomial resolutions of finitely generated k[G]-
modules. WhenG is a finite group this material is due to Robert Boltje [19].
Boltje’s paper was the culmination of a series of articles concerning explicit
(or canonical) versions of Brauer’s induction theorem for finite groups1,
details of which are to be found in the series ([17], [18], [20], [102], [121],
[122], [126]).

In this chapter we shall be concerned (with a view eventually to treating
the case of G a locally p-adic Lie group in later chapters) with the extension
to the case where G is finite modulo the centre.

Monomial resolutions for finite-dimensional complex representations of
compact Lie groups were implicit in the original, topological construction of
an explicit (or canonical) Brauer induction formula in [122]. This is because
the formula was the Euler characteristic of a topologically constructed chain
complex (this point of view was particularly stressed in [121] and [124]).

The crucial advance made by Robert Boltje in [19] was to describe
the (additive) category k[G]mon in whose derived category monomial res-
olutions naturally live and to develop all the techniques for working there
when G is finite.

This chapter is arranged in the following manner. §1 sets up the no-
tation and §2 defines a monomial resolution of a k[G]-module, which is a
chain complex in the category k[G]mon. The category k[G]mon is additive
but not abelian so §3 introduces some functor categories which are used in
§4 (in the style of what I imagine must have been the proof of the classi-
cal Freyd-Mitchell Theorem) to obtain a full embedding of the monomial
category into a module category. This enables one to recognise a mono-
mial resolution by mapping it to the module category where it becomes
a projective resolution. In §5 I introduce a new canonical and functorial
monomial resolution called the bar-monomial resolution. It is recognisable
as a monomial resolution because it becomes the familiar bar resolution in
the module category. The functoriality of the bar-monomial resolution is

1This was a classical problem (see the footnote [113] p.71) of Richard Brauer from

the 1940’s. The first solution, using homotopy theory, appears in [121], [122].

1
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essential because it permits an extension to the case where G is a locally
p-adic Lie group which is compact, open modulo the centre. Thereafter
the functoriality allows one to construct a sheaf of monomial resolutions on
the Baum-Connes space EG when G is a locally p-adic Lie group. From
this in Chapters Two and Four we obtain k[G]mon-monomial resolutions
for admissible k[G]-representations in general.

1. Notation

1.1. The first difference between this chapter and [19] is that we shall
assume that G is a finitely generated group with centre Z(G) and finite
quotient group G/Z(G).

Fix a commutative Noetherian ring k and write Ĝ for the group of char-
acter homomorphisms Hom(G, k∗) from G to k∗, the multiplicative group of
units of k. In addition we shall fix a central character φ ∈ Hom(Z(G), k∗).
Let H be a subgroup of G which contains Z(G) and denote by Ĥφ the finite

subset of Ĥ consisting of characters which are equal to φ when restricted
to Z(G).

For an arbitrary k-algebra A we write Amod (resp. modA) for the
category of left (resp. right) A-modules. We denote by Alat (resp. latA)
the category of left (resp. right) A-lattices i.e. the subcategory of Amod
consisting of those A-modules which are finitely generated and A-projective.
The rank of a free k-module M will be denoted by rkk(M). When A = k[G]
we have subcategories k[G],φmod ⊂ k[G]mod and k[G],φlat ⊂ k[G]lat whose
objects are those on which Z(G) acts via φ.

Let Mφ(G) denote the finite poset consisting of all pairs (H,φ) ∈ Ĥφ

where (K,ψ) ≤ (H,φ) in the partial ordering if and only if K ≤ H and the
restriction of φ to K is equal to ψ. MoreoverMφ(G) admits a left G-action
by conjugation. That is, for g ∈ G, g(H,φ) = (gHg−1, (g−1)∗(φ)) where
(g−1)∗(φ)(ghg−1) = φ(h) for all h ∈ H. We shall write NG(H,φ) for the
G-stabiliser of (H,φ)

NG(H,φ) = {g ∈ G | g(H,φ) = (H,φ)}.
The G-orbit of (H,φ) will be denoted by (H,φ)G.

For (H,φ) ∈Mφ(G) we denote by kφ the k[H]-module given by h ·v =
φ(h)v for all v ∈ k, h ∈ H.
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Definition 1.2. 2

A finite (G,φ)-Line Bundle3 over k is a left k[G]-module M together
with a fixed finite direct sum decomposition

M = M1 ⊕ · · · ⊕Mm

where each of the Mi is a free k-module of rank one on which Z(G) acts
via φ and the G-action permutes the Mi. The Mi’s are called the Lines of
M . For 1 ≤ i ≤ m let Hi denote the subgroup of G with stabilises the Line
Mi. Then there exists a unique φi ∈ Ĥiφ such that h · v = φi(h)v for all
v ∈Mi, h ∈ Hi. The pair (Hi, φi) ∈Mφ(G) is called the stabilising pair of
Mi.

The k-submodule of M given by

M ((H,φ)) = ⊕1≤i≤m, (H,φ)≤(Hi,φi) Mi

is called the (H,φ)-fixed points of M .
A morphism from M to the finite (G,φ)-Line Bundle N = N1⊕· · ·⊕Nn

is defined to be a k[G]-module homomorphism f : M −→ N such that

f(M ((H,φ))) ⊆ N ((H,φ))

for all (H,φ) ∈ Mφ(G). The (left) finite (G,φ)-Line Bundles and their
morphisms define an additive category denoted by k[G],φmon.

By definition each (G,φ)-Line Bundle is a k-free k[G]-module so there
is a forgetful functor

V : k[G],φmon −→ k[G],φmod.

1.3. Some natural operations
There are several operations which are obvious lifts to k[G],φmon of

well-known operations in k[G],φmod. This means that the resulting functors
commute with the forgetful functor V : k[G],φmon −→ k[G],φmod.

(i) Direct sum: If M = M1 ⊕ · · · ⊕Mm and N = N1 ⊕ · · · ⊕Nn are
objects in k[G],φmon then so is

M ⊕N = M1 ⊕ · · · ⊕Mm ⊕N1 ⊕ · · · ⊕Nn.

2When we come to the bar-monomial resolution in Chapter One §5 and its sub-
sequent passage from finite groups to locally compact modulo the centre subgroups of

locally p-adic Lie groups in Chapter Two and later it becomes clear that I should have
set up the monomial category by stipulating that we are given the M((H,φ))’s with the

property that they are “Lineable” rather than that we are given the Lines. This would

require a straightforward but extensive revision which, at my age and with my resources,
is unlikely to happen! Apologies!

3The capital letters are chosen there to distinguish the Line Bundle from the familiar

vector bundle terminology.
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(ii) Tensor product: If M belongs to k[G],φMmon and N belongs to
k[G],φNmon then the tensor product

M ⊗k N = ⊕1≤i≤m,1≤j≤n Mi ⊗k Nj
belongs to k[G],φM ·φNmon.

(iii) Homomorphisms: The k[G]-module Homk(M,N) with the decom-
position into Lines of the form ⊕1≤i≤m,1≤j≤n Homk(Mi, Nj) is an object of
k[G],φM ·φN−1mon if G acts via the usual formula (g ·f)(m) = g ·(f(g−1 ·m))
for g ∈ G,m ∈ M . As a special case we have the dual of M given by
Homk(M,k).

(iv) Restriction: Let f : G′ −→ G be a homomorphism of finitely
generated groups which are both finite modulo the centre and such that
f(Z(G′)) ⊆ Z(G). Then we have a restriction map Resf from k[G],φmod
to k[G′],φ·fmod and similarly Resf from k[G],φmon to k[G′],φ·fmon.

(v) Induction: Suppose that H ⊆ G are finitely generated groups
which are both finite modulo the centre with Z(G) ⊆ H. Then the index
of H in G is finite and the usual induced k[G]-module IndGH(P ) for P ∈
k[H],φmod is the object of k[G],φmod given by k[G] ⊗k[H] P . If P = P1 ⊕
· · ·⊕Ps lies in k[H],φmon then IndGH(P ) with the Line-decomposition given
by ⊕g,1≤i≤s g ⊗k[H] Pi, as g runs through a set of coset representatives for
G/H, is the object of k[G],φmon denoted by IndGH(P ).

Note that, if the stabilising pair for Pi is (Hi, φi) then the stabilising
pair of the Line g ⊗k[H] Pi is g(Hi, φi). Also for (H,φ) ∈ Mφ(G) then we
have

⊕(J,ψ)∈(H,φ)G L(J,ψ)
∼= IndGNG(H,φ)(kφ)

where (J, ψ) runs through the G-conjugates of (H,φ) and L(J,ψ) is the
J-module kψ.

(vi) Canonical isomorphisms: Analogues of the usual distributivity
isomorphism of direct sums over tensor products, the Frobenius reciprocity
isomorphism and the Mackey decomposition isomorphism all hold in the
Line Bundle context (see [19] §1.5(f)-(h)).

Proposition 1.4. ([19] §1.6 and §1.7)
If M = M1⊕· · ·⊕Mm and N = N1⊕· · ·⊕Nn are objects in k[G],φmon

the following statements are equivalent:
(i) M and N are isomorphic in k[G],φmon.
(ii) For all (H,φ) ∈Mφ(G) the (NG(H,φ), φ)-Line Bundles over k

M(H,φ) = ⊕stabilising pair of Mi equals (H,φ) Mi

and
N(H,φ) = ⊕stabilising pair of Nj equals (H,φ) Nj

are isomorphic in k[NG(H,φ)],φmod.
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(iii) For all (H,φ) ∈Mφ(G) the (NG(H,φ), φ)-Line Bundles over k

M(H,φ) = ⊕stabilising pair of Mi equals (H,φ) Mi

and
N(H,φ) = ⊕stabilising pair of Nj equals (H,φ) Nj

are isomorphic in k[NG(H,φ)],φmon.
(iv) For all (H,φ) ∈Mφ(G) the (G,φ)-Line Bundles over k

M((H,φ)G) = ⊕stabilising pair of Mi∈ (H,φ)G Mi

and
N((H,φ)G) = ⊕stabilising pair of Nj∈ (H,φ)G Nj

are isomorphic in k[G],φmon.
In fact M is isomorphic in k[G],φmon to the direct sum over the distinct

G-orbits onMφ(G) of the M((H,φ)G)’s.

1.5. We call a finite (G,φ)-Line Bundle M = M1 ⊕ · · · ⊕Mm over k
indecomposable if it is not isomorphic to a non-trival direct sum N ⊕ P in
k[G],φmon. If we form the direct sum of the lines of a single G-orbit then
we obtain a finite (G,φ)-Line Bundle over k and every M may be written
as the direct sum of these. Therefore, if M is indecomposable, then G
acts transitively on the Lines of M . In this case M ∼= IndGHi(kφi) for any
1 ≤ i ≤ m where (Hi, φi) is the stabilising pair of the Line Mi. Explicitly,
the isomorphism is given by sending g ⊗Hi v ∈ IndGHi(kφi) to g · v ∈M .

Therefore for each object M in k[G],φmon we have a sum over the
G-orbits of Mφ(G) and uniquely determined integers r(h,φ)(M) ≥ 0 such
that

M ∼= ⊕G\Mφ(G) r(h,φ)(M) · IndGH(kφ)

where r(h,φ)(M) · P denotes the r(h,φ)(M)-fold direct sum of copies of P .
Note that, in the notation of Proposition 1.4(iv),

rkk(M((H,φ)G)) = [G : H] · r(h,φ)(M).

Proposition 1.6. ([19] §1.9)
The set of finite (G,φ)-Line Bundles over k given by

{IndGH(kφ) | (H,φ) ∈ G\Mφ(G)}

is a full set of pairwise non-isomorphic representatives for the isomorphism
classes of indecomposable objects in k[G],φmon. Moreover each finite (G,φ)-

Line Bundle M over k is isomorphic to the direct sum of objects IndGH(kφ)
with (H,φ) ∈ G\Mφ(G) and uniquely determined multiplicity r(h,φ)(M) =
rkk(M((H,φ)G))/[G : H].
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Corollary 1.7. ([19] §1.10) Let M,N be objects of k[G],φmon. In
the notation of Proposition 1.4 the following are equivalent:

(i) M and N are isomorphic in k[G],φmon.
(ii) For all (H,φ) ∈Mφ(G), rkk(M((H,φ)G)) = rkk(N((H,φ)G)).
(iii) For all (H,φ) ∈Mφ(G), rkk(M(H,φ)) = rkk(N(H,φ)).
(iv) For all (H,φ) ∈Mφ(G), rkk(M ((H,φ))) = rkk(N ((H,φ))).

1.8. Let (K,ψ), (H,φ) ∈Mφ(G) and let g ∈ G. Define a morphism

fg ∈ Hom
k[G],φmon(IndGK(kψ), IndGH(kφ))

by the formula

fg(g′ ⊗K v) =

 g′g ⊗H v if (K,ψ) ≤ (gHg−1, (g−1)∗(φ))

0 otherwise.

This is well-defined because, for k′ ∈ K,

fg(g′k′ ⊗K ψ(k′)−1v) = g′k′g ⊗H ψ(k′)−1v

= g′gg−1k′g ⊗H ψ(k′)−1v

= g′g ⊗H φ(g−1k′g)ψ(k′)−1v

= g′g ⊗H ψ(k′)ψ(k′)−1v

= fg(g′ ⊗K v).

The composition of morphisms

Hom
k[G],φmon(IndGK(kψ), IndGH(kφ))×Hom

k[G],φmon(IndGH(kφ), IndGU (kµ))

↓

Hom
k[G],φmon(IndGK(kψ), IndGU (kµ))

is given by (fg, fg1) 7→ fgg1 = fg1 · fg.
If h ∈ H and fg ∈ Hom

k[G],φmon(IndGK(kψ), IndGH(kφ)) then so does fgh
and fgh = φ(h)fg since

fgh(g′ ⊗K v) = g′gh⊗H v = φ(h)g′g ⊗H v = φ(h)fg(g′ ⊗K v).

Similarly if k ∈ K then fkg = ψ(k)fg. In particular fkg, fgh and fg generate
the same line

〈fkg〉 = 〈fgh〉 = 〈fg〉 ⊂ Hom
k[G],φmon(IndGK(kψ), IndGH(kφ)).
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Lemma 1.9. ([19] §1.11)
(i) Let (K,ψ) ∈ Mφ(G) and let N be an object of k[G],φmon. Then

there is a k-linear isomorphism

Hom
k[G],φmon(IndGK(kψ), N)

∼=−→ N ((K,ψ))

given by f 7→ f(1⊗K 1). The inverse isomorphism is given by

n 7→ ((g ⊗K v 7→ vg · n)).

(ii) Let (K,ψ), (H,φ) ∈ Mφ(G). In the notation of §1.8 there is a
k-linear isomorphism

Hom
k[G],φmon(IndGK(kψ), IndGH(kφ))

∼= k〈fg | (K,ψ)≤(gHg−1,(g−1)∗(φ))〉
〈fgh−φ(h)fg,〈fkg−ψ(h)fg | h∈H,k∈K〉 .

(iii) Hom
k[G],φmon(IndGK(kψ), IndGH(kφ)) is a free k-module of finite

rank with basis given by fg1 , . . . , fgt where gi runs through the subset of
double coset representatives of K\G/H such that

(K,ψ) ≤ (giHg−1
i , (g−1

i )∗(φ)).

Lemma 1.10. ([19] §1.12)
Consider the diagram

M
h−→ N

f←− P

in which M,P ∈k[G],φ mon and N ∈k[G],φ mod with h, f being morphisms
in k[G],φmod. In particular we include the situation where N ′ ∈k[G],φ mon
with h, f being morphisms to N ′ in k[G],φmon and the diagram above being
the result of applying the forgetful functor V with N = V(N ′). Assume,
for all (H,φ) ∈Mφ(G), that

f(P ((H,φ))) ⊆ h(M ((H,φ))).

Then there exists j ∈ Hom
k[G],φmon(P,M) such that h · j = f .

Remark 1.11. Partial central characters φ′

There is an obvious analogous version of this section with partial cen-
tral characters φ′. That is, one fixes a central subgroup H ′ ⊆ Z(G) such
that G/H ′ is finite and fixes φ′ ∈ Ĥ ′. Then one repeats the section with
(Z(G), φ) replaced by (H ′, φ′).

The case of finite G, which is treated in [19] is the case in which H ′ =
{1}.
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2. Monomial Resolutions

2.1. Let G, k, φ be as in §1.1. Let V be a finitely generated k[G]-module
on which Z(G) acts via the central character φ. That is, V is an object of
k[G],φmod. In this section we shall shall define the notion of a k[G],φmon-
resolution of V . This is a chain complex of morphisms in k[G],φmon with
certain properties which will ensure that it is exists and is unique up to
chain homotopy in k[G],φmon.

2.2. For V ∈k[G],φ mod and (H,φ) ∈ Mφ(G) define the (H,φ)-fixed
points of V by

V (H,φ) = {v ∈ V | h · v = φ(h)v for all h ∈ H}.

Clearly g(V (H,φ)) = V g(H,φ), V (Z(G),φ) = V and (K,ψ) ≤ (H,φ) im-
plies that V (H,φ) ⊆ V (K,ψ). Note that f ∈ Hom

k[G],φmod(V,W ) satisfies

f(V (H,φ)) ⊆W (H,φ) for all (H,φ) ∈Mφ(G). In addition, if M ∈k[G],φ mon

then M ((H,φ)) ⊆ M (H,φ) so that f ∈ Hom
k[G],φmod(V(M), V ) satisfies

f(M ((H,φ))) ⊆ V (H,φ) for all (H,φ) ∈Mφ(G).

Definition 2.3. ([19] §2.2)
Let V ∈k[G],φ mod. A k[G],φmon-resolution of V is a chain complex

M∗ : . . .
∂i+1−→ Mi+1

∂i−→Mi
∂i−1−→ . . .

∂1−→ M1
∂0−→M0

with Mi ∈k[G],φ mon and ∂i ∈ Hom
k[G],φmon(Mi+1,Mi) for all i ≥ 0 to-

gether with ε ∈ Hom
k[G],φmod(V(M0), V ) such that

. . .
∂i−→M

((H,φ))
i

∂i−1−→ . . .
∂1−→ M

((H,φ))
1

∂0−→M
((H,φ))
0

ε−→ V (H,φ) −→ 0

is an exact sequence of k-modules for each (H,φ) ∈Mφ(G). In particular,
when (H,φ) = (Z(G), φ) we see that

. . .
∂i−→Mi

∂i−1−→ . . .
∂1−→ M1

∂0−→M0
ε−→ V −→ 0

is an exact sequence in k[G],φmod.

Proposition 2.4.
Let V ∈k[G],φ mod and let

. . . −→Mn
∂n−1−→ Mn−1

∂n−2−→ . . .
∂0−→M0

ε−→ V −→ 0

be a k[G],φmon-resolution of V . Suppose that

. . . −→ Cn
∂′n−1−→ Cn−1

∂′n−2−→ . . .
∂′0−→ C0

ε′−→ V −→ 0
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a chain complex where each ∂′i and Ci belong to k[G],φmon and ε′ is a

k[G],φmod homomorphism such that ε′(C((H,φ))
0 ) ⊆ V (H,φ) for each (H,φ) ∈

Mφ(G).
Then there exists a chain map of k[G],φmon-morphisms {fi : Ci −→

Mi, i ≥ 0} such that

ε · f0 = ε′, fi−1 · ∂′i = ∂i · fi for all i ≥ 1.

In addition, if {f ′i : Ci −→ Mi, i ≥ 0} is another chain map of
k[G],φmon-morphisms such that ε ·f0 = ε ·f ′0 then there exists a k[G],φmon-
chain homotopy {si : Ci −→Mi+1, for all i ≥ 0} such that ∂i ·si+si−1 ·∂′i =
fi − f ′i for all i ≥ 1 and f0 − f ′0 = ∂0 · s0.

Proof
This is the usual homological algebra argument using Lemma 1.10. 2

Remark 2.5. Needless to say, Proposition 2.4 has an analogue to
the effect that every k[G],φmod-homomorphism V −→ V ′ extends to a

k[G],φmon-morphism between the monomial resolutions of V and V ′, if
they exist, and the extension is unique up to k[G],φmon-chain homotopy.

3. Some functor categories

3.1. The category k[G],φmon is additive but not abelian. Homological
algebra (e.g. a projective resolution) is more conveniently accomplished in
an abelian category. To overcome this difficulty we shall embed k[G],φmon
into more convenient abelian categories. This is reminiscent of the Freyd-
Mitchell Theorem which embeds every abelian category into a category of
modules.

3.2. The functor category functok(k[G],φmon,k mod)
Let functok(k[G],φmon,k mod) denote the category of contravariant func-

tors, F ,G etc, from k[G],φmon to the category of finitely generated k-
modules whose morphisms are k-linear natural transformations α : F −→ G
etc.

Let k[G],φmod denote the category of finite rank k[G]-modules with
central character φ (see §1.1). Consider the functor

I :k[G],φ mod −→ functok(k[G],φmon,k mod)

given on objects by

I(V ) = Hom
k[G],φmod(V(−), V )

with I(β : V −→W ) = (f 7→ β · f).
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Now we shall consider morphisms. In order to keep track not only of
g ∈ G but also of K and H we shall write fg of §1.8 as a triple

((K,ψ), g, (H,φ)) : IndGK(kψ) −→ IndGH(kφ).

Then the composition

Hom
k[G],φmon(IndGK(kψ), IndGH(kφ))×Hom

k[G],φmon(IndGH(kφ), IndGU (kµ))

↓

Hom
k[G],φmon(IndGK(kψ), IndGU (kµ))

is given by (((K,ψ), g, (H,φ)), ((H,φ), g1, (U, µ))) 7→ (((K,ψ), gg1, (U, µ))).
The tautological equality (gHg−1, (g−1)∗(φ)) = (gHg−1, (g−1)∗(φ)) yields
an isomorphism

((gHg−1, (g−1)∗(φ)), g, (H,φ)) : IndGgHg−1(k(g−1)∗(φ))
∼=−→ IndGH(kφ)

given by g′ ⊗gHg−1 v 7→ g′g ⊗H v, which is an automorphism if and only if
g ∈ NG(H,φ), the normaliser of (H,φ).

The morphism ((K,ψ), g, (H,φ)) induces

((K,ψ), g, (H,φ))∗ : I(V )(IndGH(kφ)) −→ I(V )(IndGK(kψ))

given by the pre-composition ((K,ψ), g, (H,φ))∗(f) = f ·((K,ψ), g, (H,φ)).
There is an isomorphism of k-modules (analogous to §1.9(i))

I(V )(IndGH(kφ)) ∼= V (H,φ)

given by sending v ∈ V (H,φ) to the k[G,φ]-mod morphism

IndGH(kφ)) −→ V g1 ⊗H α 7→ αg1v

for α ∈ k. Therefore ((K,ψ), g, (H,φ))∗ corresponds to a k-linear map

V (H,φ) −→ V (K,ψ)

given by v′ 7→ gv′ since

g1 ⊗K α −→ g1g ⊗H α −→ αg1gv
′

is the map which corresponds to gv′ ∈ V (K,ψ). This makes sense because,
if z ∈ K, then zgv′ = gg−1zgv′ = φ(g−1zg)gv′ = ψ(z)gv′.

3.3. The functor I on morphisms
Let V,W ∈k[G],φ mod and set F(−) = I(V )(−), G(−) = I(W )(−).

Given a natural transformation α : F −→ G for each M ∈k[G],φ mon we
have

α(M) : F(M) −→ G(M)
such that if β : M −→ M ′ is a morphism in k[G],φmon we have a commu-
tative diagram
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- G(M)G(M ′)

??

- F(M)F(M ′)

α(M)α(M ′)

F(β)

G(β)

If we have a homomorphism γ : V −→ W in k[G],φmod we obtain a
natural transformation

γ∗ : F −→ G

given by γ∗(M)(f) = γ · f ∈ G(M) for all f : M −→ V in F(M). However,
given any natural transformation α there is a unique homomorphism γ in
k[G],φmod such that α = γ∗. This is seen by the following discussion.

We have a morphism in k[G],φmon

((K,ψ), g, (H,φ)) : IndGK(kψ) −→ IndGH(kφ).

For example, when (K,ψ) = (Z(G), φ) = (H,φ) we have

((Z(G), φ), g, (Z(G), φ)).
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We have a commutative diagram

- G(IndGK(kψ))G(IndGH(kφ))

??

- F(IndGK(kψ))F(IndGH(kφ))

α(IndGK(kψ)))α(IndGH(kφ))

F(((K,ψ), g, (H,φ)))

G(((K,ψ), g, (H,φ)))

Taking (K,ψ) = (Z(G), φ) = (H,φ) the commutative square may be iden-
tified with

- WW

??

- VV

α(IndGZ(G)(kφ))α(IndGZ(G)(kφ))

(g · −)

(g · −)

which shows that α(IndGZ(G)(kφ)) is a homomorphism in k[G],φmod.
Now setting (K,ψ) = (Z(G), φ) we have a morphism

((Z(G), φ), g, (H,φ)) : IndGZ(G)(kφ) −→ IndGH(kφ).
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This yields the commutative diagram

- G(IndGZ(G)(kφ))G(IndGH(kφ))

??

- F(IndGZ(G)(kφ))F(IndGH(kφ))

α(IndGZ(G)(kφ)))α(IndGH(kφ))

F(((Z(G), φ), g, (H,φ)))

G(((Z(G), φ), g, (H,φ)))

which in turn may be identified with

- WW (H,φ)

??

- VV (H,φ)

α(IndGZ(G)(kφ)))α(IndGH(kφ))

F(((Z(G), φ), g, (H,φ)))

G(((Z(G), φ), g, (H,φ)))

The horizontal maps are injective. In fact, for example, the upper hor-
izontal map sends v ∈ V (H,φ) to g · v ∈ V . For v ∈ V (H,φ) corresponds
to the homomorphism g1 ⊗H α 7→ αg1 · v. Since F(((Z(G), φ), g, (H,φ)))
corresponds to pre-composition with fg we see that the image of v corre-
sponds to the homomorphism g1 ⊗Z(G) α 7→ g1g ⊗H α 7→ αg1g · v which is
identified with g · v ∈ V .

Hence α(IndGH(kφ)) is uniquely determined by α(IndGZ(G)(kφ)) and so we
have established the following proposition, which follows from the previous
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discussion together with additivity of the functors and natural transforma-
tions.

Proposition 3.4.
In the notation of §3.3 given any natural transformation

α : F −→ G

there is a unique homomorphism γ : V −→ W in k[G],φmod such that
α = γ∗, which completely determines α.

Proposition 3.5. ([19] §3.2) Let I denote the functor of §3.3 and
define a functor

J :k[G],φ mon −→ functok(k[G],φmon,k mod)

by J (M) = Hom
k[G],φmon(−,M).

Then the category functok(k[G],φmon,k mod) is abelian. Furthermore
both I and J are full embeddings (i.e. bijective on morphisms and hence
injective on isomorphism classes of objects).

Proof
By Yoneda’s Lemma J is a full embedding. The result for I follows

from Proposition 3.4. 2

Proposition 3.6. ([19] §3.3)
For M ∈k[G],φ mon the functor J (M) in functok(k[G],φmon,k mod) is

projective.

Proof
Suppose that we have a diagram in functok(k[G],φmon,k mod) of the

form
G α−→ H β←− J (M)

in which α is surjective. Therefore for every N ∈k[G],φ mon the homomor-
phism α(N) : G(N) −→ H(N) is surjective. By Yoneda’s Lemma natural
transformations from J (M) to G correspond bijectively to the elements of
G(M). Similarly the natural transformations from J (M) to H correspond
bijectively to the elements of H(M). The fact that α(M) is surjective is
therefore equivalent to the fact that there exists a natural transformation
γ from J (M) to G such that α · γ = β. 2

Remark 3.7. In general functok(k[G],φmon,k mod) has more projec-
tives than just the J (M)’s. A complete analysis of all the projectives in
functok(k[G],φmon,k mod) may be given along the lines of the finite group
case, which is given in ([19] §3.4 and §3.8).
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Definition 3.8. LetM ∈k[G],φ mon, V ∈k[G],φ mod. Define a k-linear
isomorphism KM,V of the form

Hom
k[G],φmod(V(M), V )

KM,V−→ Homfuncto
k
(k[G],φmon,kmod)(J (M), I(V ))

by sending f : V(M) −→ V to the natural transformation

KM,V (N) : J (M)(N) −→ I(V )(N)

given by h 7→ f · V(h) for all N ∈k[G],φ mon

Hom
k[G],φmon(N,M) −→ Hom

k[G],φmod(V(N), V ).

The inverse isomorphism is given by K−1
M,V (φ) = φ(M)(1M ) where 1M

denotes the identity morphism on M .
In fact K is a functorial equivalence of the form

K : Hom
k[G],φmod(V(−),−)

∼=−→ Homfuncto
k
(k[G],φmon,kmod)(J (−), I(−))

Theorem 3.9. ([19] §3.6)
Let

. . .
∂i−→Mi

∂i−1−→ . . .
∂1−→ M1

∂0−→M0
ε−→ V −→ 0

be a chain complex with Mi ∈k[G],φ mon for i ≥ 0, V ∈k[G],φ mod,
∂i ∈ Hom

k[G],φmon(Mi+1,Mi) and ε ∈ Hom
k[G],φmod(V(M0), V ). Then the

following are equivalent:
(i) M∗ −→ V is a k[G],φmon-resolution of V .
(ii) The sequence

. . .
J (∂i)−→ J (Mi)

J (∂i−1)−→ . . .
J (∂1)−→ J (M1)

J (∂0)−→ J (M0)
KM0,V (ε)
−→ I(V ) −→ 0

is exact in functok(k[G],φmon,k mod).

Remark 3.10. Theorem 3.9 together with Proposition 3.5 and Propo-
sition 3.6 imply that the map

(M∗
ε−→ V ) 7→ (J (M∗)

KM0,V (ε)
−→ I(V ))

is a bijection between the k[G],φmon-resolutions of V and the projective res-
olutions of I(V ) consisting of objects from the subcategory J (k[G],φmon).

4. From functors to modules

4.1. The functor ΦM
Let M ∈k[G],φ mon and let AM = Hom

k[G],φmon(M,M), the ring of
endomorphisms on M under composition. By Lemma 1.9 AM is a finitely
generated k-algebra.
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In this section we shall show that there is an equivalence of cate-
gories between functok(k[G],φmon,k mod) and the category of right modules
modAM for a suitable choice of M .

We have a functor

ΦM : functok(k[G],φmon,k mod) −→modAM

given by Φ(F) = F(M). Right multiplication by z ∈ AM on v ∈ F(M) is
given by

v#z = F(z)(v)

where F(z) : F(M) −→ F(M) is the left k-module morphism obtained by
applying F to the endomorphism z. This is a right-AM action since

v#(zz1) = F(zz1)(v) = (F(z1) · F(z))(v) = F(z1)(F(z)(v)) = (v#z)#z1.

In the other direction define a functor

ΨM : modAM −→ functok(k[G],φmon,k mod),

for P ∈modAM , by

ΨM (P ) = HomAM (Hom
k[G],φmon(M,−), P ).

Here, for N ∈k[G],φ mon, Hom
k[G],φmon(M,−) is a right AM -module via

pre-composition by endomorphisms of M . For a homomorphism of AM -
modules
f : P −→ Q the map ΨM (f) is given by composition with f .

Next we consider the composite functor

ΦM ·ΨM : modAM −→modAM .

This is given by P 7→ HomAM (Hom
k[G],φmon(M,M), P ) = HomAM (AM , P )

so that there is an obvious natural transformation η : 1
∼=−→ ΦM ·ΨM such

that η(P ) is an isomorphism for each module P .
Now consider the composite functor

ΨM · ΦM : functok(k[G],φmon,k mod) −→ functok(k[G],φmon,k mod).

For a functor F we shall define a natural transformation

εF : F −→ HomAM (Hom
k[G],φmon(M,−),F(M)) = ΨM · ΦM (F).

For N ∈k[G],φ mon we define

εF (N) : F(N) −→ HomAM (Hom
k[G],φmon(M,N),F(M))

by the formula v 7→ (f 7→ F(f)(v)).
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Theorem 4.2. ([19] §3.8)
Let S ∈k[G],φ mon be the finite (G,φ)-Line Bundle over k given by

S = ⊕(H,φ)∈Mφ(G) IndGH(kφ).

Then, in the notation of §4.1,

ΦS : functok(k[G],φmon,k mod) −→modAS

and
ΨS : modAS −→ functok(k[G],φmon,k mod)

are inverse equivalences of categories. In fact, the natural transformations
η and ε are isomorphisms of functors when M = S.

Remark 4.3. Theorem 4.2 is true when S is replaced by any M which
is the direct sum of IndGH(kφ)’s containing at least one pair (H,φ) from
each G-orbit of Mφ(G). That is, for any (G,φ)-Line Bundle containing

⊕(H,φ)∈G\Mφ(G) IndGH(kφ)

as a summand. This remark is established by Morita theory ([88] p.636).

5. The bar-monomial resolution

5.1. The bar resolution
We begin this section by recalling the two-sided bar-resolution for A-

modules. Let k be a commutative Noetherian ring and let A be a (not
necessarily commutative) k-algebra. For each integer p ≥ 0 set

Bp(M,A,N) = M ⊗k A⊗k A⊗k . . .⊗k A⊗k N

in which there are p copies of A and M ∈modA, N ∈A mod. Define

d : B1(M,A,N) −→ B0(M,A,N)

by d(m⊗ a⊗ n) = m · a⊗ n−m⊗ a · n. For p ≥ 2 define

d : Bp(M,A,N) −→ Bp−1(M,A,N)

by
d(m⊗ a1 ⊗ . . . ⊗ ap ⊗ n)

= m · a1 ⊗ . . . ⊗ ap ⊗ n

+
∑p−1
i=1 (−1)im⊗ a1 ⊗ . . .⊗ ai · ai+1 ⊗ . . .⊗ ap ⊗ n

+(−1)pm⊗ a1 ⊗ . . . ⊗ ap · n.
Setting N = A we define

ε : B0(M,A,A) = M ⊗k A −→M
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by ε(m⊗ a) = m · a and

η : M −→ B0(M,A,A) = M ⊗k A
by η(m) = m⊗ 1. Finally define, for p ≥ 0,

s : Bp(M,A,A) −→ Bp+1(M,A,A)

by s(m⊗ a1 ⊗ . . .⊗ ap ⊗ a) = (−1)p+1m⊗ a1 ⊗ . . .⊗ ap ⊗ a⊗ 1.
With these definitions, if p ≥ 2, we have, for i ≥ 0,

dd = 0 : Bi+2(M,A,A) −→ Bi(M,A,A) and ε.d = 0 : B1(M,A,A) −→M.

Also we have
1 = ε · η : M −→ B0(M,A,A) −→M

and for p ≥ 0

ds+ sd = 1 : Bp(M,A,A) −→ Bp(M,A,A).

Finaaly we have

ds+ ηε = 1 : B0(M,A,A) −→ B0(M,A,A).

All the d’s and ε are right A-module maps if the A-multiplication is given
by multiplication on the right-hand factor only.

Therefore we have established the following well-known result concern-
ing the bar resolution for a right A-module.

Proposition 5.2.
In the situation of §5.1 the chain complex

. . . −→ Bp(M,A,A) d−→ Bp−1(M,A,A) d−→ . . .

. . . −→ B1(M,A,A) d−→ B0(M,A,A) ε−→M −→ 0

is a free right-A-module resolution of M .

5.3. As in §3.8 and §4.1, let M ∈k[G],φ mon, V ∈k[G],φ mod and let
AM = Hom

k[G],φmon(M,M), the ring of endomorphisms on M under com-

position. For i ≥ 0 define M̃M,i ∈ kmod by (i copies of AM )

M̃M,i = Hom
k[G],φmod(V(M), V )⊗k AM ⊗k . . .⊗k AM

and set
MM,i = M̃M,i ⊗k Hom

k[G],φmon(−,M).

Hence MM,i ∈ functok(k[G],φmon,k mod) and in fact the values of this
functor are not merely objects in kmod because they have a natural right
AM -module structure, defined as in §4.1.

If i ≥ 1 we defined natural transformations dM,0, dM,1, . . . , dM,i in the
following way. Define

dM,0 : MM,i −→MM,i−1
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by
dM,0(f ⊗ α1 ⊗ . . .⊗ αi ⊗ u) = f(− · α1)⊗ α2 . . .⊗ αi ⊗ u.

The map f(− · α1) : V(M) −→ V is a k[G],φmod- homomorphism since αi
acts on the right of M .

For 1 ≤ j ≤ i− 1 we define

dM,j : MM,i −→MM,i−1

by

dM,j(f ⊗ α1 ⊗ . . .⊗ αi ⊗ u) = f ⊗ α1 . . .⊗ αjαj+1 ⊗ . . .⊗ αi ⊗ u.

Finally
dM,i : MM,i −→MM,i−1

is given by

di(M)(f ⊗ α1 ⊗ . . .⊗ αi ⊗ u) = f ⊗ α1 ⊗ . . .⊗ αi−1 ⊗ αi · u.

Since u is a k[G],φmon-morphism so is αi · u because

(αi · u)(αm) = αi(u(αm)) = αi(αu(m)) = ααi(u(m)) = α(αi · u)(m)

since αi is a k[G],φmon endomorphism of M .
Next we define a natural transformation

εM : MM,0 −→ I(V ) = Hom
k[G],φmod(V(−), V )

by sending f ⊗ u ∈MM,0 to f · V(u) ∈ I(V ).
Finally we define

dM =
i∑

j=0

(−1)jdM,j : MM,i −→MM,i−1.

Theorem 5.4.
The sequence

. . .
dM−→MM,i(M) dM−→MM,i−1(M) . . . dM−→MM,0(M) εM−→ I(V )(M) −→ 0

is the right AM -module bar resolution of I(V )(M).

5.5. The functorial monomial resolution of V
Let V be a finite rank k-lattice with a leftG-action. LetM ∈ k[G],φmon

and W ∈ klat. Define another object W ⊗k M ∈ k[G],φmon by letting
G act only on the M -factor, g(w ⊗m) = w ⊗ gm, and defining the Lines
of W ⊗k M to consist of the one-dimensional subspaces 〈w ⊗ L〉 where
w ∈ W , runs through a k-basis of W , and L is a Line of M . Therefore, if
M ′ ∈ k[G],φmon we have an isomorphism

Hom
k[G],φmon(W ⊗kM,M ′)

∼=−→W ⊗k Hom
k[G],φmon(M,M ′)
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providing that W is finite-dimensional. Similarly we have an isomorphism

Hom
k[G],φmon(M,W ⊗kM ′)

∼=−→W ⊗k Hom
k[G],φmon(M,M ′)

when W is finite dimensional.
As in Theorem 4.2, let S ∈k[G],φ mon be the finite (G,φ)-Line Bundle

over k given by
S = ⊕(H,φ)∈Mφ(G) IndGH(kφ).

As in §5.3, for i ≥ 0 we have M̃S,i ∈ kmod by (i copies of AS)

M̃S,i = Hom
k[G],φmod(V(S), V )⊗k AS ⊗k . . .⊗k AS ,

which is a finite dimensional k-lattice. As a k-basis for M̃S,i we take the
tensor product of the direct sum of bases for each V (H,φ) and a basis for
each AS-factor given by the fg’s of Lemma 1.9. Note that, conveniently,
the product of two fg’s is either zero or an fg. Therefore we may form
M̃S,i ⊗k S ∈ k[G],φmon.

Recall from §3.2 that

Hom
k[G],φmod(V(S), V ) = I(V )(S) ∼= ⊕(H,φ)∈Mφ(G) V

(H,φ),

which we shall assume is a finite dimensional k-lattice. In our principal
application where k is a field this will be fulfilled automatically.

We have morphisms in k[G],φmon for i ≥ 1

d0, d1, . . . , di : M̃S,i ⊗k S −→ M̃S,i−1 ⊗k S
defined on

f ⊗ α1 ⊗ . . .⊗ αi ⊗ s ∈ Homk[G,φ]−mod(V(S), V )⊗k A⊗
i

S ⊗k S

by

d0(f ⊗ α1 ⊗ . . .⊗ αi ⊗ s) = f · V(α1)⊗ α2 ⊗ . . .⊗ αi ⊗ s,

and for 1 ≤ j ≤ i− 1

dj(f ⊗ α1 ⊗ . . .⊗ αi ⊗ s) = f ⊗ α1 ⊗ . . .⊗ αjαj+1 . . .⊗ αi ⊗ s

di(f ⊗ α1 ⊗ . . .⊗ αi ⊗ s) = f ⊗ α1 ⊗ . . .⊗ αi−1 ⊗ αi(s).

Setting d =
∑i
j=0 (−1)jdj gives a morphism in k[G],φmon

d : M̃S,i ⊗k S −→ M̃S,i−1 ⊗k S
for all i ≥ 1. In addition we define a homomorphism in k[G],φmod

ε : M̃S,0 ⊗k S = Hom
k[G],φmod(V(S), V )⊗k S −→ V

by ε(f ⊗ s) = f(s).
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The chain complex

. . .
d−→ M̃S,i ⊗k S

d−→ . . .
d−→ M̃S,1 ⊗k S

d−→ M̃S,0 ⊗k S
ε−→ V −→ 0

satisfies the conditions of Theorem 3.9. Therefore, abbreviating M̃S,i ⊗k S
to Mi pro tem, this chain complex is a k[G],φmon-resolution of V if and
only if the sequence

. . .
J (d)−→ J (Mi)

J (d)−→ . . .
J (d)−→ J (M1)

J (d)−→ J (M0)
KM0,V (ε)
−→ I(V ) −→ 0

is exact in functok(k[G],φmon,k mod). By Theorem 4.2 this chain complex
of functors is exact if and only if the result of applying ΦS to it is exact in
the category modAS . However, by Theorem 5.4 with M = S the resulting
chain complex in modAS is the bar resolution, which is exact.

Therefore, taking k to be a field in order to ensure the lattice conditions,
we have proved the following result.

Theorem 5.6. Existence of the bar-monomial resolution
Let k be a field. Then, in the notation of §5.5, The chain complex

. . .
d−→ M̃S,i ⊗k S

d−→ . . .
d−→ M̃S,1 ⊗k S

d−→ M̃S,0 ⊗k S
ε−→ V −→ 0

is a k[G],φmon-resolution of V .

Remark 5.7. Using Theorem 3.9 and Theorem 4.2 to prove Theorem
5.6 had the advantage that it guided us directly from the classical bar resolu-
tion for rings and modules to a description of the bar-monomial resolution.
However, now that we have its description, it is presumably straightforward
to construct the correct type of “contracting homotopy” which would im-
mediately show that the complex of Theorem 5.6 is a monomial resolution.

5.8. Naturality - inclusions of subgroups
Suppose we have an inclusion homomorphism i : G ⊆ J of finite modulo

the centre groups with i(Z(G)) ⊆ Z(J), Suppose that G and J have central
characters φ

G
and φ

J
, respectively, which satisfy φ

G
= φ

J
· i.

As in Theorem 4.2 define SG ∈k[G],φ mon and SJ ∈k[J],φ mon to be

SG = ⊕(H,φ)∈Mφ(G) IndGH(kφ)

and
SJ = ⊕(H′,φ′)∈Mφ(J) IndJH′(kφ′).

We have a k[G],φmon-morphism, as in §3.2,

((K,ψ), g, (H,φ)) : SG −→ SG

associated to each triple ((K,ψ), g, (H,φ)) which satisfies the condition that
(K,ψ) ≤ (gHg−1, (g−1)∗(φ)). It maps IndGK(kψ) −→ IndGH(kφ) via
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g′ ⊗K v 7→ g′g ⊗H v and is zero on the other summands. Varying over
the set of such triples, we have

ASG = Hom
k[G],φmon(SG, SG) ∼= k〈((K,ψ), g, (H,φ))〉/ '

where ' is the subspace generated by

((K,ψ), gh, (H,φ))− φ(h)((K,ψ), g, (H,φ)) for h ∈ H.

Then ASG is a ring under composition which is given in terms of generators
by

((K,ψ), g, (H,φ)) · ((H,φ), u, (U, µ)) = ((K,ψ), gu, (U, µ)).
The inclusion homomorphism G ⊆ J means that we have a map on

triples which sends ((K,ψ), g, (H,φ)), a triple for G, to ((K,ψ), g, (H,φ))
considered as a triple for J . This preserves composition and the relation '
so we have a ring hommorphism

iG,J : ASG −→ ASJ .

Next, if V is a representation of J then Frobenius reciprocity gives an
isomorphism, also iG,J ,

Hom
k[G],φmod(V(IndGH(kφ)),ResJG(V ))

∼=−→ Hom
k[J],φmod(V(IndJH(kφ)), V )

which sends f to iG,J(f) : j ⊗H v 7→ jf(1⊗H v).
We have two routes from Hom

k[G],φmod(V(IndGH(kφ)),ResJG(V ))⊗ASG
to
Hom

k[J],φmod(V(IndJH(kφ)), V ). Starting with f : IndGH(φ)) −→ ResJG(V )
and ((K,ψ), g, (H,φ)) we may form iG,J(f · V(((K,ψ), g, (H,φ)))) given by

g1 ⊗K v 7→ g1g ⊗H v 7→ g1g(f(1⊗H v) ∈ V

or we can form iG,J(f) · iG,J(V((K,ψ), g, (H,φ))) which is given by

j ⊗K v 7→ jg ⊗H v 7→ jgf(1⊗H v).

Therefore the two routes agree.
Also we have two routes AG ⊗ SG −→ SJ given by evaluation followed

by iG,J or iG,J ⊗ iG,J followed by evaluation. Both are given by

((K,ψ), g, (H,φ))⊗ (g1 ⊗K v) 7→ g1g ⊗H v.

We define a G-map iG,J : SG −→ SJ by sending g ⊗H v ∈ IndGH(kφ) to
g ⊗H v ∈ IndJH(kφ).

Therefore it is easy to see that iG,J induces a canonical homomorphism
of bar-monomial resolutions of Theorem 5.6

iG,J : (M̃SG,∗ ⊗k SG
ε−→ ResJG(V )) −→ (M̃SJ ,∗ ⊗k SJ

ε−→ V )

which commutes with the augmentations to V and with the left-action by
the subgroup G.
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In addition, if G ⊆ J ⊆ H is a chain of groups the canonical homomor-
phisms are transitive in the sense that iJ,H · iG,J = iG,H .

5.9. Naturality - surjections onto quotient groups
Let N�G be a normal subgroup which acts trivially on V . In this case

the central character φ factorises through G/N and we shall also denote
by φ the resulting central character on G/N . If φ ∈ Ĥ is trivial on H

⋂
N

then φ induces a unique character φ̃ on HN/N . Let π : G −→ G/N denote
the quotient map. Define

πG,G/N : SG −→ SG/N

to be zero on summands IndGH(φ) unless N ⊆ H and ResHN (φ) is trivial. If
N ⊆ H and ResHN (φ) is trivial then there is an k[G],φmon- isomorphism

πG,G/N : IndGH(kφ)
∼=−→ IndG/NH/N (kφ̃)

given by g ⊗H v 7→ π(g)⊗H/N v.
There is a ring homomorphism πG,G/N : AG −→ AG/N given by send-

ing ((K,ψ), g, (H,φ)) to zero unless N is a subgroup of H
⋂
K, which is

equivalent to N ⊆ K, and ResHN (φ) (hence also ResHN (ψ)) is trivial. Other-
wise

πG,G/N ((K,ψ), g, (H,φ)) = ((K/N, ψ̃), π(g), (H/N, φ̃)).

There is an isomorphism

Hom
k[G],φmod(V(IndGH(kφ)), V )

πG,G/N−→ Hom
k[G/N],φmod(V(IndG/NH/N (kφ̃)), V )

if N ⊆ H and ResHN (φ) is trivial and we define πG,G/N to be zero on
Hom

k[G],φmod(V(IndGH(kφ)), V ) otherwise.
The maps πG,G/N induce a chain map of bar-monomial resolutions

πG,G/N : (M̃SG,∗ ⊗k SG
ε−→ V ) −→ (M̃SG/N ,∗ ⊗k SG/N

ε−→ V )

which commutes with the augmentations to V and with the left-action by
G.

In addition, if N ⊆ M is an inclusion of normal subgroups of G the
canonical homomorphisms are transitive in the sense that
πG/N,G/M · πG,G/N = πG,G/M .

The chain map iG,J of §5.8 together with πG,G/N define a canonical
chain map of bar-monomial resolutions associated to any homomorphism
λ : G −→ G1

λ∗ : (M̃SG,∗ ⊗k SG
ε−→ V ) −→ (M̃SG1 ,∗ ⊗k SG1

ε−→ V )

which commutes with the augmentations to V and with the left-action by
the subgroup G. In addition λ∗ · τ∗ = (λ · τ)∗.
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To see this one verifies the following property. Suppose that we have
an inclusion G ⊆ J and a surjection J −→ J/N as in §5.8 and §5.9. The
composition of these two homomorphisms is equal to the surjection G −→
GN/N followed by the inclusion GN/N ⊆ J/N . However

iGN/N,J/N · πG,GN/N = πJ,J/N · iG,J .

5.10. Naturality - inclusions of sub-representations
Let j : V ⊆ V1 be the inclusion of a sub-representation of G such

that each representation has the same central character φ. Then post-
composition with j induces

Hom
k[G],φmod(V(SG), V )

j∗−→ Hom
k[G],φmod(V(SG), V1)

and a canonical chain map of bar-monomial resolutions

j∗ : (M̃V,SG,∗ ⊗k SG
ε−→ V ) −→ (M̃V1,SG,∗ ⊗k SG

ε−→ V1)

which commutes with the augmentations and with the left-action by G.
Here the suffices V and V1, which will usually be suppressed, have been
included to stress which representation is being resolved.

6. Finiteness of monomial resolutions in characteristic zero

6.1. Suppose that G is a locally p-adic group which is finite modulo
the centre and suppose that V is a finite dimensional, irreducible complex
representation of G with central character φ on Z(G). We shall construct a
finite length, finite type monomial resolution of V by modifying the proof
for finite groups which is given in ([19] §6). In this section, temporarily, we
shall suppress the mention of φ and merely write MG forMφ(G).

This is an involved induction of the “homological algebra” type which
produces a monomial resolution unique up to chain homotopy equivalence.

Eventually I hope to be able to construct a proof which proceeds di-
rectly by modification of the bar-monomial resolution, for example by con-
structing a contracting homotopy which respects “depth”, the filtration on
which the following proof is based.

6.2. We say that (H,φ) ∈ MG is V -admissible if V (H,φ) 6= 0 and
(Z(G), φ) ≤ (H,φ). Let S(V ) denote the set of non-zero subspaces of V
and let A(V ) ⊆MG dente the set of V -admissible pairs. Define maps

FV : A(V ) −→ S(V ) and PV : S(V ) −→ A(V )

by the formulae

FV (H,φ) = V (H,φ) and PV (W ) = sup{(H,φ) | W ⊆ V (H,φ)}.
Usually suprema do not exist in MG but PV (W ) exists in this context.
Firstly W ⊆ V (Z(G),φ). On the other hand, if W ⊆ V (H,φ) and W ⊆
V (H′,φ′) then W ⊆ V (H′′,φ′′) where H ′′ is the subgroup generated by H
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and H ′ and φ′′ is a character which extends both φ′ and φ. This extension
exists since H/Z(G) and H ′/Z(G) are both finite and C∗ is an injective
abelian group.

Both S(V ) and A(V ) are posets with G-action with W ⊆ FV (PV (W ))
and (H,φ) ≤ PV (FV (H,φ)). Define the V -closure clV (H,φ) by

clV (H,φ) = PV (FV (H,φ))

and say that (H,φ) is V -closed if (H,φ) = clV (H,φ). Hence clV (H,φ) is
the largest pair (H ′, φ′) such that V (H,φ) = V (H′,φ′). Closure commutes
with the G-action, is idempotent and order-increasing. Let Cl(V ) ⊆ A(V )
denote the subset of closed pairs.

For (H,φ) ∈ Cl(V ) define the V -depth dV (H,φ) to be the largest in-
teger n ≥ 0 such that there exists a strictly increasing chain in Cl(V ) of
length n of the form

(H,φ) = (H0, φ0) < (H1, φ1) < · · · < (Hn−1, φn−1) < (Hn, φn).

Therefore dV (H,φ) = 0 if and only if (H,φ) is maximal in Cl(V ).

Theorem 6.3.
In the situation and notation of §6.1 and §6.2 there exists a finite type

C[G]-monomial resolution

M∗
ε−→ V −→ 0

such that:
(i) For i ≥ 0, Mi has no Line with stabiliser pair (H,φ) 6∈ Cl(V ).
(ii) For i ≥ 0, Mi has no Line with stabiliser pair (H,φ) ∈ Cl(V ) and

dV (H,φ) < i.
In particular Mi = 0 for all i > max{dV (H,φ) | (H,φ) ∈ Cl(V )}.

Proof
By induction on n we shall show that there exists a chain complex

Mn
∂n−1−→ Mn−1

∂n−2−→ . . .
∂0−→M0

ε−→ V −→ 0

in which each Mi is a C[G]-Line Bundle, each ∂i is a morphism and ε is
a homomorphism of C[G]modules such that the following conditions are
satisfied:

(An) For 0 ≤ i ≤ n, Mi has no Line with stabiliser pair (H,φ) 6∈ Cl(V ).

(Bn) For 0 ≤ i ≤ n, Mi has no Line with stabiliser pair (H,φ) ∈ Cl(V )
and dV (H,φ) < i.

(Cn) The sequence of vector spaces

M ((H,φ))
n

∂n−1−→ M
((H,φ))
n−1

∂n−2−→ . . .
∂0−→M

((H,φ))
0

ε−→ V (H,φ) −→ 0
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is exact for all (H,φ) ∈MG.
(Dn) The sequence of vector spaces

0 −→M ((H,φ))
n

∂n−1−→ M
((H,φ))
n−1

∂n−2−→ . . .
∂0−→M

((H,φ))
0

ε−→ V (H,φ) −→ 0

is exact for all (H,φ) ∈ Cl(V ) with dV (H,φ) ≤ n.
Note that for n > max(dV (H,φ) | (H,φ) ∈ Cl(V )) the properties (An)

and (Bn) imply that Mn = 0 and property (Cn) implies that

M∗
ε−→ V −→ 0

is a C[G]-monomial resolution satisfying conditions (i) and (ii) of Theorem
6.3. By C[G]-equivariance it suffices to prove (An)-(Dn) for one pair (H,φ)
in each G-orbit.

Step (a): We show that if (An) , (Bn) and (Dn) hold then it suf-
fices to prove (Cn) only for (H,φ) ∈ Cl(V ). Let (H,φ) ∈ MG such that
(Z(G), φ) ≤ (H,φ). If (H,φ) 6∈ A(V ) then no larger (H ′, φ′) is V -admissible

and since Cl(V ) ⊆ A(V ) we have M ((H,φ))
i = 0 for 0 ≤ i ≤ n by (An). Also

V (H,φ) = 0. Now suppose that (H,φ) ∈ A(V ) then we must prove that the
sequence in (Cn) is exact, assuming that it is exact for all (H,φ) ∈ Cl(V ).
We have V (H,φ) = V clV (H,φ) by the definition of closure. In addition,
M

((H,φ))
i = M

clV (H,φ)
i for all 0 ≤ i ≤ n. This is seen as follows: (H,φ) ≤

clV (H,φ) implies thatM clV (H,φ)
i ⊆M ((H,φ))

i and for all (H ′, φ′) ≥ (H,φ) we
have no Lines in Mi with stabiliser pair (H ′, φ′) unless (H ′, φ′) ∈ Cl(V ), by
(An), but in this case we have (H ′, φ′) = clV (H ′, φ′) ≥ clV (H,φ) = (H,φ)
so that M ((H′,φ′))

i ⊆M clV (H,φ)
i . Therefore the sequences in (Cn) for (H,φ)

and for its closure coincide but the latter is exact by assumption.

Step (b): We start the induction on n by defining ε : M0 −→ V .
For each (H,φ) we need to define the set of Lines in M0 whose stabiliser
pair is G-conjugate to (H,φ). If (H,φ) 6∈ Cl(V ) we shall define the set of
such Lines to be empty. If (H,φ) ∈ Cl(V ) define this set of lines to be
given by the Line Bundle IndGH(V (H,φ)) where V (H,φ) is viewed as a C[H]-
Line Bundle with any choice of decomposition into Lines with the H-action
hv = φ(h) · v, which was given on V (H,φ) already. Define ε on this sub-Line
Bundle of M0

IndGH(V (H,φ)) −→ V

by ε(g ⊗C[H] v) = g · v. This satisfies both (A0) and (B0).
Next we show that (D0) holds. Suppose that (H,φ) is a maximal el-

ement in Cl(V ), which implies that (H,φ) is maximal in A(V ) because
if there were a larger pair in A(V ) its closure would be in Cl(V ) and
larger than (H,φ). Therefore the normaliser of (H,φ) must equal H. For
the normaliser is stabG(H,φ) and so if it is greater than H the charac-
ter φ may be extended φ′ on to H ′ > H with an abelian quotient group
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H ′/H and V (H,φ) 6= 0. By Clifford theory V (H′,φ′) 6= 0 and therefore
(H ′, φ′) > (H,φ) in A(V ) - a contradiction. Maximality in Cl(V ), (A0)
and the condition H = stabG(H,φ) imply that M ((H,φ))

0 = 1 ⊗C[H] V
(H,φ)

so that ε : M ((H,φ)) −→ V (H,φ) is an isomorphism. Finally, by step (a), we
must show that ε : M ((H,φ)) −→ V (H,φ) is surjective for any (H,φ) ∈ Cl(V ),
which is clear by construction.

Step (c): Next we assume that we have already constructed a chain
complex

Mn
∂n−1−→ Mn−1

∂n−2−→ . . .
∂0−→M0

ε−→ V −→ 0
such that (An), (Bn), (Cn) and (Dn) hold. When n = 0 we interpret
(Mn, ∂n−1) as (V, ε). We shall define ∂n : Mn+1 −→ Mn by defining the
Lines of Mn+1 whose stabiliser pair is G-conjugate to (H,φ) and specifying
∂n on the direct sum of those Lines. If (H,φ) 6∈ Cl(V ) we set the sum of
these Lines to be zero, which assures that (An+1) holds. If (H,φ) ∈ Cl(V )
and dV (H,φ) ≤ n we also set the sum of these Lines to be zero, so that
(Bn+1) follows from (Bn). Moreover (Dn) and (An+1) implies (Cn+1) for all
(H,φ) with dV (H,φ) ≤ n. Also (Dn) implies (Dn+1) for all (H,φ) ∈ Cl(V )
with dV (H,φ) ≤ n.

If (H,φ) ∈ Cl(V ) with dV (H,φ) > n + 1 we define the direct sum of
Lines in Mn+1 with stabiliser pair conjugate to (H,φ) to be IndGH(Ω(H,φ)

n )
with Ω(H,φ)

n = Ker(∂n−1 : M ((H,φ))
n −→M

((H,φ))
n−1 ) considered as an H-Line

Bundle with any chosen decomposition and we set ∂n(g ⊗C[H] v) = gv.
Clearly ∂n−1 · ∂n = 0 as defined so far and ∂n is a morphism by Frobenius
reciprocity. Also

Ker(∂n−1 : M ((H,φ))
n −→M

((H,φ))
n−1 ) = Ω(H,φ)

n = ∂n(1⊗C[H] Ω(H,φ)
n ⊆ Im(∂n)

shows that (Cn+1) holds for this pair (H,φ) (and its G-conjugates) and
(Dn+1) is vacuously true for it.

It remains to deal with the case when dV (H,φ) = n+1 and only (Dn+1)
requires to be proved since (Cn+1) is vacuously satisfied in this case. We
shall show in Lemma 6.4 that

Ω(H,φ)
n = Ker(∂n−1 : M ((H,φ))

n −→M
((H,φ))
n−1 ) ∼= IndstabG(H,φ)

H (L(H,φ))

as C[stabG(H,φ)]-modules for some C[H]-submodule L(H,φ) ⊆ Ω(H,φ)
n . Since

H acts on L(H,φ) via multiplication by φ we may choose a decomposition
for L(H,φ) as a direct sum of (H,φ)-Lines. Then we define the direct sum
of Lines in Mn+1 whose stabilisers are G-conjugate to (H,φ) to be given by
IndGH(L(H,φ)) and define ∂n on IndGH(L(H,φ)) by ∂n(g ⊗C[H] v) = gv. Then
∂n is a morphism, by Frobenius reciprocity, and (Dn+1) holds because, by
(An+1) and (Bn+1),

M
((H,φ))
n+1 = (IndGH(L(H,φ)))((H,φ)) = ⊕g∈stabG(H,φ)/H s⊗C[H] L(H,φ),
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which shows that ∂n induces an isomorphism M
((H,φ))
n+1 −→ Ω(H,φ)

n .
The proof will be completed by Lemma 6.4. 2

Lemma 6.4.
Suppose we have a chain complex as at the start of the proof of Theorem

6.3
Mn

∂n−1−→ Mn−1
∂n−2−→ . . .

∂0−→M0
ε−→ V −→ 0

such that conditions (An), (Bn), (Cn) and (Dn) hold. Let (H,φ) ∈ Cl(V )
with dV (H,φ) = n+1. Then the class θ ∈ K0(C[N ]) of the C[stabG(H,φ)]-
module

Ker(∂n−1 : M ((H,φ))
n −→M

((H,φ))
n−1 ) = Ω(H,φ)

n

is a (possibly zero) multiple of the character of IndstabG(H,φ)
H (φ).

Proof
Set N = stabG(H,φ). Then, by (Cn) for (H,φ) we have an exact

sequence of C[N ]-modules

0 −→ Ω(H,φ)
n −→M

((H,φ))
n

∂n−1−→ M
((H,φ))
n−1

∂n−2−→

. . .
∂0−→M

((H,φ))
0

ε−→ V (H,φ) −→ 0.

Denote by χi ∈ K0(C[N ]) the character of M ((H,φ))
i and ν the class of

V (H,φ). Therefore we obtain

ν = (−1)n+1θ +
n∑
i=0

(−1)iχi ∈ K0(C[N ]).

At this point the proof of ([19] §6) uses the existence of the explicit
Brauer induction maps aN and bN (in the notation of [126]) which could
be established for finite modulo the centre groups (with a fixed, possibly
non-finite central character) by the algebraic argument of [17] which is
reproduced in [126]. However, it is easier to use the topological construction
of these maps by the method of Peter Symonds construction [134], which
uses the action of G on the projective space of V and works more general
for finite modulo the centre groups.

Now consider the class of the C[N ]-Line BundleM ((H,φ))
i which satisfies

χ = bN (M ((H,φ))
i ), by definition. We also have bN (aN (ν)) = ν so that we

obtain

(−1)n+1θ = bN (aN (ν)−
n∑
i=0

(−1)iχi) ∈ K0(C[N ]).

Observe next that all the stabiliser pairs of the Lines of M ((H,φ))
i for

0 ≤ i ≤ n have the form (H ′
⋂
N,ResH

′

H′∩N (φ′)) for some (H ′, φ′) ∈ MG

such that (H,φ) ≤ (H ′, φ′). Hence in the free abelian group R+(N) on
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the N -conjugacy classes of MN the class of M ((H,φ))
i ∈ R+(N) may have

non-zero coefficients only at basis elements (K,ψ) ∈MN/N with (H,φ) ≤
(K,ψ). By a basic property of aN , the same is true of aN (ν) since ν restricts
to a multiple of φ on H. Therefore we may write

aN (ν)−
n∑
i=0

(−1)iM ((H,φ))
i =

∑
(K,ψ)N∈MN/N

(H,φ)≤(K,ψ)

α(K,ψ)N · (K,ψ)N ∈ R+(N)

where each α(K,ψ)N is an integer.
We shall show that α(K,ψ)N = 0 for all (H,φ) < (K,ψ), which concludes

the proof.
Assume that α(K0,ψ0)N 6= 0 for some (H,φ) < (K0, ψ0) and assume also

that (K0, ψ0) is maximal amongst pairs satisfying this condition.
Recall that there is a (non-symmetric) bilinear form on R+(N) and

maximality of (K0, ψ0) yields

((K0, ψ0)N ,
∑

(K,ψ)N∈MN/N

(H,φ)≤(K,ψ)

α(K,ψ)N · (K,ψ)N )N

=
∑

(K,ψ)N∈MN/N

(H,φ)≤(K,ψ)

α(K,ψ)N ((K0, ψ0)N , (K,ψ)N )N

= α(K0,ψ0)N ((K0, ψ0)N , (K0, ψ0)N )N

= α(K0,ψ0)N [stabN (K0, ψ0) : K0] 6= 0.

On the other hand, adjointness properties of aG and the bilinear form
yield

((K0, ψ0)N , aN (ν)−
∑n
i=0 (−1)iM ((H,φ))

i )N

= ((K0, ψ0)N , aN (ν))N −
∑n
i=0 (−1)i((K0, ψ0)N ,M

((H,φ))
i )N

= (IndNK0
(ψ0), ν)N −

∑n
i=0 (−1)idimC(HomC[N ]−mon(IndNK0

(ψ0),M
((H,φ))
i ))

= (ψ0,ResNK0
(ν))K0 −

∑n
i=0 (−1)idimC(M ((K0,ψ0))

i )

= dimC(V (K0,ψ0))−
∑n
i=0 (−1)idimC(M ((K0,ψ0))

i ).

The lemma will be proved by showing that this last expression is zero. If
(K0, ψ0) is not V (H,φ)-admissible then (An) implies that every term in this
sum vanishes. If (K0, ψ0) is V (H,φ)-admissible then we have clV (H,φ) =
(H,φ) < (K0, ψ0) ≤ clV (K0, ψ0). This implies that

dV (clV (K0, ψ0)) < dV (H,φ) = n+ 1.
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However (Dn) implies that the chain complex

0 −→M
(clV (K0,ψ0))
n

∂n−1−→ M
(clV (K0,ψ0))
n−1

∂n−2−→ . . .

∂0−→M
(clV (K0,ψ0))
0

ε−→ V clV (K0,ψ0) = V (K0,ψ0) −→ 0

is exact. In addition, by an argument used in the proof of Theorem 6.3(a)
we have M (clV (K0,ψ0))

i = M
((K0,ψ0))
i for 0 ≤ i ≤ n, which completes the

proof. 2

Corollary 6.5.
When k is an algebraically closed field of characteristic zero in Theo-

rem 5.6 the bar-monomial resolution of V is chain homotopy equivalent in
k[G],φmon to a finite length, finitely generated k[G],φmon-resolution of V .



CHAPTER 2

GL2 of a local field

In this chapter we shall consider, in the local field case, the existence
and structure of the monomial resolution of an admissible k-representation
V of GL2K with central character φ. The monomial resolution constructed
in this case is unique in the derived category of k[GL2K],φmon.

In §1 we recall the definition and properties of compactly supported
(modulo the centre) induction of an admissible representation (and the
k[G]mon-analogue) of a locally profinite Lie group such as GLnK. In §2 the
finite modulo the centre monomial resolutions of Chapter One are extended,
using the functoriality of the bar-monomial resolution, to the case of com-
pact open modulo the centre groups. In §3 we construct a k[GLnK],φmon-
monomial double complex made from a compact open modulo the centre
bar-monomial resolution for each such orbit stabiliser of a GLnK-simplicial
complex Y and the natural monomial morphisms between them. In §4 with
n = 2 we take Y to be a simplicial subdivision of the Bruhat-Tits building
(the classical tree of [115]) of GL2K. Since the tree is one-dimensional one
can make the construction without recourse to the naturality properties -
homological algebra with chain complexes will suffice. For GL2K we adopt
this simplification in order better to illustrate the basic construction with-
out the extra technicalities. In §5 I describe what becomes of a monomial
resolution of an admissible representation of GL2K when one takes the part
“fixed by level-n units”. Not surprisingly the result is a finite modulo the
centre monomial resolution. §5 concludes with some remarks about the rel-
evance of this to local ε-factors and L-functions. In §6 for GL2K (although
the results hold for arbitrary GLnK) I describe the monomial resolution of
an admissible representation of the semi-direct product of a Galois group
with GL2K which extends a given Galois invariant GL2K admissible rep-
resentation. This construction should be related to Galois base change (or
Galois descent) of admissible irreducibles (see [91] and [7]). With this sort
of application in mind I have given in Appendix I, which is Chapter Ten,
an extended discussion of a particular Shintani descent example. Shintani
descent [117] is the finite group (possibly motivating) analogue of base
change.

31
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1. Induction

In this section we are going to study admissible representations of
GL2K and its subgroups, where K is a p-adic local field. These repre-
sentations will be given by left-actions of the groups on vector spaces over
k, which is an algebraically closed field of arbitrary characteristic. Let us
begin by recalling induced and compactly induced smooth representations.

Definition 1.1. ([40] p.17)
Let G be a locally profinite group and H ⊆ G a closed subgroup. Thus

H is also locally profinite. Let

σ : H −→ Autk(W )

be a smooth representation of H. Set X equal to the space of functions
f : G −→W such that

(i) f(hg) = hf(g) for all h ∈ H, g ∈ G,
(ii) there is a compact open subgroup Kf ⊆ G such that f(gk) = f(g)

for all g ∈ G, k ∈ Kf .
The (left) action of G on X is given by (g · f)(x) = f(xg−1) and

Σ : G −→ Autk(X)

gives a smooth representation of G.
The representation Σ is called the representation ofG smoothly induced

from σ and is usually denoted by Σ = IndGH(σ).

1.2. Definition 1.1 does make sense since, if g ∈ G, h ∈ H and f ∈ X,
then

(g · f)(hg1) = f(hg1g−1) = hf(g1g−1) = h(g · f)(g1)
so that (g · f) satisfies condition (i) of Definition 1.1.

Also

(gg1·f)(x) = f(x(gg1)−1) = f(xg−1
1 g−1) = g·(x 7→ f(xg−1

1 )) = (g·(g1·f))(x)

so Σ is a left representation, providing that g ·f ∈ X when f ∈ X. However,
condition (ii) asserts that there exists a compact open subgroup Kf such
that k ·f = f for all k ∈ Kf . The subgroup gKfg

−1 is also a compact open
subgroup and, if k ∈ Kf , we have

(gkg−1) · (g · f) = (gkg−1g) · f = (gk) · f = (g · (k · f)) = (g · f)

so that g · f ∈ X, as required.
The smooth representations of G form an abelian category Rep(G).

Proposition 1.3. ([40] p.18)
The functor

IndGH : Rep(H) −→ Rep(G)
is additive and exact.
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Proposition 1.4. (Frobenius Reciprocity; ([40] p.18))
There is an isomorphism

HomG(π, IndGH(σ))
∼=−→ HomH(π, σ)

given by φ 7→ α · φ where α is the H-map

IndGH(σ) −→ σ

given by α(f) = f(1).

1.5. In general, if H ⊆ Q are two closed subgroups there is a Q-map

IndGH(σ) −→ IndQH(σ)

given by restriction of functions. Note that α in Proposition 1.4 is the
special case where H = Q.

1.6. The c-Ind variation ([40] p.19)
Inside X let Xc denote the set of functions which are compactly sup-

ported modulo H. This means that the image of the support

supp(f) = {g ∈ G | f(g) 6= 0}
has compact image in H\G. Alternatively there is a compact subset C ⊆ G
such that supp(f) ⊆ H · C.

The Σ-action on X preserves Xc, since supp(g · f) = supp(f)g ⊆ HCg,
and we obtain Xc = c− IndGH(W ), the compact induction of W from H to
G.

This construction is of particular interest when H is open. Then there
is a canonical H-map

αc : W −→ c− IndGH(W )

given by w 7→ fw where fw is supported in H and fw(h) = h · w (so
fw(g) = 0 if g 6∈ H).

For g ∈ G we have

(g · fw)(x) = fw(xg−1) =

 0 if xg−1 6∈ H,

(xg−1) · w if xg−1 ∈ H,

=

 0 if x 6∈ Hg,

(xg−1) · w if x ∈ Hg.

Lemma 1.7. ([40] p.19)
Let H be an open subgroup of G. Then
(i) αc : w 7→ fw is an H-isomorphism onto the space of functions

f ∈ c− IndGH(W ) such that supp(f) ⊆ H.
(ii) If w ∈W and h ∈ H then h · fw = fh−1w.



34 2. GL2 OF A LOCAL FIELD

(iii) If W is a k-basis of W and G is a set of coset representatives for
H\G then

{g · fw | w ∈ W, g ∈ G}
is a k-basis of c− IndGH(W ).

Proof
If supp(f) is compact modulo H there exists a compact subset C such

that
supp(f) ⊆ HC =

⋃
c∈C

Hc.

Each Hc is open so the open covering of C by the Hc’s refines to a finite
covering and so

C = Hc1
⋃
. . .
⋃
Hcn

and so
supp(f) ⊆ HC = Hc1

⋃
. . .
⋃
Hcn.

For part (i), the map αc is an H-homomorphism to the space of func-
tions supported in H with inverse map f 7→ f(1).

For part (ii), from §1.6 we have

(h · fw)(x) = fw(xh−1) =

 0 if x 6∈ H,

xh−1w if x ∈ H.
so that, for all x ∈ G, (h · fw)(x) = fh−1w(x), as required.

For part (iii), the support of any f ∈ c− IndGH(W ) is a finite union of
cosets Hg where the g’s are chosen from the set of coset representatives G of
H\G. The restriction of f to any one of these Hg’s also lies in c−IndGH(W ).
If supp(f) ⊆ Hg then (g−1 · f)(z) 6= 0 implies that zg ∈ Hg so that g−1 · f
has support contained inH. Hence g−1·f onH is a finite linear combination
of the functions fw with w ∈ W. Therefore f is a finite linear combination
of g · fw’s where w ∈ W, g ∈ G. Clearly the set of functions g · fw with
g ∈ G and w ∈ W is linearly independent. 2

Example 1.8. Let K be a p-adic local field with valuation ring OK
and πK a generator of the maximal ideal of OK . In GLnK if H is compact,
open modulo K∗ then there is a subgroup H ′ of finite index in H such that
H ′ = K∗H1 with H1 compact, open in SLnK. This can be established
by studying the simplicial action of GLnK on a suitable barycentric sub-
division of the Bruhat-Tits building of SLnK (see §4.12 and Chapter Four
§1).

To show that H is both open and closed it suffices to verify this for H ′.
Firstly H ′ is open, since it is H ′ =

⋃
z∈K∗ zH1 =

⋃
s∈Z πsKH1.

Also H ′ = K∗H1 is closed. Suppose that X ′ 6∈ K∗H1. K∗H1 is
closed under mutiplication by the multiplicative group generated by πK so
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that πmKX
′ 6∈ K∗H1 for all m. By conjugation we may assume that H1 is

a subgroup of SLnOK , which is the maximal compact open subgroup of
SLnK, unique up to conjugacy. Choose the smallest non-negative integer
m such that every entry of X = πmKX

′ lies in OK . Therefore we may write
0 6= det(X) = πsKu where u ∈ O∗K and 1 ≤ s. Now suppose that V is an
n× n matrix with entries in OK such that X + πtKV ∈ K∗H1. Then

det(X + πtKV ) ≡ πsKu (modulo πtK).

So that if t > s then s must have the form s = nw for some integer w
and π−wK (X + πtKV ) ∈ GLnOK

⋂
K∗H1 = H1. Therefore all the entries in

π−wK X lie in OK and π−wK X ∈ GLnOK . Enlarging t, if necessary, we can
ensure that π−wK X ∈ H1, since H1 is closed (being compact), and therefore
X ′ ∈ K∗H1, which is a contradiction.

Since H is both closed and open in GLnK we may form the admissible
representation c− IndGLnKH (kφ) for any continuous character φ : H −→ k∗

and apply Lemma 1.7.
If g ∈ GLnK,h ∈ H then (g · f1)(x) = φ(xg−1) if xg−1 ∈ H and zero

otherwise. On the other hand, (hg ·f1)(x) = φ(xg−1h−1) = φ(h−1)φ(xg−1)
if xg−1 ∈ H and zero otherwise. Therefore as a left GLnK-representation
c− IndGLnKH (kφ) is isomorphic to

k[GLnK]/(g − φ(h)hg | g ∈ GLnK, h ∈ H)

with left action induced by g1 · g = gg−1
1 .

This vector space is isomorphic to the k-vector space whose basis is
given by k-bilinear tensors over H of the form g⊗H 1 as in the case of finite
groups. The basis vector g · f1 corresponds to g−1 ⊗H 1 and GLnK acts
on the tensors by left multiplication, as usual. This is well-defined because
φ(h)(hg · f1) corresponds to g−1h−1 ⊗H φ(h) = g−1 ⊗H 1.

Proposition 1.9. ([40] p.19)
The functor

c− IndGH : Rep(H) −→ Rep(G)

is additive and exact.

Proposition 1.10. ([40] p.20)
Let H ⊆ G be an open subgroup and (σ,W ) smooth. Then there is a

bi-functorial isomorphism

HomG(c− IndGH(σ), π)
∼=−→ HomH(σ, π)

given by f 7→ f · αc.

Example 1.11. The Line Bundle c− IndGLnKH (M)
In the situation of Example 1.8, suppose that M is a Line Bundle in

k[K∗H1],φmon. Then c− IndGLnKH (M) can be given the structure of a Line
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Bundle in k[GLnK],φmon denoted by c − IndGLnKH (M). Choose for W, a
basis for M , a set consisting of one non-zero vector from each Line. The
Lines of c− IndGLnKH (M) are then given by

{〈g · fw〉 | w ∈ W, g ∈ G}

in the notation of Lemma 1.7.
This vector space is isomorphic to the k-vector space whose basis is

given by k-bilinear tensors over H of the form g⊗Hw as in the case of finite
groups. The basis vector g · fw corresponds to g−1 ⊗H w and GLnK acts
on the tensors by left multiplication, as usual. This is well-defined because
φ(h)(hg ·fw) = φ(h)g ·fh−1w corresponds to g−1h−1⊗H φ(h)w = g−1⊗Hw.

2. From finite to compact open

2.1. Let K be a p-adic local field with valuation ring OK and πK a
generator of the maximal ideal of OK . In GLnK let H be compact, open
modulo K∗ of the form H = K∗H1 with H1 compact, open, as in Example
1.8.

For 1 ≤ m let UmK denote the subgroup of GLnK given by

UmK = {X ∈ GLnOK | X ≡ I (modulo πmK )}.

Let V be a (left) admissible k-representation of GLnK with central
character φ. Since every vector of V lies in the fixed subspace V J = V (J,1)

for some open subgroup J , we have

V =
⋃
m≥1

V (UmK ,1) =
⋃

m≥m0

V (K∗UmK ,φ)

where m0 is the least integer such that the central character is trivial
on Um0

K . Also each V (K∗UmK ,1) is a finite-dimensional representation of
H via a left action which factorises through the quotient H/H

⋂
UmK =

K∗ · H1/H1

⋂
UmK , which is finite modulo the centre providing that m is

large enough. This fact is established by observing that every maximal
compact open subgroup of GLnK is conjugate to GLnOK . For example,
when n = 2 and α, β, γ.δ ∈ OK , the conjugate α β

γ δ

GL2OK

 α β

γ δ

−1

=

 α β

γ δ

GL2OK

 δ
αδ−γβ

−β
αδ−γβ

−γ
αδ−γβ

α
αδ−γβ





2. FROM FINITE TO COMPACT OPEN 37

contains  α β

γ δ

UmK

 δ
αδ−γβ

−β
αδ−γβ

−γ
αδ−γβ

α
αδ−γβ


which contains Um−rK for some integer depending on the K-adic valuation
of αδ − γβ.

Write V (m) for the k-vector space V (K∗UmK ,1) which we consider as a
k-representation, via inflation, of each of the finite modulo the centre quo-
tients G(m+ r) = K∗ ·H1/H1

⋂
Um+r
K , for r large.

For each sufficiently large integer r we have a bar-monomial resolution
of V (m) in k[G(m+r)],φmon denoted by

MV (m),∗,G(m+r)
ε−→ V (m) −→ 0.

By inflation we shall construct a monomial resolution of V (m) in
k[K∗·H1],φmon denoted by

InfK
∗·H1

G(m+r)(MV (m),∗,G(m+r))
ε−→ V (m) −→ 0.

Let π : K∗ · H1 −→ G(m + r) denote the canonical projection ho-
momorphism. Since H1/H1

⋂
Um+r
K is finite, there is an isomorphism of

k[K∗·H1],φmon Line Bundles of the form

c− IndK
∗·H1

π−1(H)(π
∗(φ)) ∼= InfK

∗·H1
G(m+r)(IndGH(kφ))

for (H,φ) ∈Mφ(G(m+r)).
Define a k[K∗·H1],φmon Line Bundle SK∗·H1,m+r by

SK∗·H1,m+r = ⊕(H,φ)∈Mφ(G(m+r)) c− IndK
∗·H1

π−1(H)(π
∗(φ)).

For any triple ((K,ψ), g, (H,φ)) ∈ AG(m+r) we may construct its inflation

((π−1(K), π∗(ψ)), gH1

⋂
Um+r
K , (π−1(H), π∗(φ)))

which represents a well-defined k[K∗·H1],φmon-endomorphism of SK∗·H1,m+r

given by the same formulae as for the finite modulo the centre case in
Lemma 1.9. It only depends on the H1

⋂
Um+r
K -coset of g because, as in

Lemma 1.9, for h ∈ H1

⋂
Um+r
K ⊆ π−1(H), we have

((π−1(K), π∗(ψ)), gh, (π−1(H), π∗(φ)))

= φ(h)((π−1(K), π∗(ψ)), g, (π−1(H), π∗(φ)))

= ((π−1(K), π∗(ψ)), g, (π−1(H), π∗(φ)))

because φ(h) = 1.
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The formulae of Lemma 1.9 give a ring structure on the k-vector space
of spanned by the inflated triples

((π−1(K), π∗(ψ)), gH1

⋂
Um+r
K , (π−1(H), π∗(φ))).

We denote this ring of k[K∗·H1],φmon-endomorphism of SK∗·H1,m+r by
AK∗·H1,m+r.

As in §3.2 we have isomorphisms

Hom
k[K∗·H1],φmonmod(V(SK∗·H1,m+r), V (m))

∼= Hom
k[G(m+r)],φmod(V(SG(m+r)), V (m))

∼= ⊕(H,φ)∈Mφ(G(m+r)) V (m)(H,φ).

Theorem 2.2.
The chain complex

InfK
∗·H1

G(m+r)(MV (m),∗,G(m+r))
ε−→ V (m) −→ 0

is defined by replacing Hom
k[G],φmod

(V(S), V ), AS and S, in the construc-
tion of §5.5, respectively by Hom

k[K∗·H1],φmonmod(V(SK∗·H1,m+r), V (m)),
AK∗·H1,m+r and SK∗·H1,m+r.

It is a monomial resolution of V (m) in k[K∗·H1],φmon.

Proof
As a chain complex the inflated complex and the bar-monomial resolu-

tion of V (m) in k[G(m+r)],φmon are isomorphic. Therefore we have only to
verify monomial exactness. Suppose that (J, λ) ∈ Mφ(K∗ ·H1). In order
for V (m)(J,λ) to be non-zero we must have ResJ

H1∩Um+r
K

∩J(λ) = 1. In this

case we may extend λ trivially on H1 ∩ Um+r
K to give λ̃ on

〈J,H1 ∩ Um+r
K 〉 = J̃ = π−1(π(J)).

Also, by construction, V (m)(J,λ) = V (m)(J̃ λ̃) = V (m)(π(J),λ′), where
λ′·π = λ. Also the k[K∗·H1],φmon-Lines of the inflated resolution whose sta-
biliser pair is greater than or equal to (J, λ) are the same as the
k[G(m+r)],φmon-Lines whose stabiliser pair is greater than or equal to
(π(J), λ′). On the other hand, if V (m)(J,λ) = 0 there are no k[K∗·H1],φmon-
Lines of the inflated resolution whose stabiliser pair is greater than or equal
to (J, λ), which completes the verification of monomial exactness. 2

Remark 2.3. The discussion of Chapter One §5.9 shows that if we fix
m we may form the direct limit as r varies. In addition the discussion of
Chapter One §5.10 shows that we may form the direct limit over m also.
The net result is the following.
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Theorem 2.4.
The chain complex

lim
→
m

lim
→
r

InfK
∗·H1

G(m+r)(MV (m),∗,G(m+r))
ε−→ lim

→
m

V (m) = V −→ 0

is a monomial resolution of V in k[K∗·H1],φmon. This will be called the
k[K∗·H1],φmon-bar monomial resolution of V and denoted by WV,∗,K∗·H1 .

Remark 2.5. The k[K∗·H1],φmon-bar monomial resolution of V of The-
orem 2.4 inherits from Chapter One §5.8-§5.10 naturality properties analo-
gous to those which hold in the finite module the centre case.

3. The admissible monomial double-complex

3.1. Monomial complexes for GLnK
In this section we are going to study (left) admissible k-representations

of GLnK with central character φ. Here K continues to be a p-adic local
field. As usual k is an algebraically closed field of arbitrary characteristic.
If V is such an admissible k-representation we shall begin by applying
Theorem 2.4 to the restrictions of V to compact open modulo the centre
subgroups.

Let Y be a simplicial complex upon which GLnK acts simplicially and
in which the stabiliser Hσ = stabG(σ) is compact, open modulo the centre,
K∗, of GLnK.

An example of such a Y is given by GLnK acting on (a suitable sub-
division of) its Bruhat-Tits [35] building.

For each simplex σ of Y , by Theorem 2.4, we have a k[Hσ ],φmon-bar
monomial resolution of V

WV,∗,Hσ −→ V −→ 0.

Form the graded k-vector space which in degree m is equal to

Mm = ⊕α+n=m WV,α,Hσn .

If σn−1 is a face of σn there is an inclusion Hσn ⊆ Hσn−1 . Therefore there
is a canonical monomial chain map

iHσn ,Hσn−1 : WV,∗,Hσn −→WV,∗,Hσn−1

such that
iHσn−1 ,Hσn−2 iHσn ,Hσn−1 = iHσn ,Hσn−2 .

If σn−1 is a face of σn let d(σn−1, σn) denote the incidence degree of σn−1

in σn; this is ±1. In the simplicial chain complex of Y

d(σn) =
∑

σn−1 face of σn

d(σn−1, σn)σn−1.



40 2. GL2 OF A LOCAL FIELD

For x ∈WV,α,Hσn write

dY (x) =
∑

σn−1 face of σn

d(σn−1, σn) iHσn ,Hσn−1 (x).

Let dσn : WV,α,Hσn −→WV,α−1,Hσn denote the differential in the k[Hσ ],φmon-
bar monomial resolution of V .

Define d : Mm −→Mm−1 when m = α+ n by

d(x) = dY (x) + (−1)ndσn(x).

Therefore we have

d(d(x))

= d(
∑
σn−1 face of σn d(σn−1, σn) iHσn ,Hσn−1 (x)) + d((−1)ndσn(x))

=
∑

σn−2 face of σn−1

σn−1 face of σn
d(σn−2, σn−1) iHσn−1 ,Hσn−2 (

d(σn−1, σn) iHσn ,Hσn−1 (x))

+
∑
σn−1 face of σn d(σ

n−1, σn) iHσn ,Hσn−1 ((−1)ndσn(x))

+(−1)n−1
∑
σn−1 face of σn d(σn−1, σn) dσn−1(iHσn ,Hσn−1 (x))

+(−1)ndσn((−1)ndσn(x))

=
∑

σn−2 face of σn−1

σn−1 face of σn
d(σn−2, σn−1) d(σn−1, σn) iHσn ,Hσn−2 (x)

+(−1)n
∑
σn−1 face of σn d(σ

n−1, σn) iHσn ,Hσn−1 (dσn(x))

+(−1)n−1
∑
σn−1 face of σn d(σn−1, σn) iHσn ,Hσn−1 (dσn(x))

+dσn(dσn(x))

=
∑

σn−2 face of σn−1

σn−1 face of σn
d(σn−2, σn−1) d(σn−1, σn) iHσn ,Hσn−2 (x)

= 0

because, as is well-known, for each pair (σn, σn−2) the sum∑
σn−2 face of σn−1

σn−1 face of σn

d(σn−2, σn−1) d(σn−1, σn) = 0.
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Note that M∗ has an obvious structure of a k[GLnK],φmon-Line Bundle
since the GLnK-action permutes the summands WV,∗,Hσn , each of which
is a k[Hσn ],φmon-Line Bundle.

Theorem 3.2.
If Y is the Bruhat-Tits building for GLnK, suitably subdivided to

make the GLnK-action simplicial, then (M∗, d) is a chain complex in
k[GLnK],φmon.

In addition, this complex has a canonical augmentation homomorphism
in k[GLnK],φmod of the form M0

ε−→ V .

Conjecture 3.3. For n ≥ 2, K local and G = GLnK

. . . −→M i

d−→M i−1

d−→ . . .
d−→M0

ε−→ V −→ 0

is a monomial resolution in k[GLnK],φmon. That is, for each (H,φ) ∈MG,φ

. . . −→M
((H,φ))
i

d−→M
((H,φ))
i−1

d−→ . . .
d−→M

((H,φ))
0

ε−→ V (H,φ) −→ 0

is an exact sequence of k-vector spaces.

Remark 3.4. When we come to the proof of Conjecture 3.3 for GL2K
in §4.12 it will become clear that a “suitable” simplical action on the
Bruhat-Tits building of GLnK must have the property that every com-
pact open modulo the centre subgroup of GLnK must be contained in
some simplex-stabiliser. In general this property is a consequence of the
Bruhat-Tits fixed point theorem for group actions on CAT(0) spaces (see
[4]). For GL2K we prove it, for the specific simplicial structure used of
§4.12, in Proposition 4.8.

4. Monomial resolutions for GL2K

Let K be a p-adic local field. In this section I shall use the well-
known action of GL2K on its tree ([115] p.69) to verify Conjecture 3.3 for
GL2K. The resulting monomial resolution is unique up to chain homotopy
in k[GLnK],φmon.

I shall begin with a detailed recapitulation of the tree (also known as
the Bruhat-Tits building for GL2K [35] pp.130-131). The notation is that
of §2.1.

4.1. The GL2K-action on its tree
A lattice in K ⊕K is any finitely generated OK-submodule which gen-

erates K ⊕ K as a K-vector space. If x ∈ K∗ and L is a lattice then so
also is xL. The homothety class of L is the orbit of L in the set of lattices
under this K∗-action. The set of classes of lattices gives rise to a tree ([115]
Chapter II) with a right GL2K-action.
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Let H1 = GL2OK and

H2 =

 πK 0

0 1

H1

 πK 0

0 1

−1

which are two of the maximal compact subgroups. All other maximal com-
pact subgroups of GL2K are conjugate to H1. Explicitly we have

H2 = {

 a bπK

cπ−1
K d

 | a, b, c, d ∈ OK , ad− bc ∈ O∗K}.
By ([115] p.69 et seq) if L = OK ⊕ OK and L′ = OK ⊕ OKπK then
StabGL2K(L) = H1 ·K∗ and StabGL2K(L′) = H2 ·K∗ where GL2K acts by
right multiplication on the vector space V = K ⊕K. This fact will enable
us to calculate some normalisers.

If XH1X
−1 = H1 then ((L)X)H1 = (L)H1X = (L)X but from the

tree structure each homothety class of a lattice is stabilised by a different
maximal compact subgroup so that H1 · K∗ stabilises L and (L)X and
so (L)X = L and X ∈ H1 · K∗. This shows that NGL2KH1 = H1 · K∗.
Similarly for H2.

If Y H1

⋂
H2Y

−1 = H1

⋂
H2 then (L)Y = (L)Y H1

⋂
H2 and

(L′)Y = (L′)Y H1

⋂
H2. Also (H1

⋂
H2)·K∗ ⊆ StabGL2K(L)

⋂
StabGL2K(L′).

Now the distance from L to L′ is one [115], so they are adjacent in the
graph, and the (pointwise) stabiliser of the edge they define is precisely
(H1

⋂
H2) · K∗. Furthermore this is the only edge that this subgroup

stabilises. But (L)Y and (L′)Y are also adjacent and H1

⋂
H2 · K∗ also

stabilises this edge so the edges coincide. This coincidence can happen
in two ways. If the ordered pair ((L)Y, (L′)Y ) is equal to (L,L′) then
Y ∈ H1

⋂
H2 ·K∗. On the other hand it is possible that ((L)Y, (L′)Y ) is

equal to (L′, L). In fact, the matrix calculation 0 1

π−1
K 0

 α πKβ

γ δ

 0 πK

1 0

 =

 δ πKγ

β α


shows that H1

⋂
H2 is normalised by the matrix 0 1

π−1
K 0

 ,

which does not belong to H1

⋂
H2. Therefore

NGL2K(H1

⋂
H2) = 〈(H1

⋂
H2) ·K∗,

 0 1

π−1
K 0

〉.
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This group stabilises the edge {L,L′} but only the subgroup of index two
(H1

⋂
H2) ·K∗ maps the the ordered pair (L,L′) to itself by the identity,

other matrices interchange the order.
Therefore the Weyl groups of H1,H2 given by NGL2KHi/Hi are both

isomorphic to K∗/O∗K ∼= Z generated by the scalar matrix πK . The Weyl
group NGL2K(H1

⋂
H2)/H1

⋂
H2 is isomorphic to the infinite cyclic group

generated by

u =

 0 1

π−1
K 0


which contains a subgroup of index two given by 〈u2〉 = K∗/O∗K ∼= Z.

Now supose that Z(H1

⋂
H2)Z−1 ⊂ H1 then (L)Z = (L)ZH1 and the

preceding argument shows that Z ∈ H1 ·K∗. Hence the coset space
H1 ·K∗

H1 ∩H2

∼=
H1

H1 ∩H2
× Z

and H1
H1∩H2

is in one-one correspondence with P1(OK/(πK)) because this
coset is isomorphic to the orbit of the edge LL′ under the action of
StabGL2K(L) ([115] p.72).

The correspondence between P1(OK/(πK)) and the set of lattices of
distance one from L is described as follows in ([115] p.72). Let L′′ ⊂ L be
such that L/L′′ ∼= OK/(πK) ∼= k. Then we have a short exact sequence

0 −→ k ∼= L′′/πKL −→ L/πKL ∼= k ⊕ k −→ k −→ 0

which associates to L′′ a linear subspace in k⊕k and hence a point in P1(k).
Also, via the left action on lattices, since H1

⋂
H2 stabilises the edge

through L and L′ we get a bijection

H1 ∩H2\GL2OK ↔ P1(k).

The transpose of this bijection is given explicitly as follows. Suppose, for
a, b, c, d, α, β, γ, δ ∈ OK , that

X =

 a b

c d

 , Y =

 α βπK

γ δ


with X ∈ GL2OK , Y ∈ H1

⋂
H2. Then

XY =

 a b

c d

 α βπK

γ δ

 =

 aα+ bγ aβπK + bδ

cα+ dγ cβπK + dδ


and because α, δ ∈ O∗K we have a well-defined element(

b

d

)
=
(
bδ

dδ

)
∈ P1(k)
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depending only on the coset XH1

⋂
H2. Hence representatives of this coset

are given by

{

 1 b

0 1

} and

 0 1

−1 0

 ,

where b ∈ OK runs through a set of representatives for k.

4.2. The simplicial complex of the tree
Now we are ready to calculate the simplicial chain complex of the tree

together with its GL2K-action. I am going to transpose to a left action on
the tree by GL2K.

The cellular 1-chain group of the tree, with coefficients in k, is the k-
vector space whose basis consists of the 1-cells of the tree. This is clearly
given by the induced representation

C1 = c− IndGL2K
NGL2K(H1∩H2)

(kτ ) = k[GL2K]⊗k[NGL2K(H1∩H2)] kτ

where kτ is a copy of k on which (H1

⋂
H2) ·K∗ acts trivially and 0 1

π−1
K 0


acts like −1. Here, as described in Example 1.8, we are depicting the c-
induction as the “crude” algebraic induction in terms of tensor product over
group rings. This is algebraically more convenient and it will emphasise that
individual simplices are far apart, as they are with respect to the distance
function on lattice classes in ([115] pp.69-70).

The 0-cells are given by the induced representation

C0 = c− IndGL2K
NGL2KH1

(k)

where k has the trivial action. The simplicial differential

d : C1 −→ C0

is a GL2K-map and so, by Proposition 1.10, is determined by a
NGL2K(H1 ∩H2)-map from kτ to C0. This map is easily seen to be given
by

d(1) = 1⊗NGL2KH1 1−

 0 1

π−1
K 0

⊗NGL2KH1 1.

If X ∈ NGL2K(H1 ∩H2) ⊂ NGL2KH1 then

Xd(1) = X ⊗NGL2KH1 1−X

 0 1

π−1
K 0

⊗NGL2KH1 1 = d(1) = d(X · 1)
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while 0 1

π−1
K 0

 d(1) =

 0 1

π−1
K 0

⊗NGL2KH1 1− 1⊗NGL2KH1 1

= −d(1)

= d(

 0 1

π−1
K 0

 · 1).

Since a tree is contractible we have an exact sequence of k[GL2K]-
modules

0 −→ C1
d−→ C0

ε−→ k −→ 0

where, for Z ∈ GL2K,

d(Z ⊗NGL2K(H1∩H2) 1) = Z ⊗NGL2KH1 1− Z

 0 1

π−1
K 0

⊗NGL2KH1 1

and ε(Y ⊗NGL2KH1 v) = v.
The above action is not simplicial because the subgroup preserving a

given 1-simplex does not act on it by the identity. For example, {L,L′} is
inverted by  0 1

π−1
K 0

 .

However, it is easy barycentrically to subdivide the simplicial tree by adding
L′′, the midpoint of {L,L′}, and all its GL2K-translates. The stabiliser of
L′′ is NGL2K(H1

⋂
H2). The result is a one-dimensional simplicial complex

with 1-simplices given by {L,L′′} and its GL2K-translates. The stabiliser
of {L,L′′} is (H1

⋂
H2)K∗ and the resulting GL2K-action is simplicial.

The 0-cells are given by

C̃0 = c− IndGL2K
NGL2K(H1)

(k)⊕ c− IndGL2K
NGL2K(H1∩H2)

(k)

while the 1-cells are

C̃1 = c− IndGL2K
(H1∩H2)K∗

(k).

Therefore we have a short exact sequence of k[GL2K]-modules of the form

0 −→ C̃1
d−→ C̃0

ε−→ k −→ 0

in which

d(g ⊗(H1∩H2)K∗ v) = (g ⊗NGL2K(H1) v,−g ⊗NGL2K(H1∩H2) v)
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and
ε(g1 ⊗NGL2K(H1) v1, g2 ⊗NGL2K(H1∩H2) v2) = v1 + v2.

4.3. If V is an admissible representation of GL2K as in §3.1 we have
(continuing to use as in §4.2 the “crude” algebraic notation described in
Example 1.8 for c-induction) an isomorphism of GL2K-representations

φ : c− IndGL2K
H (W )⊗ V

∼=−→ c− IndGL2K
H (W ⊗ ResGL2K

H (V ))

given by φ((g ⊗H w) ⊗ v) = g ⊗H (w ⊗ g−1v), if W is finite-dimensional.
This is well-defined because

φ((gh⊗H h−1w)⊗ v) = gh⊗H (h−1w)⊗ h−1g−1v) = g ⊗H (w ⊗ g−1v)

and is a GL2K-map because

g′φ((g ⊗H w)⊗ v) = g′g ⊗H (w ⊗ g−1v) = φ(g′(g ⊗H w)⊗ g′v).
We have NGL2KH1

⋂
H2 = 〈H1

⋂
H2, u〉 where

u =

 0 1

π−1
K 0

 , u2 =

 π−1
K 0

0 π−1
K

 ∈ Z(GL2K) = K∗

and NGL2KH1 = 〈H1, u
2〉 = H1 ·K∗.

The homomorphism

c− IndGL2K
(H1∩H2)K∗

(k)⊗ V

d⊗ 1 ↓

c− IndGL2K
NGL2K(H1)

(k)⊗ V ⊕ c− IndGL2K
NGL2K(H1∩H2)

(k)⊗ V

transforms under φ to

c− IndGL2K
(H1∩H2)K∗

(V )

ψ ↓

c− IndGL2K
NGL2K(H1)

(V )⊕ c− IndGL2K
NGL2K(H1∩H2)

(V )

given by

ψ(g ⊗(H1∩H2)K∗ v) = (g ⊗NGL2K(H1) v,−g ⊗NGL2K(H1∩H2) v)

because
ψ(φ((g ⊗(H1∩H2)K∗ 1)⊗ gv))

= ψ(g ⊗(H1∩H2)K∗ v)

= (g ⊗NGL2K(H1) v,−g ⊗NGL2K(H1∩H2) v)
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while

φ(d⊗ 1((g ⊗(H1∩H2)K∗ 1)⊗ gv))

= φ((g ⊗NGL2K(H1) 1)⊗ gv,−g ⊗NGL2K(H1∩H2) 1)⊗ gv)

= (g ⊗NGL2K(H1) v,−g ⊗NGL2K(H1∩H2) v).

4.4. For Theorem 2.4 we have bar-monomial resolutions

WV,∗,(H1∩H2)K∗)
ε1−→ V

in k[(H1∩H2)K∗],φmon,

WV,∗,NGL2K(H1)
ε0−→ V

in k[(NGL2K(H1)],φmon and

WV,∗,NGL2K(H1∩H2)
ε′0−→ V

in k[NGL2K(H1∩H2)],φmon.
Note that u2 ∈ Z(GL2K) = K∗ so that all characters we shall meet

are given by φ(u2) on u2.
Suppose that K∗ · J ⊆ GL2K is one of the three above compact open

modulo the centre subgroups and suppose that M is a Line Bundle in
k[K∗·J],φmon. As described in Example 1.11, if M is a Line Bundle then

c− IndGL2K
K∗·J (M) is a Line Bundle in k[GL2K],φmon.

4.5. Covering ψ by a monomial-morphism
The first objective is to produce a k[GL2K]-module homomorphism

c− IndGL2K
(H1∩H2)K∗

(WV,0,(H1∩H2)K∗))

ψ0 ↓

c− IndGL2K
NGL2K(H1)

(WV,0,NGL2K(H1))
⊕c− IndGL2K

NGL2K(H1∩H2)
(WV,0,NGL2K(H1∩H2))

to commute with the augmentations. That is,

(IndGL2K
NGL2K(H1)

(ε0)⊕ IndGL2K
NGL2K(H1∩H2)

(ε′0))ψ0 = ψIndGL2K
(H1∩H2)K∗

(ε1).

We begin by constructing a k[GL2K]-module homomorphism and then we
sort out the behaviour of Lines under the map.

Start with a Line from c − IndGL2K
(H1∩H2)K∗

(WV,0,(H1∩H2)K∗)) with sta-
biliser pair (J, φ) where φ is a character of J so that (Z(GL2K), φ) ≤ (J, φ).
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This Line will be of the form g ⊗(H1∩H2)K∗ L where L is a Line in
WV,0,(H1∩H2)K∗) and g ∈ GL2K. If z ∈ L the action of j ∈ J satisfies

jg ⊗(H1∩H2)K∗ z = φ(j)g ⊗(H1∩H2)K∗ z.

Hence g−1Jg ⊆ (H1 ∩H2)K∗ and acts on L via g∗(φ). The (H1 ∩H2)K∗-
orbit of L spans the Line Bundle isomorphic to c − Ind(H1∩H2)K

∗

g−1Jg (g∗(kφ))
and, by conjugation in (H1 ∩H2)K∗, we may assume that

L = 〈1⊗g−1Jg 1〉 ⊆ c− Ind(H1∩H2)K
∗

g−1Jg (g∗(kφ)).

Since we need only a representative from the GL2K-orbit of the Line
we may as well assume that J ⊆ (H1 ∩ H2)K∗ and the Line is generated
by 1⊗(H1∩H2)K∗ (1⊗J 1) so that j ∈ J acts on this line via

j(1⊗(H1∩H2)K∗ (1⊗J 1)) = φ(j)⊗(H1∩H2)K∗ (1⊗J 1)

and, by monomial exactness, v = ε1(1⊗J 1) ∈ V (J,φ).
Now consider the two terms in

ψ(ε1(1⊗(H1∩H2)K∗ (1⊗J 1)) = ψ(1⊗(H1∩H2)K∗ v)

= 1⊗NGL2K(H1) v − 1⊗NGL2K(H1∩H2) v.

The action of j ∈ J
⋂
H1

⋂
H2 on each of these terms is by multiplica-

tion by φ(j). Therefore, by naturality of the bar-monomial resolution with
respect to inclusions of subgroups, there exists w ∈ W

((J,φ))
V,0,NGL2K(H1)

and

w′ ∈W ((J,φ))
V,0,NGL2K(H1∩H2)

such that ε0(w) = v, ε′0(w
′) = v so that

1⊗NGL2K(H1)ε0(w)−1⊗NGL2K(H1∩H2)ε
′
0(w
′) = ψ(ε1(1⊗(H1∩H2)K∗ (1⊗J1))).

Set

ψ0(1⊗(H1∩H2)K∗ (1⊗J 1))) = 1⊗NGL2K(H1) w − 1⊗NGL2K(H1∩H2) w
′.

This defines a k[GL2K]-module homomorphism ψ0 which commutes with
augmentations. In addition, for all g ∈ GL2K and J ⊆ (H1

⋂
H2)K∗,

ψ0(g ⊗(H1∩H2)K∗ W
((J,φ))
V,0,(H1∩H2)K∗)

)

lies in

g ⊗NGL2K(H1) W
((J,φ))
V,0,NGL2K(H1)

⊕ g ⊗NGL2K(H1∩H2) W
((J,φ))
V,0,NGL2K(H1∩H2)

,

which guarantees that ψ0 is a morphism in k[GL2K],φmon.
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Now, by induction, we construct similar chain k[GL2K]-module homo-
morphisms for all i ≥ 0

c− IndGL2K
(H1∩H2)K∗

(WV,i,(H1∩H2)K∗))

ψi ↓

c− IndGL2K
NGL2K(H1)

(WV,i,NGL2K(H1))
⊕c− IndGL2K

NGL2K(H1∩H2)
(WV,i,NGL2K(H1∩H2))

which commute with the differentials and satisfy the condition that

ψi(g ⊗(H1∩H2)K∗ W
((J,φ))
V,i,(H1∩H2)K∗)

)

lies in

g ⊗NGL2K(H1) W
((J,φ))
V,i,NGL2K(H1)

⊕ g ⊗NGL2K(H1∩H2) W
((J,φ))
V,i,NGL2K(H1∩H2)

.

Therefore the ψi’s give a chain map in k[GL2K],φmon.

We start with a Line in c−IndGL2K
(H1∩H2)K∗

(M1,i) with i ≥ 1 and, as in the
case of ψ0, we may assume that this Line has stabiliser pair (J, φ) with J ⊆
(H1∩H2)K∗. In a notation analogous to that of the ψ0 case, we may assume
that the Line is generated by 1 ⊗(H1∩H2)K∗ (1 ⊗J 1). The differential in
WV,∗,(H1∩H2)K∗) induces a differential in c−IndGL2K

(H1∩H2)K∗
(WV,∗,(H1∩H2)K∗))

given by

d(1⊗(H1∩H2)K∗ ⊗(1⊗J 1)) = 1⊗(H1∩H2)K∗ ⊗d(1⊗J 1)

where d(1⊗J 1) ∈W ((J,φ))
V,i−1,(H1∩H2)K∗)

.
Also d(1 ⊗J 1) lies in the kernel of the differential if i ≥ 2 and of the

augmentation if i = 1. Therefore, by induction,

ψi−1(d(1⊗(H1∩H2)K∗ ⊗(1⊗J 1)))

lies in

1⊗NGL2K(H1) W
((J,φ))
V,i−1,NGL2K(H1)

⊕ 1⊗NGL2K(H1∩H2) W
((J,φ))
V,i−1,NGL2K(H1∩H2)

.

By the discussion of Lines in c − IndG(H(M) given in Example 1.11 we
have an isomorphism of k-vector spaces

W
((J,φ))
V,i−1,NGL2K(H1)

∼=−→ 1⊗NGL2K(H1) W
((J,φ))
V,i−1,NGL2K(H1)

given by x 7→ 1 ⊗NGL2K(H1) x which transforms the differential d into

1⊗NGL2K(H1)d. There is an analogous isomorphism forW ((J,φ))
V,i−1,NGL2K(H1∩H2)

and also for V (J,φ). Therefore, from the monomial exactness of the mono-
mial resolutions, there exists w ∈W ((J,φ))

V,i,NGL2K(H1)
and w′ ∈W ((J,φ))

V,i,NGL2K(H1∩H2)
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such that

1⊗NGL2K(H1)d(w)⊕1⊗NGL2K(H1∩H2)d(w
′) = ψi−1(d(1⊗(H1∩H2)K∗⊗(1⊗J1))).

Set

ψi(1⊗(H1∩H2)K∗ (1⊗J 1))) = 1⊗NGL2K(H1) w + 1⊗NGL2K(H1∩H2) w
′.

This defines a k[GL2K]-module homomorphism ψi which commutes with
differentials. In addition, as in the case of ψ0, for all g ∈ GL2K and
J ⊆ (H1

⋂
H2)K∗,

ψi(g ⊗(H1∩H2)K∗ W
((J,φ))
V,i,(H1∩H2)K∗)

)

lies in

g ⊗NGL2K(H1) W
((J,φ))
V,i,NGL2K(H1)

⊕ g ⊗NGL2K(H1∩H2) W
((J,φ))
V,i,NGL2K(H1∩H2)

,

which guarantees that ψi is a morphism in k[GL2K],φmon.

Remark 4.6. (i) Any two constructions of ψ∗ in §4.5 will be chain
homotopic as monomial-morphisms because the monomial resolutions of
§4.4 are each unique up to chain homotopy (c.f. Proposition 2.4).

(ii) By the discussion of §4.2 and §4.3 we have a short exact sequence
in k[GL2K],φmod of the form

0 −→ c− IndGL2K
(H1∩H2)K∗

(V )
ψ−→

c− IndGL2K
NGL2K(H1)

(V )⊕ c− IndGL2K
NGL2K(H1∩H2)

(V ) ε−→ V −→ 0

4.7. The monomial resolution of V in k[GL2K],φmon
We now consider the chain complex M∗ −→ V in which, for i ≥ 0, M i

is given by

c− IndGL2K
(H1∩H2)K∗

(WV,i−1,(H1∩H2)K∗))⊕ c− IndGL2K
NGL2K(H1)

(WV,i,NGL2K(H1))

⊕c− IndGL2K
NGL2K(H1∩H2)

(WV,i,NGL2K(H1∩H2))

with differential given by

d(w1,i−1, w0,i, w
′
0,i) = (d(w1,i−1), d(w0,i, w

′
0,i) + (−1)iψi−1(w1,i−1)).

This is a chain complex because

dd(w1,i−1, w0,i)

= (dd(w1,i−1), dd(w0,i, w
′
0,i) + (−1)idψi(w1,i−1) + (−1)i−1ψi−2(dw1,i−1))

= (0, (−1)idψi−1(w1,i−1) + (−1)i−1ψi−2d(w1,i−1))

which is zero because dψi−1 = ψi−2d, by construction.
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The chain complex of M i’s is augmented by the map induced by the
short exact sequence of Remark 4.6(ii).

Proposition 4.8.
Let J ⊆ GL2K be a compact open modulo the centre subgroup con-

taining the centre K∗. Then J is conjugate to a subgroup of H1K
∗ or of

〈(H1

⋂
H2)K∗, u〉 or both.

Proof
Since J

⋂
SL2K

⋂
K∗ = O∗K we see that J

⋂
SL2K is a compact open

subgroup of SL2K. Hence, by well-known properties on the BN-pair for
SL2K with K local (see Chapter Four concerning BN pairs and GL3K;
[4]; [35], [60], [61], [139]), we may assume that J

⋂
SL2K ⊆ SL2OK . We

have a homomorphism

vK · det : J/(J
⋂
SL2K)K∗ −→ Z/2

where vK is the valuation on K. If this homomorphism is trivial then
J ⊆ H1K = Ker(vK · det). If this homomorphism is non-trivial we have a
group extension

(J
⋂
SL2K)K∗ −→ J

vK ·det−→ Z/2.

Suppose that (J
⋂
SL2K)K∗ ⊆ (H1

⋂
H2)K∗. In this case the extension

which pushes out along this inclusion to give an extension

(H1

⋂
H2)K∗ −→ X

vK ·det−→ Z/2.

From the simplicial action we see that X = 〈(H1

⋂
H2)K∗, u〉. If

(J
⋂
SL2K)K∗ 6⊆ (H1

⋂
H2)K∗ then pushing out along the inclusion

(J
⋂
SL2K)K∗ ⊆ H1K

∗ yields an extension of the form

H1K
∗ −→ X

vK ·det−→ Z/2.

However the action on the tree shows that there is no such X. 2

Theorem 4.9. Monomial exactness for GL2K
For K local and G = GL2K the chain complex of §4.7

. . . −→M i
d−→M i−1

d−→ . . .
d−→M0

ε−→ V −→ 0

is a monomial resolution in k[GL2K],φmon. That is, for each (J, φ) ∈MG,φ

. . . −→M
((J,φ))
i

d−→M
((J,φ))
i−1

d−→ . . .
d−→M

((J,φ))
0

ε−→ V (J,φ) −→ 0

is an exact sequence of k-vector spaces.

Verification of monomial exactness in the very explicit complex of §4.7
will occupy the rest of this section. However, we pause to record the fact
that Theorem 4.9 implies the validity of Conjecture 3.3 for GL2K.
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Corollary 4.10. (Conjecture 3.3 for GL2K)
Conjecture 3.3, asserting the existence of a canonical monomial resolu-

tion in k[GLnK],φmon, is valid when n = 2.

Proof
The monomial complex explicitly constructed in §4.7 is isomorphic to

that of §3.1 if one uses the simplicial structure on the Bruhat-Tits building
for GL2K, corresponding to that given in §4.1. This is because there is one
orbit of 1-cells which is isomorphic to C̃1 in §4.2 and two orbits of 0-cells
whose sum is isomorphic to C̃0. 2

4.11. Some well-known elementary homological algebra
If we have two chain complexes

. . . −→ Ai −→ Ai−1 −→ . . . −→ A−1 −→ 0

and
. . . −→ Bi −→ Bi−1 −→ . . . −→ B−1 −→ 0

with a chain map f∗ between them such that

0 −→ A−1
f−1−→ B−1 −→ V −→ 0

is a short exact sequence, consider the mapping cone chain complex Ni =
Ai−1 ⊕Bi with differential d(ai−1, bi) = (d(ai−1), d(bi) + (−1)ifi−1(ai−1)).
We have a short exact sequence of chain complexes

0 −→ B∗ −→ N∗ −→ N∗/B∗ −→ 0

for ∗ ≥ 0. Since Ni/Bi ∼= Ai−1 for i ≥ 1 we have a long exact homology
sequence of the form

. . . −→ Hi(B) −→ Hi(N) −→ Hi−1(A) ∂−→ Hi−1(B) −→ . . .

where ∂ = (−1)ifi−1 on Hi−1(A). If A∗, B∗ are exact (not just in positive
dimensions) then we have Hi(N∗) = 0 for i > 0 while

0 −→ A−1
∂−→ Bi−1 −→ H0(N∗) −→ 0

yields an isomorphism H0(N∗) ∼= V induced by

N0 −→ B0 −→ B/d(B1) ∼= B−1 −→ V.

4.12. Proof of Theorem 4.9
Consider the chain complex

. . . −→M i −→M i−1 −→ . . . −→M0 −→ V −→ 0.

Each of theM i’s is a Line-bundle with Lines generated by g⊗(H1

⋂
H2)K∗

L1,
g ⊗NGL2K(H1) L0 or g ⊗NGL2K(H1∩H2) L

′
0 with L1, L0, L

′
0 being Lines in

WV,i−1,(H1∩H2)K∗), WV,i,NGL2K(H1) or WV,i,NGL2K(H1∩H2), respectively.
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A Line of the form g ⊗(H1

⋂
H2)K∗

L1, g ⊗NGL2K(H1) L0 or

g ⊗NGL2K(H1∩H2) L
′
0 has stabiliser of the form g(J ′, φ′)g−1 where J ′ ⊆

(H1

⋂
H2)K∗, NGL2K(H1) or NGL2K(H1 ∩H2), respectively.

Let (J, φ) ∈MGL2K,φ with (K∗, φ) ≤ (J, φ) and J being compact open
modulo the centre K∗. This implies that the J-orbit of any 0-simplex or
1-simplex of the (subdivided) tree is finite. For example, if

J = NGL2KH1

⋂
H2 = 〈(H1

⋂
H2)K∗, u〉

then the J-orbit of an end-point of the fundamental 1-simplex (prior to
subdivision) consists of the two end-points.

We wish to examine exactness in the middle of

M
((J,φ))
i+1 −→M

((J,φ))
i −→M

((J,φ))
i−1

for i ≥ 1.
Consider the inclusions of compact open modulo the centre subgroups:

H1K
∗ = NGL2K(H1) ≥ (H1 ∩H2)K∗ ≤ NGL2K(H1 ∩H2)

where
NGL2K(H1 ∩H2) = 〈H1

⋂
H2,K

∗, u〉
Since the GL2K-action is transitive on the subdivided tree and since

each the above groups form the set of stabilisers of simplices in the funda-
mental domain, up to GL2K-conjugation, we must have one of the following
three cases:

Case A: J ⊆ (H1

⋂
H2)K∗.

Case B: J ⊆ H1K
∗, but J is not conjugate to a subgroup of

〈H1

⋂
H2,K

∗, u〉.

Case C: J ⊆ 〈H1

⋂
H2,K

∗, u〉, but J is not conjugate to a subgroup
of H1K

∗.
Proposition 4.8 together with the following result shows that Cases A-C

exhaust the possibilities.

Proposition 4.13.
If J ⊆ H1K

∗ and J is conjugate to a subgroup of 〈H1

⋂
H2,K

∗, u〉
then J is conjugate to a subgroup of (H1

⋂
H2)K∗.

Proof
Observe that H1K

∗⋂〈H1

⋂
H2,K

∗, u〉 stabilises the two ends of the
1-simplex whose stabiliser is (H1

⋂
H2)K∗. Pro tem, call this 1-simplex

the canonical fundamental domain. Hence

H1K
∗
⋂
〈H1

⋂
H2,K

∗, u〉 = (H1

⋂
H2)K∗.
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Now we may assume, by conjugation if necessary, that
J ⊆ 〈H1

⋂
H2,K

∗, u〉 and that there exists g ∈ GL2K such that gJg−1 ⊆
H1K

∗. Hence J stabilises the end-point, β, of the canonical fundamental
domain which was introduced during the barycentric subdivision and also
stablises gα where α is the other end of the canonical fundamental do-
main. Since the tree contains no closed loops J stabilises all the 1-simplices
between β and gα. In particular J stabilises the canonical fundamental
domain or its neighbour. In the first case

J ⊆ H1K
∗
⋂
〈H1

⋂
H2,K

∗, u〉 = (H1

⋂
H2)K∗

and in the second case

u−1Ju ⊆ H1K
∗
⋂
〈H1

⋂
H2,K

∗, u〉 = (H1

⋂
H2)K∗.

2

4.14. Proof of Theorem 4.9 continued
Now let us examine M ((J,φ))

i in Case A.
We have a short exact sequence of chain complexes

0 −→ c− IndGL2K
NGL2K(H1)

(WV,∗,NGL2K(H1))

⊕c− IndGL2K
NGL2K(H1∩H2)

(WV,∗,NGL2K(H1∩H2))

−→M∗ −→ c− IndGL2K
(H1∩H2)K∗

(WV,∗−1,(H1∩H2)K∗)) −→ 0

and taking the ((J, φ))-part yields a short exact sequence (because the sum
of all the Lines with a fixed stabiliser pair is a direct summand) of the form

0 −→ c− IndGL2K
NGL2K(H1)

(WV,∗,NGL2K(H1))
((J,φ))

⊕c− IndGL2K
NGL2K(H1∩H2)

(WV,∗,NGL2K(H1∩H2))
((J,φ))

−→M ((J,φ))
∗ −→ c− IndGL2K

(H1∩H2)K∗
(WV,∗−1,(H1∩H2)K∗))

((J,φ)) −→ 0.

Let L be a Line inM so that g⊗HL generates a Line in c−IndGL2K
H (M).

This Line lies in c−IndGL2K
H (M)((J,φ)) if and only if g−1Jg ⊆ H and g−1Jg

acts on L via g∗(φ). That is, g−1jg(v) = φ(j)v for v ∈ L.
Therefore the left-hand group in the short exact sequence is equal to

⊕g−1Jg⊆NGL2K(H1) g ⊗NGL2K(H1) W
((g−1Jg,g∗(φ)))
V,∗,NGL2K(H1)

⊕

⊕g−1Jg⊆NGL2K(H1∩H2) g ⊗NGL2K(H1∩H2) W
((g−1Jg,g∗(φ)))
V,∗,NGL2K(H1∩H2)
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while the right-hand group is equal to

⊕g−1Jg⊆(H1∩H2)K∗ g ⊗(H1∩H2)K∗ W
((g−1Jg,g∗(φ)))
V,∗−1,(H1∩H2)K∗

.

These direct sums have to be interpreted with care. For example,
that for the right-hand group means that we choose coset representatives
{gα, α ∈ A} then we form the direct sum over the gα’s such that g−1

α Jgα ⊆
(H1 ∩ H2)K∗ of gα ⊗(H1∩H2)K∗ L where L runs through the Lines of

M
((g−1

α Jgα,g
∗
α(φ)))

1,∗−1 . The differential on such a Line maps it by 1 ⊗ d to
gα⊗(H1∩H2)K∗ d(L). Hence the complex is the direct sum of subcomplexes,
one for each gα. As we noted in the discussion of §4.5, by the discussion of
Lines in c − IndG(H(M) given in Example 1.11 we have an isomorphism of
k-vector spaces such as

W
((J,φ))
V,i−1,NGL2K(H1)

∼=−→ g ⊗NGL2K(H1) W
((g−1Jg,g∗(φ)))
V,i−1,NGL2K(H1)

and similarly for the other two monomial resolutions.
Therefore, by monomial exactness of WV,∗,NGL2K(H1),

WV,∗,NGL2K(H1∩H2) and WV,∗−1,(H1∩H2)K∗ , we have Hi(M ((J,φ))
∗ ) = 0 for

i ≥ 2 and there is an exact homology sequence of the form

0 −→ H1(M ((J,φ))
∗ ) −→ ⊕g−1Jg⊆(H1∩H2)K∗ g ⊗(H1∩H2)K∗ V

(g−1Jg,g∗(φ))

−→ ⊕g−1Jg⊆NGL2K(H1) g ⊗NGL2K(H1) V
(g−1Jg,g∗(φ))

⊕ ⊕g−1Jg⊆NGL2K(H1∩H2) g ⊗NGL2K(H1∩H2) V
(g−1Jg,g∗(φ))

−→ H0(M ((J,φ))
∗ ) −→ 0.

Suppose that g−1Jg ⊆ (H1 ∩H2)K∗ but that g 6∈ (H1 ∩H2)K∗. Then
gL 6= L where L denotes the canonical fundamental domain. On the other
hand J fixes both L and gL. Since the tree has no closed loops this happens
only if J = {1}. A similar argument applies to the other direct sums in the
exact sequence, replacing the 1-simplex L by a vertex. Therefore if J 6= {1}
then the exact sequence takes the form

0 −→ H1(M ((J,φ))
∗ ) −→ V (J,φ) −→ V (J,φ) ⊕ V (J,φ) −→ H0(M ((J,φ))

∗ ) −→ 0.

In addition the map in the centre is given by (v 7→ (v,−v) so that

Hi(M ((J,φ))
∗ ) =

 V (J,φ) if i = 0,

0 otherwise.
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When J = {1} the exact sequence becomes

0 −→ H1(M (({1},1))
∗ ) −→ c− IndGL2K

(H1∩H2)K∗
V

ψ−→ c− IndGL2K
NGL2K(H1)

V ⊕ c− IndGL2K
NGL2K(H1∩H2)

V

−→ H0(M ((J,φ))
∗ ) −→ 0.

Therefore when J is trivial we also have

Hi(M (({1},1))
∗ ) =

 V if i = 0,

0 otherwise.

In Case B, by a similar argument we find that Hi(M ((J,φ))
∗ ) = 0 for

i 6= 0 and

H0(M ((J,φ))
∗ ) ∼= ⊕g−1Jg⊆NGL2K(H1) g ⊗NGL2K(H1) V

(g−1Jg,g∗(φ)).

However, if there exists g 6∈ NGL2K(H1) such that gJg−1 ⊆ NGL2K(H1)
then J fixes β and gβ. Therefore J fixes all simplices between β and gβ
which include a translate of the canonical fundamental domain L so that J
is subconjugate to (H1

⋂
H2)K∗. Therefore there is only one coset in the

above direct sum and H0(M ((J,φ))
∗ ) ∼= V (J,φ).

Therefore in all cases we have

Hi(M ((J,φ))
∗ ) =

 V (J,φ) if i = 0,

0 otherwise.

The proof of Case C is similar but simpler. Arguing as in Case A we
have an isomorphism

⊕g−1Jg⊆NGL2K(H1

⋂
H2)

g ⊗GL2K
NGL2K(H1∩H2)

W
((g−1Jg,g∗(φ))
V,∗,NGL2K(H1∩H2)

∼=−→M
((J,φ))
∗ .

Now J must contain an element of the coset (H1

⋂
H2)K∗u denoted by

zu, say. If g−1zug lies in NGL2K(H1 ∩ H2) it sends the (pre-subdivision)
fundamental simplex of the into itself (switching endpoints) and does the
same to the image on the original fundamental simplex under g−1. It is
easy to see, either algebraically or from the self-normalising properties of the
simplex-stablisers in the simplicially subdivided tree, that this can happen
if and only if g ∈ NGL2K(H1 ∩H2). Therefore

W
((J,φ))
V,∗,NGL2K(H1∩H2)

∼=−→M
((J,φ))
∗
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which implies monomial exactness in Case C and completes the proof of
Theorem 4.9. 2

Remark 4.15. In the construction of the monomial resolution for
GL2K we were able to use any covering of ψ because they are all chain
homotopic in the monomial category. However, this would be insufficient
for GLnK when n ≥ 3 since the result is unlikely to be a chain com-
plex. In fact, the obvious construction of a “differential” d like that of
§4.7 would merely result in a composition dd which was chain homotopic
to zero. The problem arises because the Bruhat-Tits building is no longer
1-dimensional. This obstacle is what necessitated the construction of the
natural bar-monomial resolution, in order to enable the construction of a
double complex in §3.1.

4.16. Some subgroups of GL2K
Let K be a p-adic local field with valuation vK : K∗ −→ Z. We have

homomorphisms

det : GL2K −→ K∗ and vK · det : GL2K −→ Z.

Following ([115] p.75) we may define subgroups of GL2K denoted by
SL2K, GL2K

0 and GL2K
+ by

SL2K = Ker(det), GL2K
0 = Ker(vK · det),

GL2K
+ = Ker(vK · det modulo 2)

so that
SL2K ⊂ GL2K

0 ⊂ GL2K
+ ⊂ GL2K.

As explained in ([115] pp.78/79) and in terms of Bruhat-Tits buildings
in ([115] p.91) (i.e. BN-pairs [35] p.107) each of the first three groups
acts transitively on the vertices of the tree and act on a 1-simplex between
adjacent vertices simplicially (i.e. any element sending the 1-simplex to
itself does so point-wise). Therefore these subgroups act simplicially on the
tree and one may perform the constructions of §3.1 and §4.7 without having
to perform a barycentric subdivision.

In fact the analogues of Theorem 4.9 and Corollary 4.10 are true for
admissible representations of these subgroups.

5. Monomial resolution and πK-adic levels

5.1. As in §2.1 let K be a p-adic local field with valuation ring OK and
πK a generator of the maximal ideal of OK . Let V be a (left) admissible
k-representation of GL2K with central character φ. For 1 ≤ m let UmK
denote the subgroup of GL2K given by

UmK = {X ∈ GL2OK | X ≡ I (modulo πmK )}.
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Assume that m0 is the least integer such that the central character φ is
trivial on Um0

K so that

V =
⋃

m≥m0

V (K∗UmK ,φ).

For each m ≥ m0 the k-vector space V (K∗UmK ,φ) is a finite-dimensional
representation of the finite modulo the centre quotient group K∗UmK /U

m
K .

Theorem 5.2.
In the notation of §5.1 and Theorem 4.9
(i)

M
((K∗·Un,φ))
∗ −→ V (K∗·Un,φ)

is a monomial resolution in k[K∗Um
K
/Um

K
],φmon.

(ii) When k is an algebraically closed field of characteristic zero the
monomial resolution of part (i), which is unique up to chain homotopy in
k[K∗Um

K
/Um

K
],φmon, contains in its chain homotopy class a monomial reso-

lution which is finitely generated and of finite length.

Proof
Part (i) follows from the fact that M∗ −→ V −→ 0 is a monomial

resolution of V . The proof of part (ii) is given in Chapter One §6. 2

5.3. ε-factors and L-functions
If V is an admissible representation of GL2K and M∗ −→ V is a

monomial resolution as in Theorem 4.9 one may possibly construct ε-factors
for V by some sort of Euler characteristic obtained by applying to each
Line an “integral”, made from character values, which in the finite case
specialises to the Kondo-Gauss sums. These integrals respect induction
from one compact, open modulo the centre subgroup to another.

I have not pursued this topic very deeply in this monograph. In the
case of GL2K the Kondo-style Gauss sum is described in Chapter Six §1.
In Chapter Six §2 and §3 I give briefly a number of constructions and
questions concerning the local L-function of V and the Tate-style local
function equation.

I am assuming an analogue of the result concerning wild ε-factors mod-
ulo p-power roots of unity [73] holds for all but a finite set of Lines with the
result that a well-defined ε-factor modulo p-power roots of unity is defined
by a finite product of Kondo-style Gauss sums. Here I ought to mention
that I slightly disagree with a fundamental result in [73] (see [129] or Chap-
ter Eleven, Appendix II) so the epsilon factor I propose may only be well
defined up to ±1 times a p-power root of unity.

I have yet to develop fully the approach of Tate’s thesis to each Line,
properly developing Chapter Six §2, in an attempt to get the L-functions
of [66].
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These methods should apply to GLnK, since Conjecture 3.3 holds.

6. Galois invariant admissibles for GL2K

6.1. Let k be an algebraically closed field. Suppose that K is a p-
adic local field and ρ : GL2K −→ GL(V ) is a irreducible admissible k-
representation. Let K/F be a finite Galois extension and suppose that
z∗(ρ) is equivalent to ρ for each z ∈ Gal(K/F ). Therefore for z ∈ Gal(K/F )
there exists Xz ∈ GL(V ) such that

Xzρ(g)X−1
z = ρ(z(g))

for all g ∈ GL2K. Therefore if z, z1 ∈ Gal(K/F ) replacing g by z1(g) gives

Xzρ(z1(g))X−1
z = ρ(zz1(g))

and so

Xzρ(z1(g))X−1
z = XzXz1ρ(g)X

−1
z1 X

−1
z = Xzz1ρ(g)X

−1
zz1 .

By Schur’s Lemma X−1
z1 X

−1
z Xzz1 is a k∗-valued scalar matrix and so

f(z, z1) = X−1
z1 X

−1
z Xzz1

is a function from Gal(K/F ) × Gal(K/F ) to k∗. In fact, f is a 2-cocycle.
That is, using commutativity of k,

df(z, z1, z2)

= f(z1, z2)f(zz1, z2)−1f(z, z1z2)f(z, z1)−1

= X−1
z2 X

−1
z1 Xz1z2(X

−1
z2 X

−1
zz1Xzz1z2)

−1X−1
z1z2X

−1
z Xzz1z2(X

−1
z1 X

−1
z Xzz1)

−1

= (X−1
z2 X

−1
zz1Xzz1z2)

−1X−1
z2 X

−1
z1 Xz1z2X

−1
z1z2X

−1
z Xzz1z2(X

−1
z1 X

−1
z Xzz1)

−1

= X−1
zz1z2Xzz1Xz2X

−1
z2 X

−1
z1 Xz1z2X

−1
z1z2X

−1
z Xzz1z2(X

−1
z1 X

−1
z Xzz1)

−1

= X−1
zz1z2Xzz1X

−1
z1 X

−1
z Xzz1z2(X

−1
z1 X

−1
z Xzz1)

−1

= X−1
zz1z2Xzz1(X

−1
z1 X

−1
z Xzz1)

−1X−1
z1 X

−1
z Xzz1z2

= X−1
zz1z2Xzz1X

−1
zz1XzXz1X

−1
z1 X

−1
z Xzz1z2

= 1.

The 2-cocycle f defined a cohomology class in [f ] ∈ H2(Gal(K/F ); k∗),
where Gal(K/F ) acts trivially on k∗. In Proposition 6.2 we shall show that
there exists a finite Galois extension E/F containing K such that

[f ] ∈ Ker(H2(Gal(K/F ); k∗) −→ H2(Gal(E/F ); k∗)).
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Assuming Proposition 6.2 for the moment, this implies that the function

f ′ : Gal(E/F )×Gal(E/F ) −→ Gal(K/F )×Gal(K/F )
f−→ k∗

is a coboundary f ′ = dF , where F is a function from Gal(E/F ) to k∗. In
other words, for z, z1 ∈ Gal(E/F ),

X−1
z1 X

−1
z Xzz1 = f ′(z, z1) = dF (z, z1) = F (z1)F (zz1)−1F (z1).

Therefore z 7→ XzF (z) is a homomorphism from Gal(E/F ) to GL(V ), since
the image of F is central.

Recall that the semi-direct product Gal(E/F ) ∝ GL2K is given by the
set Gal(E/F )×GL2K with the product defined by

(h1, g1) · (h2, g2) = (h1h2, g1h1(g2)).

Define a map
ρ̃ : Gal(E/F ) ∝ GL2K −→ GL(V )

by (z, g) 7→ ρ(g)XzF (z).
Therefore

ρ̃((h1h2, g1h1(g2)))

= ρ(g1h1(g2))Xh1h2F (h1h2)

= ρ(g1)ρ(h1(g2))Xh1h2F (h1h2)

= ρ(g1)Xh1ρ(g2)X
−1
h1
Xh1F (h1)Xh2F (h2)

= ρ(g1)Xh1F (h1)ρ(g2)Xh2F (h2)

= ρ̃((h1, g1))ρ̃((h2, g2))

so that
ρ̃ : Gal(E/F ) ∝ GL2K −→ GL(V )

is a k-representation of the semi-direct product, which is irreducible and
admissible since it extends ρ1.

Any two such extensions differ by twisting via a homomorphism
Gal(E/F ) −→ k∗.

Proposition 6.2.
In §6.1 for any cohomology class [f ] ∈ H2(Gal(K/F ); k∗) there ex-

ists a finite Galois extension containing K such that the image of [f ] in
H2(Gal(E/F ); k∗) is trivial.

1It would be notationally more satisfying to be able to construct ρ̃ on Gal(K/F ) ∝
GL2K but, even in the case of finite fields this is not always possible (see Chapter Eight,
Theorem 3.11; [117] Theorem 1, p.406).
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Proof
Recall ([112] pp101-102) that the Galois cohomology group of F with

coefficients in k∗ is defined as the direct limit

Hi(F ; k∗) = lim
→
E/F

Hi(Gal(E/F ); (k∗)Gal(E/F )) = lim
→
E/F

Hi(Gal(E/F ); k∗)

where E/F runs through finite Galois extensions of F , since the groups act
trivially on k∗. Since k is algebraically closed the quotient k∗/Tors(k∗) is
uniquely divisible and so Hi(Gal(E/F ); k∗/Tors(k∗)) = 0 for i > 0, since
the Galois group is finite. If p is the characteristic of k then Tors(k∗) ∼=
Q/Z[1/p] and it is isomorphic to Q/Z if k has characteristic zero. The for-
mer is a direct summand of the latter so that the vanishing of H2(F ; Q/Z)
implies that of H2(F ; Q/Z[1/p]). Therefore, from the long exact cohomol-
ogy sequences, we have isomorphisms

Hi(F ; Q/Z[1/p]) ∼= Hi(F ; k∗)

if char(k) = p and

Hi(F ; Q/Z) ∼= Hi(F ; k∗)

if char(k) = 0.
To prove that there groups vanish when i = 2 it will suffice to choose

a prime l and show that the direct limit

lim
→
t

H2(F ; Z/lt) = 0.

By Tate duality ([137] p.289) there is an isomorphism

H2(F ; Z/lt) ∼= H0(F ;µlt),

the Galois invariants of the lt-th roots of unity. Hence for t large enough
H0(F ;µlt) is isomorphic to the l-power roots of unity in F , which is inde-
pendent of t. The inclusion map of Z/lt into Z/lt+1 corresponds to the l-th
power map, which is nilpotent of the l-power roots of unity in F , which
implies the result. 2

6.3. The action of Gal(E/F ) ∝ GL2K on the tree
The Galois action of Gal(K/F ) on K ⊕ K preserves the lattices L =

OK ⊕OK and L′ = OK ⊕ πKOK and their stabilisers, H1 and H2 of §4.1,
under the tree-action. Therefore the Galois action of Gal(E/F ), acting
via Gal(K/F ), fixes the canonical fundamental domain on the tree and
the semi-direct product acts on the tree of GL2K, extending the action of
GL2K.

The central character φ is fixed by the Galois action.
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Recall from §4.2 the cell complex of the simplicially subdivided tree.
The GL2K-normalisers of stabilisers are given by

NGL2KH1 = H1K
∗, NGL2KH2 = H2K

∗,

NGL2KH1

⋂
H2 = 〈H1

⋂
H2,K

∗, u〉.

The Galois group Gal(E/F ) preserves each of these normalisers. Setting
G = Gal(E/F ) ∝ GL2K, the 0-cells are given by

C̃0 = c− IndGGal(E/F )∝NGL2K(H1)(k)⊕ c− IndGGal(E/F )∝NGL2K(H1∩H2)(k)

while the 1-cells are

C̃1 = c− IndGGal(E/F )∝(H1∩H2)K∗(k).

Therefore we have a short exact sequence of k[GL2K]-modules of the form

0 −→ C̃1
d−→ C̃0

ε−→ k −→ 0

in which
d(g ⊗Gal(E/F )∝(H1∩H2)K∗ v)

= (g ⊗Gal(E/F )∝NGL2K(H1) v,−g ⊗Gal(E/F )∝NGL2K(H1∩H2) v)

and
ε(g1 ⊗Gal(E/F )∝NGL2K(H1) v1, g2 ⊗Gal(E/F )∝NGL2K(H1∩H2) v2)

= v1 + v2.

If Ṽ is the admissible representation of G given by ρ̃ we have an iso-
morphism analogous to that of §4.3.

φ̃ : c− IndGGal(E/F )∝H(W )⊗ V
∼=−→ c− IndGGal(E/F )∝H(W ⊗ ResGL2K

H (V ))

given by φ((g⊗H w)⊗v) = g⊗H (w⊗g−1v), if W is finite-dimensional and
H is one of (H1 ∩H2)K∗, NGL2K(H1) or NGL2K(H1 ∩H2).

As in §4.3 φ̃ transforms d⊗ 1 to

c− IndGGal(E/F )∝(H1∩H2)K∗(Ṽ )

ψ̃ ↓

c− IndGGal(E/F )∝NGL2K(H1)(Ṽ )⊕ c− IndGGal(E/F )∝NGL2K(H1∩H2)(Ṽ )

given by

ψ̃(g ⊗Gal(E/F )∝(H1∩H2)K∗ v)

= (g ⊗Gal(E/F )∝NGL2K(H1) v,−g ⊗Gal(E/F )∝NGL2K(H1∩H2) v).
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Next we define an analogue of the central character

φ̃ : Gal(E/F ) ∝ K∗ −→ k∗

by φ̃(g, z) = φ(z) for g ∈ Gal(E/F ), z ∈ K∗. This is a well-defined charac-
ter since φ is Galois-invariant.

We define MG,φ̃ to be the partially ordered set of pairs (J, φ) where
J ⊆ G contains the centre Z(G) = Z(Gal(E/K)) × K∗, is compact open
modulo the centre and where φ extends φ̃.

As in §4.4 we have bar-monomial resolutions

WṼ ,∗,Gal(E/F )∝(H1∩H2)K∗)

ε1−→ Ṽ

in k[Gal(E/F )∝(H1∩H2)K∗],φ̃
mon,

WṼ ,∗,Gal(E/F )∝NGL2K(H1)

ε0−→ Ṽ

in k[Gal(E/F )∝(NGL2K(H1)],φ̃
mon and

WṼ ,∗,Gal(E/F )∝NGL2K(H1∩H2)

ε′0−→ Ṽ

in k[Gal(E/F )∝NGL2K(H1∩H2)],φ̃
mon.

Following §4.5 we may construct a k[G],φ̃mon chain map {ψ̃i | i ≥ 0}
covering ψ̃:

c− IndGGal(E/F )∝(H1∩H2)K∗(WṼ ,∗,Gal(E/F )∝(H1∩H2)K∗)
)

ψ̃∗ ↓

c− IndGGal(E/F )∝NGL2K(H1)(WṼ ,∗,Gal(E/F )∝NGL2K(H1)
)

⊕c− IndGGal(E/F )∝NGL2K(H1∩H2)(WṼ ,∗,Gal(E/F )∝NGL2K(H1∩H2)
).

Replacing each of (H1 ∩ H2)K∗, NGL2K(H1) or NGL2K(H1 ∩ H2) by
its semi-direct product with Gal(E/F ), the analogue of the construction in
§4.7 produces a candidate for a monomial resolution of Ṽ

M̃∗
ε−→ Ṽ .

Explicitly M̃ i is given by

c− IndGGal(E/F )∝(H1∩H2)K∗(WṼ ,i−1,Gal(E/F )∝(H1∩H2)K∗)
)

⊕ c− IndGGal(E/F )∝NGL2K(H1)(WṼ ,i,Gal(E/F )∝NGL2K(H1)
)

⊕ c− IndGGal(E/F )∝NGL2K(H1∩H2)(WṼ ,i,Gal(E/F )∝NGL2K(H1∩H2)
)
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with differential given, as in §4.7, by

d(w1,i−1, w0,i, w
′
0,i) = (d(w1,i−1), d(w0,i, w

′
0,i) + (−1)iψ̃i−1(w1,i−1)).

To establish exactness in the middle of

M̃
((J,φ))

i+1 −→ M̃
((J,φ))

i −→ M̃
((J,φ))

i−1

for i ≥ 1 it suffices, as in §4.12, to consider J ⊂ G which is a subgroup
of Gal(E/F ) ∝ H1K

∗, since Gal(E/F ) ∝ H1 is a maximal compact open
subgroup to which all others are G-conjugate.

Since the Galois group acts trivially on the simplices of the tree the
argument of Proposition 4.13 shows that we have just two cases:

Case A: J ⊆ Gal(E/F ) ∝ (H1

⋂
H2)K∗.

Case B: J ⊆ Gal(E/F ) ∝ H1K
∗, but J is not G-conjugate to a sub-

group of either Gal(E/F ) ∝ 〈H1

⋂
H2,K

∗, u〉 or Gal(E/F ) ∝ (H1

⋂
H2)K∗.

The analogue of the argument of §4.14 establishes the following result.

Theorem 6.4. Monomial resolution for for Ṽ
Let K, G and M̃∗be as in §6.3. Then

. . . −→ M̃ i
d−→ M̃ i−1

d−→ . . .
d−→ M̃0

ε−→ Ṽ −→ 0

is a monomial resolution in k[G],φ̃mon. That is, for each (J, φ) ∈MG,φ̃

. . . −→ M̃
((J,φ))

i
d−→ M̃

((J,φ))

i−1
d−→ . . .

d−→ M̃
((J,φ))

0
ε−→ Ṽ (J,φ) −→ 0

is an exact sequence of k-vector spaces.
In k[G],φ̃mon the monomial resolution of Ṽ is unique up to chain ho-

motopy.

6.5. Some Galois descent yoga
Take ρ and form the monomial resolution of Ṽ as in Theorem 6.4.

Quotient out the monomial complex by the Lines whose stabiliser group is
not sub-conjugate in the semi-direct product to Gal(E/F ) × GL2F . This
is a monomial complex for the semi-direct product which originates, via
induction, with Gal(E/F )×GL2F .

In one case of finite general linear groups this yoga is equivalent to
Shintani descent. See [130], which is included for completeness as Appendix
I.

Question 6.6. How is the Galois base-change yoga of §6.5 (and its ana-
logues for GLnK with n ≥ 3) related to Galois base change for admissible
representations of GLn of local fields in the sense of [7] and [91]?
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Remark 6.7. The following section contains some after-thoughts on
the Galois base-change yoga (aka the descent Galois construction), which
were added later in light of the existence of the bar-monomial resolution.

7. A descent construction - a folly in the monomial landscape

7.1. The descent construction2

Let G be a finite group acting on the left on a group H. Form the
semi-direct product G ∝ H (as in Chapter Two §6). Let B denote the set
of subgroups J ⊆ G ∝ H such that zJz−1 6⊆ G×HG for all z ∈ G ∝ H.

Suppose that φ is a character of G ∝ H and that M,M ′ are objects and
that f : M −→M ′ is a morphism in the monomial category k[G∝H],φmon.
Set

M(B) =
∑

J∈B, (J,λ)∈Mφ(G∝H)

M ((J,λ)) ⊆M.

Then we have f(M(B)) ⊆M ′(B). Hence MB = M/M(B) is also an object
in k[G∝H],φmon such that M ((J,λ))

B = 0 for all J ∈ B.
There is an isomorphism in k[G∝H],φmon between MB and the sum of

Lines in M whose stabiliser is (H ′, φ′) with H ′ subconjugate to G × HG.
A morphism f induces a morphism

fB : MB −→M ′B

which is functorial in the sense that (f.f ′)B = fBf
′
B and 1B = 1MB .

Hence we have a functorial ring homomorphism

Endk[G∝H,φ]mon(M) −→ Endk[G∝H,φ]mon(MB).

Example 7.2. The construction of §7.1 applies, for example, to the
case when G is a local Galois group and H = GLnK as mentioned in
§6.5 and §6.6. I first considered it in connection with the Shintani descent
example which occupies Appendix I. That appendix was written several
years before I discovered the bar-monomial resolution. This section arose
since the bar-monomial resolution sheds a little more light - resulting in a
some slightly more specific questions and problems, which will be described
later in this section.

7.3. The descent construction applied to a monomial resolution

2To an 18th century English aristocrat a folly meant some extravagant, pointless

construction typically tucked away somewhere on his estate amid the rolling country-

side of his Lancelot “Capability” Brown (1716-1783) or Humphry Repton (1752-1818)
designed horticulture. Every chap had to have one - a grotto, a tower, a fake lake or
bridge and so on. The reader who has noticed this footnote will immediately get the gist

of the useage of the term in relation to this section!
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For simplicity, suppose in §7.1 that H is finite modulo the centre and
that V is a finite-dimensional k-representation which extends to a repre-
sentation Ṽ of G ∝ H with central character φ.

Suppose that

. . . −→Mn
∂n−1−→ Mn−1

∂n−2−→ . . .
∂0−→M0

ε−→ Ṽ −→ 0

is a k[G∝H],φmon-resolution of Ṽ .

Since Ṽ , up to twists by one dimensional characters of G, is deter-
mined by V and since monomial resolutions commute with twists by one-
dimensional characters we have a chain complex

. . . −→Mn,B
∂n−1−→ Mn−1,B

∂n−2−→ . . .
∂0−→M0,B −→ 0

in k[G∝H],φmon which depends, up to twists by one-dimensional characters
of G and up to chain homotopy in k[G∝H],φmon, only on V .

Recall from Chapter One 3.5 that we have a functor J giving a full
embedding

J :k[G∝H],φ mon −→ functok(k[G∝H],φmon,k mod)

defined by J (M) = Hom
k[G∝H],φmon(−,M). In addition, let S ∈k[G∝H],φ

mon be the finite (G ∝ H,φ)-Line Bundle over k given by

S = ⊕(J,φ)∈Mφ(G∝H) IndG∝HJ (kφ),

which was introduced in Chapter One §4.2. As in Chapter One §4.1 we
define AS = Hom

k[G],φmon(S, S), the ring of endomorphisms on S under
composition.

Then, in the notation of Chapter One §4.1, we have functors

ΦS : functok(k[G∝H],φmon,k mod) −→modAS

and
ΨS : modAS −→ functok(k[G∝H],φmon,k mod),

which are inverse equivalences of categories. In fact, the natural transfor-
mations η and ε of Chapter One §4.1 are isomorphisms of functors when
M = S.

Applying ΦS · J to the monomial complex

. . . −→Mn,B
∂n−1−→ Mn−1,B

∂n−2−→ . . .
∂0−→M0,B −→ 0

yields a chain complex in modAS of the form

. . .→ ΦS(J (Mn,B))
∂n−1−→ ΦS(J (Mn−1,B))

∂n−2−→ . . .
∂0−→ ΦS(J (M0,B))→ 0.

Up to chain homotopy in the module category modAS this complex de-
pends only on Ṽ . Therefore, up to chain homotopy in the module category
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modAS , we may compute this chain complex from the bar-monomial res-
olution of Ṽ .

7.4. ΦS(J (M∗,B)) for the bar-monomial resolution
Recall from Chapter One §5.5 that in degree i the bar-monomial reso-

lution of Ṽ has the form

M̃i,S ⊗k S = Hom
k[G∝H],φmod(V(S), Ṽ )⊗k A⊗iS ⊗k S

so that

(M̃i,S ⊗k S)B = Hom
k[G∝H],φmod(V(S), Ṽ )⊗k A⊗iS ⊗k SB.

Therefore in degree i we have

J ((M̃i,S ⊗k S)B)

= Hom
k[G∝H],φmod(V(S), Ṽ )⊗k A⊗iS ⊗k Hom

k[G∝H],φmon(−, SB)

and
ΦS(J ((M̃i,S ⊗k S)B))

= Hom
k[G∝H],φmod(V(S), Ṽ )⊗k A⊗iS ⊗k Hom

k[G∝H],φmon(S, SB).

Since monomial morphisms only increase Line stabilisers we have an
isomorphism of AS-modules of the form

Hom
k[G∝H],φmon(S, SB) ∼= Hom

k[G∝H],φmon(SB, SB) = ASB .

Therefore, by Chapter One, Theorem 5.4 we have established the fol-
lowing result.

Theorem 7.5.
In the situation of §7.1, §7.3 and §7.4 the homology of the chain complex

ΦS(J (M∗,B)), which depends only on Ṽ is given by

Hi(ΦS(J (M∗,B)))

∼= ToriAS (Hom
k[G∝H],φmod(V(S), Ṽ ),ASB)

Example 7.6. In Chapter Ten, Appendix I studies Shintani descent
from Galois invariant complex irreducible representations of GL2F4 to irre-
ducibles of GL2F2

∼= D6, the dihedral group of order six. In this situation
there are two interesting (that is, of dimension larger than one) which are
GL2F4-invariant. These are ν4 and ν5 of dimensions 4 and 5 respectively.
Let ν̃4 and ν̃5 denote the extensions of these representations to the semi-
direct product GL2F4 ∝ GL2F4. They factor through GL2F4 ∝ PGL2F4.

By Chapter One, Theorem 6.3 there is a finite length monomial reso-
lution in k[C2∝GL2F4],φmon for each ν̃i. Therefore such a monomial reso-
lution has a well-defined Euler characteristic in the free abelian group of
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isomorphism classes of objects in k[C2∝GL2F4],φmon. This Euler character-
istic may be computed without constructing a monomial resolution, using
the Explicit Brauer Induction formula, and this was done for ν̃4 and ν̃5 in
Chapter Ten, Appendix I §6.

The notation of the formulae is explained in the tables of Appendix I
§6.

Explicitly we have a k[C2∝GL2F4],φmon resolution of the form

0 −→Mi,t ⊕Ni,t −→Mi,t−1 ⊕Ni,t−1 −→ . . . −→Mi,0 ⊕Ni,0 −→ ν̃i −→ 0

in which the Mi,j ’s and Ni,j ’s are objects in k[C2∝GL2F4],φmon. The cal-
culations of Chapter Ten, Appendix I §6 imply that for i = 4, 5 there are
isomorphisms in k[C2∝GL2F4],φmon of the forms

⊕0≤2n≤t Mi,2n
∼= ⊕0≤2n+1≤t Mi,2n+1

and

⊕0≤2n≤t N5,2n ⊕ IndC2∝GL2F4
V4

(1)⊕ IndC2∝GL2F4
C3

(kφ)

⊕IndC2∝GL2F4
C2

(kφ)⊕ IndC2∝GL2F4
〈(σ,1)〉 (1)⊕ IndC2∝GL2F4

〈(σ,1)〉 (kτ )

⊕IndC2∝GL2F4
〈(σ,1),A〉 (1)⊕ IndC2∝GL2F4

C4
(kφ2)

∼= ⊕0≤2n+1≤t N5,2n+1 ⊕ IndC2∝GL2F4
A4

(kφ)⊕ IndC2∝GL2F4
〈(σ,B),Xξ〉 (kτ2)

⊕IndC2∝GL2F4
〈(σ,1),A,C〉(1)⊕ IndC2∝GL2F4

〈(σ,1),V4〉 (1)⊕ IndC2∝GL2F4
〈(σ,1),V4〉 (kτ )

⊕IndC2∝GL2F4
〈(σ,1),V4〉 (kµ)⊕ IndC2∝GL2F4

〈(σ,1),C〉 (kφ)⊕ IndC2∝GL2F4
〈(σ,1),C〉 (kτφ)

⊕IndC2∝GL2F4
C5

(kφ)⊕ IndC2∝GL2F4
{1} (1)

⊕IndC2∝GL2F4
〈(σ,1),A〉 (kφ)⊕ IndC2∝GL2F4

C4
(kφ)

and

⊕0≤2n≤t N4,2n ⊕ IndC2∝GL2F4
C2

(kφ)

⊕IndC2∝GL2F4
〈(σ,1),A〉 (kτ )⊕ IndC2∝GL2F4

〈(σ,1),C〉 (kτ )

∼= ⊕0≤2n+1≤t N5,2n+1 ⊕ IndC2∝GL2F4
〈(σ,1),A4〉 (kτ )

⊕IndC2∝GL2F4
C2×D6,

(kτ )⊕ IndC2∝GL2F4
C2×D6,

(kφ)⊕ IndC2∝GL2F4
C5

(kφ)

⊕IndC2∝GL2F4
〈(σ,1),V4〉 (kτµ)⊕ IndC2∝GL2F4

〈(σ,1),C〉 (kτφ)⊕ IndC2∝GL2F4
C4

(kφ).
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Appying the descent construction of §7.3 we obtain a chain complexes
for i = 4, 5 in k[C2∝GL2F4],φmon of the form

0 −→Mi,tB ⊕Ni,tB −→Mi,t−1B ⊕Ni,t−1B −→ . . . −→Mi,0B ⊕Ni,0B −→ 0

where
⊕0≤2n≤t N5,2nB ⊕ IndC2∝GL2F4

C3
(kφ)⊕ IndC2∝GL2F4

C2
(kφ)

⊕IndC2∝GL2F4
〈(σ,1)〉 (1)⊕ IndC2∝GL2F4

〈(σ,1)〉 (kτ )⊕ IndC2∝GL2F4
〈(σ,1),A〉 (1)

∼= ⊕0≤2n+1≤t N5,2n+1B ⊕ IndC2∝GL2F4
〈(σ,1),A,C〉(1)⊕ IndC2∝GL2F4

〈(σ,1),C〉 (kφ)

⊕IndC2∝GL2F4
〈(σ,1),C〉 (kτφ)⊕ IndC2∝GL2F4

{1} (1)⊕ IndC2∝GL2F4
〈(σ,1),A〉 (kφ)

and
⊕0≤2n≤t N4,2nB ⊕ IndC2∝GL2F4

C2
(kφ)

⊕IndC2∝GL2F4
〈(σ,1),A〉 (kτ )⊕ IndC2∝GL2F4

〈(σ,1),C〉 (kτ )

∼= ⊕0≤2n+1≤t N5,2n+1B ⊕ IndC2∝GL2F4
C2×D6,

(kτ )

⊕IndC2∝GL2F4
C2×D6,

(kφ)⊕ IndC2∝GL2F4
〈(σ,1),C〉 (kτφ).

From Euler characteristic equations such as these one can sometimes
deduce a little about the homology groups of Theorem 7.5. In this example
I believe that one can deduce that some of the odd degree homology groups

Tor2i+1
AS (Hom

k[G∝H],φmod(V(S), Ṽ ),ASB)

are non-trivial for both V = ν4 and V = ν5.
The following result is immediate.

Lemma 7.7.
Let ψ be a character of the form G ∝ H −→ G

ψ−→ k∗ in which the first
map is the canonical surjection. Then the construction of §7.3 commutes
with twisting by ψ

kψ ⊗kM∗,B ∼= kψ ⊗k (M∗,B)
in k[G∝H],ψφmon.

In particular, applied to a monomial resolution M∗ −→ Ṽ the mono-
mial complex M∗,B depends only on V , up to twists by one dimensional
characters of G and up to monomial chain homotopy.

I shall close this section with some (rather pointless3 related questions.)

3I give my sincere apologies for these questions to the readers, should there be any.

These are the sort of out-of-touch ramblings which one might expect from a mathemat-
ically isolated, dillettante retiree!
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Question 7.8. Let K be a local field and suppose that V is an irre-
ducible admissible representation of GLnK with central character φ. Let
F/K be a finite Galois extension and suppose that ṼF is an irreducible
admissible representation of the semi-direct product Gal(F/K) ∝ GLnF

whose Galois base-change of ResGal(F/K)∝GLnF
GLnF

(ṼF ), in the analogous sense
to that of Shintani descent (in Chapter Ten, Appendix I §4), is V .

Therefore, by Chapter Two §6, there is a monomial resolution

M∗,F −→ ṼF −→ 0.

Can the monomial complexes {M∗,F } be chosen coherently? That is, in
what sense can they be chosen to form an inverse system? Can the mono-
mial complexes of §7.3 {(M∗,F )B} be chosen to form an inverse system?

Question 7.9. The monomial complexes in the family {(M∗,F )B} are
all “induced from” Gal(F/K) ×GLnK ⊆ Gal(F/K) ∝ GLnF . Supposing
a fairly strongly affirmative answer to Question 7.8 we would have an in-
verse system of monomial complexes induced from Gal(F/K)×GLnK and
depending only on V , up to one-dimensional Galois twists.

Is it possible to use this structure to associate to V a Galois represen-
tation of Gal(K/K), modulo one-dimensional twists Galois twists, in some
sort of “dual pair” [75] relation?

Remark 7.10. Galois descent, Functoriality and functoriality
Let L/K be a Galois extension of local fields. Suppose that V is an

admissible representation of GLnL with central character φ.
Suppose that V is irreducible then Galois base change (aka Galois de-

scent) may be characterised in terms of character values ([91] Chapter Two)
which is analogous to the finite field case of Shintani descent described in
(Chapter Eight, Appendix I, §4). It may also be characterised in a manner
which extends immediately to the global case in terms of the L-group and
the Principle of Functoriality ([91] Chapter One). However, although it
sounds like it, the Principle of Functoriality is not functorial. It is inter
alia a bijection between sets of irreducible admissible representation with a
functorial-like behaviour. For the local GLnL it was established for cyclic
extensions L/K (and hence for nilpotent extensions, presumably) in [7].

It seems to me that Galois descent should ideally aim to feature a sheaf
of representations on the poset of local Galois groups. In the spirit of this
monograph, an equivalent aim would be a sheaf of monomial complexes on
the poset of local Galois groups similar to the one I constructed in Chapter
Four on the Bruhat-Tits building.

Allow me to illustrate what I have in mind by an example. Suppose that
we have Galois base change admissible representations of all nilpotent sub-
groups of Gal(L/K). Let us take the example of the case when Gal(L/K)
is isomorphic to one of the icosahedral, tetrahedral or octahedral groups.
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Each of these has a 2-dimensional irreducible complex representation which
which is not a monomial representation. Using this representation the group
Gal(L/K) acts simplicially on U(2,C)/NU(2,C)T

2, the coset space of the
normaliser of the maximal torus in the 2× 2 unitary group. The homology
group H∗(U(2,C)/NU(2,C)T

2; Q) is isomorphic to the rational homology of
a point and the stabiliser of each simplex is a proper, nilpotent subgroup
of Gal(L/K) [122]. If the base-change data for the stabiliser of each sim-
plex were functorial for inclusions we would have a sheaf of representations
on U(2,C)/NU(2,C)T

2 and would be able to form a double complex whose
terms were admissible representations of GLnK. The total complex of this
double complex probably would not have homology concentrated in degree
zero, but the same construction with U(2,C)/NU(2,C)T

2 replaced by the
tom Dieck-Baum-Connes space (see Chapter Thirteen, Appendix IV) with
respect to the family of nilpotent subgroups of Gal(L/K) definitely would.
This non-zero homology group should be the candidate for the Galois de-
scent of V .

One can see just where functoriality is missing in the “descent” corre-
spondences involving finite groups. If S is a finite group acting on the finite
group G then there is a canonical correspondence due to Glauberman [65]
between complex irreducible representations of G fixed by the action of S
and complex irreducibles of GS , the subgroup of S-fixed elements in G. Let
this correspondence be denoted by V 7→ Gl(V ). Extend this map to set of
isomorphism classes of representations. How is this to extend functorially
to maps between representations? For example, when S is cyclic of order
p, which is prime, then Gl(V ) is the unique irreducible irreducible of GS

in ResGGS (V ) whose multiplicity is congruent to ±1 modulo p ([5] Lemma
3.3). Given a map between S-invariant representations of G it is by no
means clear how to map Glauberman correspondents because, despite hav-
ing copies of Gl(V ) contained in V , because the multiplicities prevent a
characterisation of Gl(V ) as a subspace of V .

Consider the finite group example of Chapter Ten, Appendix I. Here
the Shintani correspondence [117] is denoted by V 7→ Sh(V ). There are
three Gal(F4/F2)-invariant irreducible complex representations of GL2F4

denoted by 1, ν4, ν5 where νi is i-dimensional. Perhaps we can characterise
Sh(νi) as a subspace of νi and thereby extend the correspondence to mor-
phisms? Each νi extends, uniquely up to one-dimensional twists by Galois
characters, to an irreducible representation ν̃i of the semi-direct product
Gal(F4/F2) ∝ GL2F4. We have Sh(ν4) = ν, the unique two-dimensional
irreducible of GL2F2

∼= D6. The results of Chapter Ten, Appendix I, §2
and §3 imply that

ResGal(F4/F2)∝GL2F4

Gal(F4/F2)×GL2F2
(ν̃4) = (1 + τ)⊗ χ+ τ ⊗ ν
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where τ and χ are the non-trivial one-dimensional characters of Gal(F4/F2)
and D6 respectively. This leads one to hope that Sh(νi) can be given
by a quotient of the restriction of ν̃i by a subrepresentation of the form
IndGal(F4/F2)×GL2F2

GL2F2
(W ). However, if the formulae of Chapter Ten, Appen-

dix I are correct, we have Sh(ν5) = χ but, rather disappointingly,

ResGal(F4/F2)∝GL2F4

Gal(F4/F2)×GL2F2
(ν̃5) = (1 + τ)⊗ ν + 1⊗ 1.

Too bad!

8. A curiosity - or dihedral voodoo

8.1. In this section, merely out of curiosity, I am going to apply the
descent construction of §7.3 to the case of a cyclic group of order two acting
on a dihedral 2-group. To my knowledge there is nothing known in this case
which might be considered an analogue of the Shintani descent correspon-
dence of [117] or the Glauberman correspondence of [65]. Of course, I am
not going to get anything interesting when the generator is merely acting
via an inner automorphism. Fortunately, a theorem of Gaschutz states that
every p-group has an outer automorphism. Therefore I propose to take C2

acting via an involutory outer automorphism of a dihedral 2-group.
The formulae become quite complicated so I shall restrict to the exam-

ple of C2 acting on D8 by an outer automorphism which becomes inner in
D16. I strongly believe that the descent construction is rather interesting
in each of the other dihedral cases, too.

In this example the representations will be defined over an algebraically
closed field of characteristic different from two. In this case D8 has a unique
2-dimensional irreducible ν which is fixed by the involution. The subgroup
of fixed points is the central C2 so that any interesting descent construction
should send ν to the non-trivial character of the centre. On the other
hand there are two extension ν̃ of ν to the semi-direct product of C2 with
D8 differing by a one-dimensional twist which commutes with the descent
construction. Therefore the descent construction should give us - by some
sort of yoga - a representation of the product of C2 with the centre of D8.
If χ̃2 is the non-trivial character of the form and χ̃1 of the latter then the
outcome

χ̃1 ⊕ χ̃1χ̃2 = (1⊕ χ̃2)⊗ χ̃1

would be quite satisfactory!

8.2. The group 〈x, y, t〉
Write the dihedral group D8 in the form

D8 = 〈x, y | x4 = 1 = y2, yxy = x3〉.
An involutory outer automorphism of D8 denoted by

λ : D8

∼=−→ D8
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is defined by the formula λ(y) = xy, λ(x) = x3.
Define a group G to be the semi-direct product of order sixteen in

which the outer automorphism λ has become the inner automorphism of
conjugation by t

G = 〈x, y, t | x4 = 1 = y2 = t2, yxy = x3, tyt = xy, txt = x3〉.

The two-dimensional irreducible of D8 is ν = IndD8
〈x〉(φ) where φ is the

character defined by φ(x) =
√
−1.

The action of D8 on ν extends to a representation ν̃ of G by the action

t(1⊗〈x〉 1) = ξ8y ⊗〈x〉 1, t(y ⊗〈x〉 1) = ξ8 ⊗〈x〉 1

where ξ8 = 1+
√
−1√
2

.
In terms of 2× 2 matrices ν̃ is given by

t =

 0 ξ8

ξ8 0

 , x =

 √−1 0

0 −
√
−1

 , y =

 0 1

1 0


In G we have tyty = xyy = x so that 〈ty〉 is cyclic of order eight

containing x so that y and ty generate G and from the matrices one sees
that

G = 〈ty, y | (ty)8 = 1 = y2, y(ty)y = (ty)7〉 ∼= D16.

Write
D16 = 〈X,Y | X8 = 1 = Y 2, Y XY = X7〉

wherre Y = y,X = ty in the previous notation.

8.3. Subgroups of D16 and characters on them
We have eight elements of order two XiY ∈ D16 for 0 ≤ i ≤ 7 which fall

into two conjugacy classes represented by Y and XY since XXiY X−1 =
Xi+2Y .

Up to conjugation the subgroups of D16 are given by the following
table.

H Order Generators Number in conjugacy class
D16 16 X,Y 1
D8 8 X2, Y 1
C8 8 X 1
C4 4 X2 1
V4 4 〈X4, Y 〉 4
C2 2 X4 1
C ′2 2 Y 4
{1} 1 1 1
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The following table gives the one-dimensional characters of the subgroups
up to conjugation (denoted by ∼).

H Ĥ formulae
D16 1, λ1, λ2, λ1λ2 λ1(X) = −1

λ1(Y ) = λ2(X), λ2(Y ) = −1
D8 1, χ1, χ2, χ1χ2 χ1(X2) = −1, χ2(Y ) = −1

χ1(Y ) = 1 = χ2(X2)
C8 1, φ ∼ φ7, φ2 ∼ φ6, φ3 ∼ φ5, φ4 φ(X) = ξ8
C4 1, α ∼ α3, α2 α(X2) =

√
−1

V4 1, χ̃1, χ̃2, χ̃1χ̃2 χ̃1(X4) = −1, χ̃2(Y ) = −1
χ̃1(Y ) = 1 = χ̃2(X4)

C2 1, τ τ(X4) = −1
C ′2 1, τ ′ τ ′(Y ) = −1
{1} 1 −

IfH is a subgroup ofD16 theH-abelian part of ν̃ is the sum of the subspaces
ν̃(H,µ) as µ runs through Ĥ.

In the notation of the above table, the representation of D8 given by
ν = IndD8

〈X2〉(α) is equal to the restriction of ν̃ = IndD16
〈X〉(φ) so we may

calculate a monomial resolution of ν̃ and apply the descent yoga to it, out
of curiosity.

The following table gives, up to conjugation, the H-abelian parts of ν̃.

H H − abelian part of ν̃
D16 0
D8 0
C8 φ+ φ7

C4 α+ α3

V4 χ̃1 + χ̃1χ̃2

C2 2 · τ
C ′2 1 + τ
{1} 2 cot 1
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8.4. A monomial resolution of ν̃
The Line bundle IndD16

〈X〉(φ) has two Lines one with stabiliser pair (C8, φ)
and one with stabiliser pair (C8, φ

7). Hence the isomorphism of represen-
tations ι : IndD16

〈X〉(φ) −→ ν̃ yields isomorphisms

IndD16
〈X〉(φ)((C8,φ))

∼=−→ ν̃(C8,φ)

IndD16
〈X〉(φ)((C8,φ

7))
∼=−→ ν̃(C8,φ

7)

IndD16
〈X〉(φ)((C4,α))

∼=−→ ν̃(C4,α)

IndD16
〈X〉(φ)((C4,α

3))
∼=−→ ν̃(C4,α

3)

IndD16
〈X〉(φ)((C2,τ))

∼=−→ ν̃(C2,τ)

IndD16
〈X〉(φ)(({1},1))

∼=−→ ν̃({1},1).

However, for the other non-zero cases of abelian parts have zero image from
IndD16
〈X〉(φ)((H,ψ))’s.
Next consider the maps of representations

f1 : IndD16
V4

(χ̃1) −→ ν̃

and
f2 : IndD16

V4
(χ̃1χ̃2) −→ ν̃

given by

f1(1⊗V4 1) = 1⊗C8 1 + Y ⊗C8 1, f2(1⊗V4 1) = 1⊗C8 1− Y ⊗C8 1.

These formulae define linear maps because X4(1⊗C8 1±Y ⊗C8 1) = −(1⊗C8

1± Y ⊗C8 1) and Y (1⊗C8 1± Y ⊗C8 1) = (Y ⊗C8 1± 1⊗C8 1).
Consider the map of representations

ε = ι+ f1 + f2 : M0 = IndD16
〈X〉(φ)⊕ IndD16

V4
(χ̃1)⊕ IndD16

V4
(χ̃1χ̃2) −→ ν̃

which satisfies
M

((H,ψ))
0

∼=−→ ν̃(H,ψ)

for H = D16, D8, D
′
8, C8, C4 and is surjective for all other (H,ψ)’s.

Next observe that

M
((V4,χ̃1))
0 −→ ν̃(V4,χ̃1)

and
M

((V4,χ̃1χ̃2))
0 −→ ν̃(V4,χ̃1χ̃2)

are also isomorphisms.
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Consider
M0 = M

((C2,τ))
0 −→ ν̃(C2,τ) = ν̃

whose kernel is a C[D16] of complex dimension eight and containing

(1⊗C8 1 + Y ⊗C8 1,−1⊗V4 1, 0) and (1⊗C8 1− Y ⊗C8 1, 0,−1⊗V4 1).

Notice that
ε(1⊗C8 1, (−1/2)1⊗V4 1, (−1/2)1⊗V4 1)

= 1⊗C8 1 + (−1/2)(1⊗C8 1 + Y ⊗C8 1) + (−1/2)(1⊗C8 1− Y ⊗C8 1)

= 0

and

(1+Y )(1⊗C81, (−1/2)1⊗V41, (−1/2)1⊗V41) = (1⊗C81+Y⊗C81,−1⊗V41, 0)

and

(1−Y )(1⊗C81, (−1/2)1⊗V41, (−1/2)1⊗V41) = (1⊗C81−Y⊗C81, 0,−1⊗V41).

Define

d : M1 = IndD16
C2

(τ) −→ Ker(M ((C2,τ))
0 −→ ν̃(C2,τ))

by
d(1⊗C2 1) = (1⊗C8 1, (−1/2)1⊗V4 1, (−1/2)1⊗V4 1).

Hence we have a candidate for a monomial resolution

0 −→M1 −→M0 −→ ν̃ −→ 0.

We must verify the exactness of each of the sequences of vector spaces

0 −→M
((H,ψ))
1 −→M

((H,ψ))
0 −→ ν̃(H,ψ) −→ 0.

When H = D16, D8 this is a sequence of zeroes. The right-hand map
is always surjective. When H = C8, C4, V4 we have M ((H,ψ))

1 = 0 and the
right-hand map is an isomorphism. When H = C2, {1} the complex is equal
to the entire candidate monomial resolution which is exact by surjectivity
of the right-hand map and a dimension count. When (H,ψ) = (C ′2, 1) or
(H,ψ) = (C ′2, τ) the left-hand vector space is trivial and the right-hand
map is a surjection of one-dimensional spaces and hence an isomorphism.

8.5. Applying the descent construction
Now let us apply the descent yoga. The subgroup D

〈t〉
8 = 〈X4, XY 〉

which is conjugate to V4 therefore, equivalently, I shall apply the yoga to
V4 to receive

0 −→ IndD16
C2

(τ) ∂−→ IndD16
V4

(χ̃1)⊕ IndD16
V4

(χ̃1χ̃2) −→ 0

where ∂ is given by

∂(1⊗C2 1) = ((−1/2)1⊗V4 1, (−1/2)1⊗V4 1).
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Therefore IndD16
C2

(τ)((H,ψ)) is trivial unless H contains X4 and ψ(X4) =
−1 but in that case the other term is zero, too. For (C2, τ) we find
that ∂((C2,τ)) is an isomorphism and so is ∂(({1},1)). For (V4, α) with
α = χ̃1, χ̃1χ̃2 we obtain a chain complex

0 −→ 0 −→ Vα −→ 0

where Vα is one-dimensional spanned by 1 ⊗V4 1 in the appropriate sum-
mand.

Hence the complexes

0 −→ IndD16
C2

(τ)((H,µ)) ∂−→ IndD16
V4

(χ̃1)((H,µ)) ⊕ IndD16
V4

(χ̃1χ̃2)((H,µ)) −→ 0

are all exact except when H = V4 and µ = χ̃1, χ̃1χ̃2 in which case the
homology is Vµ in dimension zero.

Hence if P ((H)) =
∑
µ∈Ĥ P ((H,µ)) and P∗ is the monomial complex

produced by the descent construction then

Hi(P
((H))
∗ ) =

 χ̃1 ⊕ χ̃1χ̃2 if H = V4, i = 0,

0 otherwise.

Question 8.6. Is the outcome of §8.5 the result of something system-
atic or just a black magical coincidence?

Remark 8.7. (i) The descent construction complex P∗ of §8.5 is not
a k[V4]-monomial resolution of χ̃1 ⊕ χ̃1χ̃2 because

0 −→ P
((C2,τ))
1

∼=−→ P
((C2,τ))
0 −→ (χ̃1 ⊕ χ̃1χ̃2)((C2,τ)) = 2 · τ −→ 0

is not exact.
However a monomial resolution is easily found and takes the form

0 −→ P1 −→ P0 ⊕ IndV4
C2

(τ) −→ (χ̃1 ⊕ χ̃1χ̃2) −→ 0.

(ii) The descent construction applied to G × HG ⊆ G ∝ H yields a
monomial complex MB and an abelian representation

M
((G×HG))
B =

∑
λ∈ ˆG×HG

M
((G×HG,λ))
B

which is naturally a complex of representations of the normaliser NG∝HG×
HG.

This happens in the example of §8.5 where the normaliser of V4 in D16

is D8 and χ̃1 + χ̃1χ̃2 is the restriction of the irreducible representation ν of
D8.
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8.8. The descent construction for νi of Chapter Ten, Appendix I revis-
ited

The subgroups of D6 and their characters up to conjugation (denoted
on characters by ∼) are given in the following table.

H generators Ĥ

D6 A,C 1, ψ
C3 C 1 φ ∼ φ2

C2 A 1, µ
{1} 1 1

A monomial resolution for ν = IndD6
C3

(φ) over an algebraically closed
field of characteristic different from 2 is

M∗ : 0 −→ IndD6
{1}(1) ∂−→ IndD6

C3
(φ)⊕ IndD6

C2
(1)⊕ IndD6

C2
(µ)) ε−→ ν −→ 0

where µ is the non-trivial character and the differentials are given by

∂(1⊗{1} 1) = (1⊗C3 1,−(1/2)⊗C2 1,−(1/2)⊗C2 1),

ε(1⊗C3 1, 0, 0)) = 1⊗C3 1,

ε(0, 1⊗C2 1, 0) = 1⊗C3 1 +A⊗C3 1,

ε(0, 0, 1⊗C2 1) = 1⊗C3 1−A⊗C3 1.

The Euler characteristics of M ((H))
∗ in R+(D6) are given by

χ(M ((D6))
∗ ) 0

χ(M ((C3))
∗ ) φ+ φ2

χ(M ((C2))
∗ ) 1 + µ

χ(M (({1}))
∗ ) 2

From the calculations of Chapter Ten, Appendix I §6 we have aG(ν̃4)
and aG(ν̃5) in R+(Gal(F4/F2) ∝ PGL2F4), which are the Euler charac-
teristics of the monomial resolutions of ν̃4 and ν̃5 respectively. Apply-
ing the descent construction relative to Gal(F4/F2) × GL2F2 = C2 × D6

we obtain the M(B) monomial complexes whose Euler characteristics in
R+(Gal(F4/F2) ∝ PGL2F4) are obtained by applying the descent con-
struction term-by-term to the aG(ν̃i)’s.

Write DesC2×D6(ν̃i) for the descent construction monomial complexes
and write χ(DesC2×D6(ν̃i)) ∈ R+(Gal(F4/F2) ∝ PGL2F4) for their Euler
characteristics.
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From Chapter Ten, Appendix I §6 we have the formulae:

DesC2×D6(aG(ν̃4))

= (C2 ×D6, τ)G + (C2 ×D6, φ)G + (〈(σ, 1), C〉, τφ)G

−(C2, φ)G − (〈(σ, 1), A〉, τ)G − (〈(σ, 1), C〉, τ)G

and

χ(DesC2×D6(aG(ν̃5)))

= (〈(σ, 1), A, C〉, 1)G + (〈(σ, 1), C〉, φ)G + (〈(σ, 1), C〉, τφ)G

−(C3, φ)G − (C2, φ)G − (〈(σ, 1)〉, 1)G − (〈(σ, 1)〉, τ)G

+({1}, 1)G − (〈(σ, 1), A〉, 1)G + (〈(σ, 1), A〉, φ)G.

From the tables of Chapter Ten, Appendix I §11 we obtain the following
tables of Euler characteristics of (−)((J,λ)) data. The notation for subgroups
is that of Chapter Ten, Appendix I §11 but the notation for characters of
D6 is that of the table beginning this subsection and τ (resp. φ′) is the
non-trivial character of Gal(F4/F2) (resp. C ′2) as in Chapter Ten, Appendix
I.

J DesC2×D6(aG(ν̃4))((J))

D6 1 + ψ
C2 × C3 1− τ + τ(φ+ φ2)
C2 × C2 τ + τµ
C3 φ+ φ2

C2 −2µ
C ′2 1− 5φ′

{1} −70

J DesC2×D6(aG(ν̃5))((J))

D6 1
C2 × C3 1 + (1 + τ)(φ+ φ2)
C2 × C2 τ + τµ
C3 1
C2 −2µ
C ′2 −12− φ′
{1} −50
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Question 8.9. Is the outcome of §8.8 the result of something system-
atic or just another black magical coincidence? More precisely4, does the
comparison of the C3-row of the (−)((J)) data suggest the Shintani cor-
respondence Sh(ν4) = ν and the combination of the C3/C2-rows suggest
Sh(ν5) = µ?

4This question is reminiscent of the punch-line of the joke which starts “What is

the definition of an optimist?”



CHAPTER 3

Automorphic representations

One encounters the profound relation between automorphic represen-
tations and modular forms in [[51], [62], [67], [80]], for example. The
topic is a breath-taking mathematical story of local-global flavour which
has proved so important in number theory and arithmetic-algebraic geom-
etry. Having already introduced monomial resolutions in the admissible
local case, in this chapter I shall give a brief sketch of their introduction
for global automorphic representations via the Tensor Product Theorem.

In §1 we recapitulate automorphic representations of GL2 as manifested
in terms of the (U(gl2C),K∞)×GL2Afin-modules of ([67] Vol I). Most im-
portantly §1 describes the tensor product theorem which enables one to con-
struct automorphic representations from local admissible representations
together with some Archimedean data. In §2 the tensor product theorem
for local monomial resolutions is proved. This guarantees, in Theorem 2.5,
the existence of a monomial resolution for any (U(gl2C),K∞)×GL2Afin-
module. §3 recalls how modular forms and their Hecke operators enter into
the theory of (U(gl2C),K∞) × GL2Afin-modules. Monomial resolutions
(local or global) of V give important “resolutions” of the subspaces V (H,φ).
In §4 we recall from [62] how, in the case of automorphic representations,
the V (H,φ)’s include, inter alia, the all-important spaces of classical modular
forms.

1. Automorphic representations of GL2AQ

1.1. In this section I am going to recall from ([67] Vol. I) what an
irreducible automorphic representation is and how they are constructed by
the tensor product theorem. I am only going to do this for GL2AQ since I
can then get all the technical details from ([67] Vol. I) with the minimum
of technical elaborations which are needed for the case of a general number
field (see [51], [62], [80]). In this chapter representations will be defined
over the complex numbers.

My objective is to describe how the analogue of the tensor product
theorem works in terms of monomial resolutions.

81
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1.2. Adèles and idèles for GL1 and GL2

The ring of adèles of Q is given by

AQ = {(x∞, x2, x3, . . . , xp, . . . ) | x∞ ∈ R, xp ∈ Qp, p prime, xp ∈ Zp p.p.}

with ring operations performed coordinatewise ([67] Vol. I p.7). The mul-
tiplicative group of idèles is given by

A∗Q = {(x∞, x2, x3, . . . , xp, . . . ) | x∞ ∈ R∗, xp ∈ Q∗p, p prime, xp ∈ Z∗p p.p.}.

Set
Afin = {(0, x2, . . . , xp, . . . ) ∈ AQ}

and
A∗fin = {(1, x2, . . . , xp, . . . ) ∈ A∗Q}.

The topology on AQ, which makes it into a locally compact topological ring,
has a basis of of open sets given by taking any finite set of places containing
∞ and taking U as any open set in the product topology of R×

∏
p∈S Qp

and forming
O = U ×

∏
p6∈S

Zp.

The topology on A∗Q, which makes it into a locally compact topological
group under coordinatewise multiplication, is given by taking U ′ as any
open set in R∗ ×

∏
p∈S Q∗p and forming

O′ = U ′ ×
∏
p6∈S

Z∗p.

Note that the topology on the idèles is not the subspace topology in-
duced from the adèles.

The rationals embed diagonally into the adèles and the non-zero ratio-
nals embeds diagonally into the idèles.

Proposition 1.3. Adèlic fundamental domain ([67] Vol. I p.10)
A fundamental domain for Q\AQ is

D = [0, 1)×
∏
p

Zp

so that
AQ =

⋃
β∈Q

β +D (disjoint union).

Proposition 1.4. Idèlic fundamental domain ([67] Vol. I p.11)
A fundamental domain for Q∗\A∗Q is

D′ = (0,∞)×
∏
p

Z∗p
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so that
A∗Q =

⋃
α∈Q∗

αD′ (disjoint union).

1.5. The adèlic GL2 - GL2AQ
The adèlic GL2 for the rationals consists of

{(g∞, g2, . . . , gp, . . . ) | g∞ ∈ GL2R, gp ∈ GL2Qp, p prime, gp ∈ GL2Zp p.p.}
with coordinatewise multiplication. There is a diagonal embedding of
GL2Q
into GL2AQ. We also have

GL2Afin = {(I, g2, . . . , gp, . . . ) ∈ GL2AQ}.

Proposition 1.6. Adèlic GL2 fundamental domain ([67] Vol. I p.109
and p. 111)

Let D∞ be a fundamental domain for GL2Z\GL2R. Then a funda-
mental domain for GL2Q\GL2AQ is

D∞ ×
∏

p prime

GL2Zp.

Every element of GL2AQ may be uniquely written in the form

γ · ((

 y∞ x∞

0 1

 · (
 r∞ 0

0 r∞

 , I, . . . , I, . . . ) · k

with γ ∈ GL2Q, −1/2 ≤ x∞ ≤ 0, y∞ > 0, x2
∞ + y2

∞ ≥ 1, r∞ > 0 and
k ∈ O2R ·

∏
p prime GL2Zp.

Definition 1.7. Unitary Hecke character of A∗Q ([67] Vol. I p.40)
A Hecke character of A∗Q is a continuous homomorphism

ω : Q∗\A∗Q −→ C∗.
A Hecke character is unitary if all its values have absolute value 1. The
following four properties characterise a unitary Hecke operator:

(i) ω(gg′) = ω(g)ω(g′) for all g, g′ ∈ A∗Q,
(ii) ω(γg) = ω(g) for all γ ∈ Q∗, g ∈ A∗Q ,
(iii) ω is continuous at (1, 1, 1, . . . , 1, . . . ) and
(iv) |ω|C = 1.

Definition 1.8. Automorphic forms on GL1 and GL2 ([67] Vol. I
p.40 and pp.117-119)

Fix a unitary Hecke character ω as in Definition 1.7. An automorphic
form on GL1AQ = A∗Q is a function

φ : GL1AQ −→ C
such that
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(i) φ(γg) = φ(g) for all γ ∈ Q∗, g ∈ A∗Q ,
(ii) φ(zg) = ω(z)φ(g) for all g, z ∈ A∗Q,
(iii) φ is of moderate growth. In other words, for each

(g∞, g2, . . . , gp, . . . ) ∈ A∗Q there exists positive constants C and M such
that

|φ(tg∞, g2, . . . , gp, . . . )|C < C(1 + |t|∞)M .

The space of automorphic forms on GL1AQ is a one-dimensional complex
vector space. The condition (ii) just means that φ is a Hecke character of
moderate growth but when we come to GL2 the analogue of (ii) will have
some more significance.

An automorphic form for GL2 is a function

φ : GL2Q\GL2AQ −→ C

which is smooth, of moderate growth, right-K-finite and Z(U(gl2))-finite.
Here K is the maximal compact adèlic subgroup of GL2AQ, both it

and K-finiteness are defined below.
The action on the φ’s of the universal enveloping algebras (see Defini-

tion 1.9) of the Lie algebras gl2R and gl2C is given in terms of differential
operators D. If Z(U(gl2)) is the centre of the universal enveloping algebra
then a smooth φ is Z(U(gl2))-finite if the set

{Dφ(g) | D ∈ Z(U(gl2))}

spans a finite-dimensional vector space.
A function φ is smooth if for every g0 ∈ GL2AQ there exists an open

set U ⊆ GL2AQ containing g0 and a smooth function

φU∞ : GL2R −→ C

such that φ(g) = φU∞(g∞) for all g ∈ U .

Let g =

 a b

c d

 ∈ GL2AQ be given by adèles

a = (a∞, a2, . . . , ap, . . . ), b = (b∞, b2, . . . , bp, . . . ), c = (c∞, c2, . . . , cp, . . . )
and d = (d∞, d2, . . . , dp, . . . ). Define a norm function by

||g|| =
∏
v≤∞

max
{
|av|v, |bv|v, |cv|v, |dv|v, |avdv − bvcv|−1

v

}
.

Then φ has moderate growth if there exist constants C,B > 0 such that
|φ(g)|C < C||g||B for all g ∈ GL2AQ.

Let K = O2R ·
∏
p prime GL2Zp be, as above, the maximal compact

subgroup of GL2AQ. Then φ is right-K-finite if the set of right K-translates
of φ given by the functions

{g 7→ φ(gk), k ∈ K}
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generates a finite-dimensional subspace of the space of all functions

GL2Q\GL2AQ −→ C.

Definition 1.9. The universal enveloping algebra of gl2 ([67] Vol. I
p.112-117)

The real Lie algebra gl2R is the real vector space of 2×2 matrices with
real entries. The Lie bracket is given by the commutator [α, β] = αβ − βα.
The universal enveloping algebra U(gl2R) is an associative R-algebra which
contains gl2R and in which the Lie bracket and the algebra product “◦” are
compatible in the sense that [α, β] = α ◦ β − β ◦ α. The universal algebra
is constructed as a quotient of the tensor algebra

U(gl2R) = T (gl2R)/{[α, β]− α⊗ β − β ⊗ α for all α, β ∈ gl2R}.
If A is an R-algebra and φ : gl2R −→ A is a linear map such that

φ([α, β]) = φ(α) ·φ(β)−φ(β) ·φ(α) ∈ A for all α, β ∈ gl2R then there exists
a unique R-algebra homomorphism

Φ : U(gl2R) −→ A

extending φ.
One of the most important applications of this universal property is

to give an isomorphism between the enveloping algebra and an algebra of
differential operators.

Let α ∈ gl2R be a 2 × 2 real matrix and let F : GL2R −→ C be a
smooth function. The differential operator Dα acts on functions such as F
by the formula

(DαF )(g) =
∂

∂t
F (g · exp(tα))|t=0 =

∂

∂t
F (g + tg · α)|t=0

where exp(tα) = I +
∑
k≥1

tkαk

k! .
The differential operators satisfy, as usual,

(Dα(c1F1 + c2F2))(g) = c1Dα(F1)(g) + c2Dα(F2)(g)

(Dα(F1 · F2))(g) = (Dα(F1))(g) · F2(g) + F1(g) · (Dα(F2))(g)

for all smooth functions F1, F2, constants c1, c2 ∈ C and matrices g ∈
GL2R.

Under the product given by composition, written Dα◦Dβ , the differen-
tial operators generate an associative R-algebra denoted by D2

R consisting of
R-linear combinations of finitely iterated compositions Dα1 ◦Dα2 ◦. . .◦Dαk .

Proposition 1.10. ([67] Vol. I Proposition 4.5.2 p.113)
Let α1, α2 ∈ gl2R and r1, r2 ∈ R. Then

(i) Dr1α1+r2α2 = r1Dα1 + r2Dα2 and

(ii) Dα1 ◦Dα2 −Dα2 ◦Dα1 = D[α1,α2].
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1.11. ([67] Vol. I Proposition 4.5.2 p.113)
Let V = C∞(GL2R), the space of smooth complex-valued functions on

GL2R. Then the linear map α 7→ Dα extends, via the universal property
of Definition 1.9 and Proposition 1.10, to an R-algebra homomorphism

δ : U(gl2R) −→ End(V )

such that δ(α) = Dα for each 2× 2 matrix α.
The algebra homomorphism δ is injective ([67] Vol. I Lemma 4.5.4

p.114) and therefore yields an isomorphism

δ : U(gl2R)
∼=−→ D2

R.

If α, β ∈ gl2R then α+
√
−1β ∈ gl2C is a general element and defining

Dα+
√
−1β = Dα +

√
−1Dβ we obtain a C-algebra of differential operators

on C∞(GL2R) and an isomorphism

δ : U(gl2C)
∼=−→ D2

C.

Definition 1.12. (U(gl2C),K∞)-modules
Following ([67] p.102) let K∞ = SO2(R), the special orthogonal group

of 2 × 2 orthogonal matrices with determinant equal to one. A
(U(gl2C),K∞)-module is a complex vector space V together with actions

πg : U(gl2C) −→ End(V )

πK∞ : K∞ −→ GL(V )

such that for all v ∈ V the subspace spanned by {πK∞(k)(v) | k ∈ K∞} is
finite-dimensional and

πg(Dα) · πK∞(k) = πK∞(k) · πg(Dk−1αk).

We also require that

πg(Dα)(v) = lim
t→0

1
t
(πK∞(exp)(tα)) · v − v)

for all v ∈ V and α in the Lie algebra of K∞ is contained in gl2C. Note
that the limit is defined, without the topology, because πK∞(exp)(tα)) · v
remains within a finite-dimensional subspace.

We shall denote the pair (πg, πK∞) by π and call (π, V ) a
(U(gl2C),K∞)-module.

The condition that the subspace spanned by {πK∞(k)(v) | k ∈ K∞}
is finite-dimensional for each v ∈ V can be replaced by the equivalent
condition, which is more explicit, that for all v ∈ V there exist integers
M < N and complex numbers cl and vectors vl ∈ V with M ≤ l ≤ N such
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that v =
∑N
M clvl and

πK∞(

 cos(θ) sin(θ)

−sin(θ) cos(θ)

)(vl) = elθ
√
−1vl

for all M ≤ l ≤ N and θ ∈ R.

1.13. Equivalent formulation of (U(gl2C),K∞)-modules
We have an inclusion K∞ = SO2(R) ⊂ O2(R) into the orthogonal

group of 2 × 2 real matrices. The latter acts on gl2C by conjugation,
k · z = kzk−1, on 2 × 2 matrices with complex entries. This gives, by
universality, an algebra automorphism

Φk : U(gl2C)
∼=−→ U(gl2C)

for each k ∈ K∞.
We may form the twisted tensor algebra

U(gl2C)⊗̃RR[K∞]

whose multiplication is given, for k, k1 ∈ K∞, X,X1 ∈ U(gl2C), by

(X ⊗ k) · (X1 ⊗ k1) = Φk−1
1

(X)X1 ⊗ kk1.

From Definition 1.12 we have the composition identity

π∞(k−1) · πg(Dα) · π∞(k) = πg(Dk−1αk) = πg(Φk−1(Dα)).

Since the Dα’s generate the enveloping algebra we have

π∞(k−1) · πg(X) · π∞(k) = πg(Φk−1(X))

for all X ∈ U(gl2C).
Let X ⊗ k act on V by the map π∞(k) · πg(X). This action makes V

into a left module over the twisted tensor algebra U(gl2C)⊗̃RR[K∞] via

(X ⊗ k) · v = π∞(k)(πg(X)(v)).

This action makes sense because

π∞(k) · πg(X) · π∞(k1) · πg(X1)

= π∞(k) · π∞(k1) · π∞(k−1
1 ) · πg(X) · π∞(k1) · πg(X1)

= π∞(kk1) · πg(Φk−1
1

(X)) · πg(X1)

= π∞(kk1) · πg(Φk−1
1

(X)X1)
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so that
(X ⊗ k) · ((X1 ⊗ k1) · v)

= π∞(kk1)(πg(Φk−1
1

(X)X1)(v))

= (Φk−1
1

(X)X1 ⊗ kk1) · v,

as required.
Therefore a (U(gl2C),K∞)-module is equivalent to a left

U(gl2C)⊗̃RR[K∞] module, which satisfies the additional conditions of Def-
inition 1.12.

Definition 1.14. (U(gl2C),K∞)×GL2Afin-modules
Let GL2Afin denote the finite adèlic GL2 as defined in §1.4. Define a

(U(gl2C),K∞)×GL2AQ-module to be a complex vector space V with ac-
tions:

πg : U(gl2C) −→ End(V )

πK∞ : K∞ −→ GL(V )

πfin : GL2Afin −→ GL(V )

satisfying the relations

πfin(afin)πg(Dα) = πg(Dα)πfin(afin)

πfin(afin)πK∞(k) = πK∞(k)πfin(afin).

If we let π = (πg, πK∞), πfin) then we refer to the pair (π, V ) as a
(U(gl2C),K∞)×GL2Afin-module.

Definition 1.15. Smooth (U(gl2C),K∞)×GL2Afin-modules
Let V be a (U(gl2C),K∞) × GL2Afin-module as in Definition 1.14.

We say that V is smooth if every v ∈ V is fixed by some compact, open
subgroup of GL2Afin. The (U(gl2C),K∞)×GL2Afin-module V is said to
be irreducible if it is non-zero and has no proper non-zero subspace which
is preserved by the actions πg, πK∞ , πfin.

1.16. The space of adèlic automorphic forms Aω(GL2AQ)
Fix a unitary Hecke character as in Definition 1.7. Let Aω(GL2AQ)

denote the complex vector space of all adèlic automorphic forms for GL2AQ,
as defined in Definition 1.8.

We shall now examine three linear actions which make sense on the
space of all functions on GL2AQ. In fact, these three actions preserve all
the conditions of Definition 1.8 and therefore give well-defined actions on
Aω(GL2AQ).
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Note that there is also a natural action of GL2R by right translation
on the vector space of all functions on GL2R. This action does not preserve
the space Aω(GL2AQ)!

Right translation by the finite adèles

Define an action

πfin : GL2Afin −→ GL(Aω(GL2AQ))

by
(πfin(afin)(φ))(g) = φ(g · afin)

where φ ∈ Aω(GL2AQ), g ∈ GL2AQ and afin ∈ GL2Afin.

Right translation by O2(R)

Consider k ∈ K∞ = O2(R) as embedded in GL2AQ by inclusion into
the Archimedean factor. There we define

(πK∞(k)(φ))(g) = φ(gk).

Action of gl2C by differential operators

If D is a differential operator as in §1.11 then we define an action by

(πgl2C(D)(φ))(g) = Dφ(g).

With these actions the vector space Aω(GL2AQ) is a smooth
(U(gl2C),K∞)×GL2Afin-module in the sense of Definition 1.15 ([67] Vol.
I Lemma 5.1.7 p.157).

The notion of an intertwining map of (U(gl2C),K∞)×GL2Afin-modules
is defined in ([67] Vol. I Lemma 5.1.7 p.159) in such a manner that quo-
tients of these are again (U(gl2C),K∞)×GL2Afin-modules.

One can then define an automorphic representation with central char-
acter ω as a smooth (U(gl2C),K∞)×GL2Afin-module which is isomorphic
to a subquotient of Aω(GL2AQ).

1.17. Infinite tensor products of local representations
Let {Vv}v≤∞ be a family of vector spaces indexed by the rational primes

and∞. Let S be a finite set of primes including∞. For v 6∈ S let ξ0v ∈ Vv be
a choice of non-zero vector. The restricted tensor product of the Vv’s with
respect to the ξ0v ’s is the space of all finite linear combinations of vectors

ξ =

′⊗
v≤∞

ξv

where ξ ∈ Vv and ξv = ξ0v for all but finitely many v’s.
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Consider a (U(gl2C),K∞)×GL2Afin-module as in Definition 1.14. It
is a complex vector space together with actions

πg : U(gl2C) −→ End(V )

πK∞ : K∞ −→ GL(V )

πfin : GL2Afin −→ GL(V ).

The tensor product theorem ([67] Vol. I §10.8 pp.406-413) yields an isomor-
phism with a (U(gl2C),K∞)×GL2Afin-module constructed on a restricted
infinite tensor product. In order to define such a (U(gl2C),K∞)×GL2Afin-
module we require the following data:

(i) a (U(gl2C),K∞)-module (π∞, V∞),

(ii) a local representation (πp, Vp) of GL2Qp for each prime p,

(iii) a finite set of primes S containing ∞,

(iv) a distinguished, non-zero vector ξ0p ∈ Vp for p 6∈ S which is fixed
by GL2Zp.

Definition 1.18. Unramified local representations
Fix a prime p. A representation (π, V ) of GL2Qp is called unramified if

the subspace of GL2Zp-fixed points is non-zero ([67] Vol. I Definition 6.2.1
p. 192).

The local components of a (U(gl2C),K∞) × GL2Afin-module are un-
ramified at all but a finite set of primes. This is related to condition (iv)
of §1.17 by the following crucial result.

Theorem 1.19. ([67] Vol. I Theorem 10.6.12 pp. 400-402)
Let (π, V ) be an unramified admissible irreducible representation of

GL2Qp then

dimC(V GL2Zp) = 1.

In the notation of §2.2 the GL2Zp-fixed points of V would be denoted by
V ((GL2Zp,1)).

1.20. Infinite tensor products of local representations (continued)
Let (π∞, V∞) be a (U(gl2C),K∞)-module. Let S be a finite set of

primes not containing ∞. For each p 6∈ S let (πp, Vp) be a representation
of GL2Qp such that V GL2Zp

p 6= 0. Choose a non-zero ξp ∈ V
GL2Zp
p for each

p 6∈ S. Set V equal to the restricted tensor product

V =

′⊗
v≤∞

Vv.
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Define actions:
π′g : U(gl2C) −→ End(V )

π′K∞ : K∞ −→ GL(V )

π′fin : GL2Afin −→ GL(V )
by

π′g(D)(
⊗
ξv) = (πg(D)(v∞)⊗ (

⊗
v<∞ ξv),

π′K∞(k)(
⊗
ξv) = (π∞(k)(v∞)⊗ (

⊗
v<∞ ξv),

π′fin(afin)(
⊗
ξv) = ξ∞ ⊗ (

⊗
v<∞ (πv(av)(ξv)).

Observe that if T is the set consisting of ∞ and all the primes such that
ap 6∈ GL2Zp then T is finite and for all p 6∈ S

⋃
T we have

πp(ap)(ξp) = πp(ap)(ξ0p) = ξ0p

so that the action π′fin preserves the restricted product V .

Theorem 1.21. Tensor product theorem ([67] Vol. I Theorem 10.8.2
pp. 407)

Let (π, V ) denote an irreducible admissible (U(gl2C),K∞)×GL2Afin-
module. Let {q1, . . . , qm} be the finite set of primes where π is ramified.

Let S = {∞, q1, . . . , qm}. Then there exists
(i) an irreducible admissible (U(gl2C),K∞)-module (π∞, V∞),
(ii) an irreducible admissible representation (πp, Vp) of GL2Qp for each

finite prime p,
(iii) a non-zero vector v0

p ∈ V
GL2Zp
p for each prime p 6∈ S such that

π ∼=
′⊗

v≤∞

πv.

The factors are unique ([67] Vol. I Theorem 10.8.12 pp. 412).

2. Tensor products of monomial resolutions

2.1. Let p be a rational prime and let (πp, Vp) be an irreducible ad-
missible complex representations of GL2Qp. Denote the central character
of (πp, Vp) by φ

p
: Q∗p −→ C∗. Let {(πp, Vp) | p prime} be a family of

such representations such that {φ
p
| p prime} induces a Hecke character

ω : Q∗\A∗Q −→ C∗, as in Definition 1.7.
Let S = {q1, . . . , qm} be a finite set of primes. Assume, in addition,

that for each p 6∈ S the central character φ
p

is trivial when restricted to
Q∗p
⋂
GL2Zp and

V (GL2Zp,1)
p = V

(Q∗pGL2Zp,φ
p
)

p
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is non-zero and hence one-dimensional by Theorem 1.19.
As in Theorem 4.9 let

. . . −→M(p)i
d−→M(p)i−1

d−→ . . .
d−→M(p)0

ε−→ Vp −→ 0

be a monomial resolution in C[GL2Qp],φpmon.
That is, for each (J, φ) ∈MGL2Qp,φ

p

. . .→M(p)((J,φ))
i

d−→M(p)((J,φ))
i−1

d−→ . . .
d−→M(p)((J,φ))

0
ε−→ V (J,φ)

p → 0

is an exact sequence of complex vector spaces.

2.2. The unramified vectors ξ0
p

If (πp, Vp) is an unramified representation in §2.1 for p 6∈ S then

dimC(V
(Q∗pGL2Zp,φ

p
)

p ) = 1

generated by a vector denoted by ξ0p, say. In the notation of §2.1, if m is
large enough,

V
(Q∗pGL2Zp,φ

p
)

p = Vp(m)(Q
∗
pGL2Zp/UmQp ,φp).

In the bar-monomial resolution for Vp(m) we have MVp(m),0,G(m+r) we find

a canonical summand V
(Q∗pGL2Zp,φ

p
)

p ⊗ SG(m+r) where SG(m+r) is the as-
sociated monomial module endomorphism ring used in the construction of
the bar-monomial resolution (see Theorem 5.6 and §2.1). Therefore we
have a canonical vector ξ0

p
= ξ0p ⊗ 1 where 1 is the identity monomial en-

domorphism of IndG(m+r)
G(m+r)(Cφp) ⊂ SG(m+r). When r is large the vector ξ0

p

is independent of r and defines ξ0
p
∈WVp,0,Q∗pGL2Zp .

Hence we obtain

ξ0
p

= ξ0
p
⊗Q∗pGL2Zp 1 ∈ IndGL2Qp

Q∗pGL2Zp(WVp,0,Q∗pGL2Zp),

which is a summand of M0 in the monomial resolution of Vp as in §4.7.

Note that the subspace 〈ξ0
p
〉 is one of the Lines in M

((Q∗pGL2Zp,φ
p
))

0 and

that the augmentation sends ξ0
p

to ξ0p.

Definition 2.3. Infinite monomial tensor products
For i ≥ 0 define a C[GL2Afin],ωmon-Line Bundle M

i
by the degree i

component of the graded restricted tensor product of the family
{M(p)∗ | p prime} with respect to the ξ0

p
’s. That is, following §1.17, M

i
is

the space of all finite linear combinations of vectors

ξ =

′⊗
p prime

ξ
p
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where ξ
p
∈M(p)ip and

∑
p ip = i. When ξ is non-zero then all but finitely

many of the ip’s must be zero and of these all but finitely many must satisfy
ξ
p

= ξ0
p
.

The C[GL2Afin],ωmon-Lines of M
i
are defined to be the one dimensional

subspaces generated by the ξ’s where each ξ
p

generated a Line in M(p)ip .

Finally we have to define the adèlic posetM(GL2Afin, ω). This is the
set of pairs (H,φ) where φ is a continuous complex-valued character and

H =
∏
p

Hp

is a compact, open modulo the centre subgroup of GL2Afin given by the
product over p of compact, open modulo the centre subgroups of
Hp ⊆ GL2Qp.

Restricting the subgroups inM(GL2Afin, ω) to adèlic products ensures
that the stabiliser pair of the Line

〈ξ〉 = 〈
′⊗

p prime

ξ
p
〉

is in M(GL2Afin, ω). It also ensures that the graded tensor product of
the differentials in the local monomial resolutions gives a C[GL2Afin],ωmon-
morphism for all i ≥ 1

M
i

d−→M
i−1

.

The augmentations induce a C[GL2Afin],ωmod-morphism of the form

M
0

ε−→
′⊗

p prime

Vp.

Theorem 2.4. Monomial resolution for GL2Afin
In the situation of §2.1, §2.2 and Definition 2.3 let

V =
⊗′

p prime Vp. Then the chain complex

. . . −→M
i

d−→M
i−1

d−→ . . .
d−→M

0

ε−→ V −→ 0

is a monomial resolution in C[GL2Afin],ωmon. That is, for each
(J, φ) ∈M(GL2Afin, ω)

. . . −→M ((J,φ))

i

d−→M ((J,φ))

i−1

d−→ . . .
d−→M ((J,φ))

0

ε−→ V (J,φ) −→ 0

is an exact sequence of complex vector spaces.

Proof
Take (J, φ) ∈ M(GL2Afin, ω) where J =

∏
p Jp. Then φ =

∏
p φp

and M ((J,φ))

i
is the degree i component of the restricted product of the
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M(p)((Jp,φp))∗ . In the case of a finite tensor product of chain complexes over
a field the Künneth formula [132] states that the homology of the tensor
product chain complex is the (graded) tensor product of the homology of
the constituent complexes. Since any vector in the restricted tensor product
chain complex lies in a finite tensor product the Künneth formula applies
to show that the complex M ((J,φ))

i
is exact in every degree except zero

where its homology is the restricted tensor product of the V (Jp,φp)
p ’s, which

is V (J,φ) because J is a product of the Jp’s. 2

Theorem 2.5. Monomial resolution for (U(gl2C),K∞)×GL2Afin
Let (π, V ) denote an irreducible admissible (U(gl2C),K∞)×GL2Afin-

module. Let {q1, . . . , qm} be the finite set of primes where π is ramified.
Let S = {∞, q1, . . . , qm}. Then there exists
(i) a unique irreducible admissible (U(gl2C),K∞)-module (π∞, V∞),
(ii) a unique irreducible admissible representation (πp, Vp) of GL2Qp

for each finite prime p,
(iii) a monomial resolution in C[GL2Afin],ωmon

M∗
ε−→

′⊗
p prime

Vp,

such that there is an isomorphism of (U(gl2C),K∞)×GL2Afin-modules

V ∼= V∞ ⊗
′⊗

p prime

Vp

and a (U(gl2C),K∞)×GL2Afin-monomial resolution

V∞ ⊗M∗
1⊗ε−→ V∞ ⊗

′⊗
p prime

Vp ∼= V.

That is, for each (J, φ) ∈M(GL2Afin, ω)

. . . −→ V∞ ⊗M ((J,φ))

i

1⊗d−→ V∞ ⊗M ((J,φ))

i−1

1⊗d−→ . . .

1⊗d−→ V∞ ⊗M ((J,φ))

0

1⊗ε−→ V∞ ⊗ V (J,φ) −→ 0

is an exact sequence of complex vector spaces. The (U(gl2C),K∞) ×
GL2Afin-module structures are given by the formulae of §1.20.

Proof
This follows from the Künneth formula [132] together with Theorem

2.4 and Theorem 1.21. 2
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3. Maass forms and their adèlic lifts

Definition 3.1. Automorphic functions of integral weight k
Let Γ be a subgroup of finite index in SL2Z. For a non-negative integer

k an automorphic function of weight k and character ψ : Γ −→ C is a
smooth, complex-valued function f of moderate growth ([67] Definition
3.3.3; see also [51] §11) on the upper half-plane H which satisfies

f(γz) = ψ(γ)(cz + d)kf(z)

where γ =
(
a b
c d

)
. The vector space of all automorphic functions of

weight k and character ψ is denoted by Ak,ψ(Γ).
Fixing an integer N ≥ 1 define the subgroup Γ0(N) by

Γ0(N) = {
(
a b
c d

)
∈ SL2Z | c ≡ 0 (modulo N)}.

If χ is a Dirichlet character of conductor N then

χ̃

(
a b
c d

)
= χ(d)

gives a well-defined character. Hence we have Ak,χ(Γ0(N)).
A Maass form is said to have level N if it is a Maass form for Γ0(M)

but not for any Γ0(N) with M < N .

Definition 3.2. Adèlic lifts of even weight zero, level one Maass forms

For an integer k the weight k Laplace operator is given by

∆k = −y2(
∂2

∂x2
+

∂2

∂y2
) +
√
−1ky

∂

∂x
.

Then ∆k maps Ak,χ(Γ0(N)) to itself ([67] Lemma 3.5.4).
Let H denote the upper half-plane envisioned as

H = GL2R/O2(R) · R∗

by sending X =
(
a b
c d

)
to X ·

√
−1 = a

√
−1+b

c
√
−1+d

. Every point in H has a

unique representative of the form

g =

 1 x

0 1

 y 0

0 1


with x, y ∈ R and y > 0.

Let ν be a complex number then an even weight zero Maass form of
type ν for SL2Z is a non-zero smooth function f ∈ L2(SL2Z\H) such that
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(i) f(γg) = f(g) for all γ ∈ SL2Z, g =

 y x

0 1

 ∈ H,

(ii) ∆(f) = ∆0(f) = ν(1− ν)f ,

(iii)
∫ 1

0
f(

 1 x

0 1

 g)dx = 0 for all g ∈ GL2(R),

(iv) f(

 y −x

0 1

) = f(

 y x

0 1

) for all

 y x

0 1

 ∈ H.

By the coset space description of H we may consider a Maass form f
as a function

f : GL2R −→ C

such that
f(γgkz) = f(g)

for γ ∈ SL2Z, g ∈ GL2R, k ∈ O2(R) = K∞, z =
(
r 0
0 r

)
.

From Proposition 1.6 we know that every element g ∈ GL2AQ may be
uniquely written in the form

γ · ((

 y∞ x∞

0 1

 · (
 r∞ 0

0 r∞

 , I, . . . , I, . . . ) · k

with γ ∈ GL2Q, −1/2 ≤ x∞ ≤ 0, y∞ > 0, x2
∞ + y2

∞ ≥ 1, r∞ > 0 and
k ∈ O2R ·

∏
p prime GL2Zp.

The adèlic lift of an even weight zero Maass form f is the function

fadèlic : GL2AQ −→ C

given by

fadèlic(g) = f((

 y∞ x∞

0 1

).

Definition 3.3. Adèlic lifts of odd weight zero, level one Maass forms

There is a similar construction for odd forms to that of Definition 3.2.
Let ν be a complex number then an odd weight zero Maass form of

type ν for SL2Z is a non-zero smooth function f ∈ L2(SL2Z\H) such that

(i) f(γg) = f(g) for all γ ∈ SL2Z, g =

 y x

0 1

 ∈ H,

(ii) ∆(f) = ∆0(f) = ν(1− ν)f ,
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(iii)
∫ 1

0
f(

 1 x

0 1

 g)dx = 0 for all g ∈ GL2(R),

(iv) f(

 y −x

0 1

) = −f(

 y x

0 1

) for all

 y x

0 1

 ∈ H.

By the coset space description of H we may consider a Maass form f
as a function

f : GL2R −→ C
such that

f(γgkz) = f(g)

for γ ∈ SL2Z, g ∈ GL2R, k ∈ O2(R) = K∞, z =
(
r 0
0 r

)
.

From Proposition 1.6 we know that every element g ∈ GL2AQ may be
uniquely written in the form

γ · ((

 y∞ x∞

0 1

 · (
 r∞ 0

0 r∞

 , I, . . . , I, . . . ) · k

with γ ∈ GL2Q, −1/2 ≤ x∞ ≤ 0, y∞ > 0, x2
∞ + y2

∞ ≥ 1, r∞ > 0 and
k ∈ O2R ·

∏
p prime GL2Zp.

The adèlic lift of an odd weight zero Maass form f is the function

fadèlic : GL2AQ −→ C

given by

fadèlic(g) = f((

 y∞ x∞

0 1

)det(k∞).

In both the even and odd case the adèlic lift is an adèlic cusp form in
the sense of ([67] Definition 4.7.7).

Definition 3.4. Adèlic lifts of Maass forms with arbitrary weight, level
and character

This is similar but quite involved, dealing with prime power level first.
Details are given in ([67] §4.12 pp.136-140).

3.5. Explicit realisation of a (U(gl2C),K∞)-module
This material comes from ([67] pp.161-166). A convenient basis for

gl2C is

Z =

 1 0

0 1

 , X =

 1 0

0 −1

 , Y =

 0 1

1 0

 , H =

 0 1

−1 0

 .
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As in Definition 1.9 we have associated differential operators DZ , DX , DY ,
DH and in terms of the coordinates

g =

 1 x

0 1

 y 0

0 1

 r 0

0 r

 cos(θ) sin(θ)

−sin(θ) cos(θ)


we have

DZ = r
∂

∂z
, DH =

∂

∂θ
.

In ([67] Lemma 5.2.4) the relations for a (U(gl2C),K∞)-module are
verified. The operators

R = (DX +
√
−1DY )/2, L = (DX −

√
−1DY )/2

are called the raising and lowering operators because they correspond with
the classical raising and lowering operations on Maass forms which raise or
lower the weight by 2.

Example 3.6. The (U(gl2C),K∞)-module associated to a Maass form

Let N, k ∈ Z with N ≥ 1 and let χ (modulo N) be a Dirichlet character.
Fix a Maass form f of type ν, weight k and character χ for Γ0(N). Consider
fadèlic as in Definitions 3.2 and 3.3 and define a vector space

Vf = {
M∑
l=1

clR
mlfadèlic(g · kl) | M = 0, 1, 2, 3, . . . ml ∈ Z, cl ∈ C}.

Here g ∈ GL2(AQ) and

kl = (k∞,l,

 1 0

0 1

 ,

 1 0

0 1

 , . . . )

with k∞,l ∈ O2(R) = K∞. The formulae referred to in §3.5 show that Vf
is a (U(gl2C),K∞)-module.

3.7. Central characters and Hecke operators
(i) If f is an automorphic form of weight k, level N and character

χ (modulo N) then the adèlic lift fadèlic is an adèlic automorphic form
whose central character is the idèlic lift of the Dirichlet character χ, which
is denoted by χidèlic and is given by the formula of ([67] Definition 2.1.7).

(ii) Hecke operators may be defined on spaces of adèlic automorphic
forms, by means of sums over suitable adèlic double cosets ([51] §11), which
correspond to the classical Hecke operators under the adèlic lift.
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4. V (H,ψ) and spaces of modular forms

4.1. The following consists of extracts from [62]. Let Γ denote a con-
gruence subgroup of SL2Z. That is, Γ contains a subgroup of the form

Γ(N) = {

 a b

c d

 ∈ SL2Z | a− 1 ≡ d− 1 ≡ b ≡ c ≡ 0 (modulo N)}

for some positive integer N . An important example is given by Hecke’s
group

Γ0(N) = {

 a b

c d

 ∈ SL2Z | c ≡ 0 (modulo N)}.

Let GL+
2 R denote the group of 2×2 real matrices with positive determinant.

The matrix

g =

 a b

c d

 ∈ GL+
2 R

acts on the complex upper half plane by g(z) = az+b
cz+d .

If k is a positive integer define

j(g, z) = (cz + d)det(g)−1/2 and f |[g]k(z) = f(g(z))j(g, z)−k.

The map f 7→ f |[g]k defines an operator on the complex-valued functions
on the upper half plane, {z ∈ C | Im(z) > 0}. In fact, it defines a right
Γ-action on such f ’s, as the following calculation shows. Let

g =

 a b

c d

 and g′ =

 a′ b′

c′ d′


so that

gg′ =

 aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

 .

Therefore

f |[gg′]k(z) = f(gg′(z))((ca′ + dc′)z + cb′ + dd′)−kdet(gg′)k/2.
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On the other hand
(f |[g]k)|[g′]k(z)

= f |[g]k(g′(z))j(g′, z)−k

= f(gg′(z))j(g, g′(z))−kj(g′, z)−k

= f(gg′(z))det(g)k/2det(g′)k/2(ca
′z+b′

c′z+d′ + d)−k(c′z + d′)−k

= f |[gg′]k(z).
Two points z1, z2 are called Γ-equivalent if there exists g ∈ Γ such that
g(z1) = z2; i.e. they belong to the same Γ-orbit. A fundamental domain F
for the Γ-action on the upper half-plane is a connected open subset which
intersects each Γ-orbit at most once and every z is Γ-equivalent to a point
in the closure of F . A point s ∈ R

⋃
∞ is called a cusp of Γ if there exists

an element of the parabolic form

g =

 a b

0 d

 ∈ Γ

such that g(s) = s. If H∗ denotes the union of the upper half-plane and
the cusps then Γ also acts on H∗ and the resulting quotient space possesses
a natural Hausdorff topology and a complex structure such that Γ\H∗ is a
compact Riemann surface. The cusps we shall consider are various rational
points on the real line together with ∞ =

√
−1∞.

Definition 4.2. A complex-valued function f(z) is called a
Γ-automorphic form of weight k if it is defined on the upper half plane,
{z ∈ C | Im(z) > 0} and satisfies:

(i) automorphy: f |[g]k = f for all γ ∈ Γ.
(ii) f is holomorphic in {z ∈ C | Im(z) > 0}.
(iii) f is holomorphic at every cusp of Γ.
The space of such functions is denoted by Mk(Γ). If Γ = Γ(N) then

Mk(Γ(N)) is often called modular forms of level N .
If ψ is a character of (Z/N)∗ then Mk(N,ψ) is the space of functions

which satisfy conditions (ii) and (iii) as well as

f(
az + b

cz + d
) = ψ(a)−1(cz + d)kf(z),

which is condition (i) if ψ = 1.

4.3. Regularity at a cusp
Suppose that s is a cusp of Γ. Therefore exists σ ∈ SL2Z such that

σ(∞) = s. The matrix σ exists because z 7→ 1/z maps points near
√
−1∞
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to close to the origin and this maps close to b/d so all rational points on
the real axis are in the SL2Z-orbit of ∞. Therefore, by §4.2(i), f |[σ]k is
invariant under ρ = σ−1γ σ if γ(s) = s. Let Γs denote the group of γ’s
fixing s. We have the translation z 7→ z + 1 and each ρ in σ−1Γsσ is
translation by some h1 since σ−1Γsσ fixes ∞. Let h be the smallest such
translation and suppose k is even then

f |[σ]k(z + h) = f |[σ]k(z)

from which it follows that

f̂s(ζ) = f |[σ]k(z)

where ζ = e2π
√
−1z/h, which is called the local uniformising variable at s.

Then f̂s(ζ) is well-defined in |ζ| < 1 and is holomorphic in the punctured
unit disc, by condition (ii). The meaning of condition (iii) is that f̂s(ζ) is
holomorphic at ζ = 0 for every cusp s.

When k is odd and  −1 0

0 −1

 ∈ Γ

then Mk(Γ) = 0. If we assume that −1 6∈ Γ then if σ−1Γsσ is generated by −1 −h

0 −1


then

f |[σ]k(z + h) = −f |[σ]k(z)

so that the variable for regularity at s should be ζ = eπ
√
−1z/h rather than

ζ = e2π
√
−1z/h.

4.4. Fourier expansion at a cusp
Suppose that f lies in Mk(Γ). Since f is regular at the cusp s implies

that f̂s(ζ) = f |[σ]k(z) has a Taylor series at ζ = 0. This series yields an
expansion

f |[σ]k(z) =
∞∑
n=0

ane
2π
√
−1nz/h.

The series converges absolutely and uniformly on compact subsets and is
called the Fourier expansion of f at the cusp s.

If Γ is Hecke’s group Γ0(N) then the Fourier expansion at ∞ of any
f ∈Mk(Γ0(N)) will have the form

f(z) =
∞∑
n=0

ane
2π
√
−1nz.
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Definition 4.5. A Γ-automorphic form is a cusp form if it vanishes
at every cusp of Γ. In other words, the Fourier coefficient a0 = 0 at each
cusp. The cusp forms of weight k will be denoted by Sk(Γ) and we set
Sk(Γ, ψ) = Sk(Γ)

⋂
Mk(Γ, ψ).

4.6. The following is an adelic explicit description of the classical mod-
ular forms in terms of automorphic functions on GL2AQ. It is taken from
([51] §11.1) which is, in turn, a version of the description in ([62] Prop.
3.1). After we have recalled this then, in §4.7 et seq we shall recall the more
general setting involving Maass forms as in §3.1-§3.3.

Temporarily we shall write GQ = GL2Q, GA = GL2AQ, G∞ = GL2R
and Gf = GL2Afin. Put H± = C− R and let

U∞ = SO2R · {

 a 0

0 a

 | a ∈ R∗}.

U∞ is the stabiliser of i =
√
−1 in the action on the upper half-plane since cos(θ) sin(θ)

−sin(θ) cos(θ)

 (i) =
cos(θ)i+ sin(θ)
−sin(θ)i+ cos(θ)

= (−i)−1 = i.

Identify G∞/U∞ with H± via the map gU∞ 7→ g(i). Define j′ (closely
related to the function j which was introduced earlier)

j′ : G∞ ×H± −→ C

by the formula

j′(

 a b

c d

 , z) = cz + d.

Let Sk de the space of functions φ : GQ\GA −→ C such that:
(i) φ(gu) = φ(g) for all u lying in some compact open subgroup U .
(ii) φ(gu∞) = j(u∞, i)−kdet(u∞)φ(g) for all u∞ ∈ U∞, g ∈ GA.
(iii) For all g ∈ Gf the map H± −→ C given, for h ∈ G∞, by

hi 7→ φ(gh)j′(h, i)k(det(h))−1

is holomorphic.
(iv) φ is slowly increasing in the sense that for every c > 0 and every

compact subset K ⊂ GA there exist constants A,B satisfying

|φ(

 a 0

0 1

h) ≤ A||a||B

for all h ∈ K, a ∈ A∗ with ||a|| > c.
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(v) φ is cuspidal in the sense that for all g ∈ GA∫
Q\A

φ(

 1 x

0 1

 g)dx = 0,

where dx is a non-trivial Haar measure.
The space Sk is a Gf -module via the action given by right transla-

tion.For every compact open subgroup U let Sk(U) = S
(U,1)
k , the fixed

points of U . Hence Sk is the union of the Sk(U)’s.
For N > 0 define subgroups

U0(N) = {

 a b

c d

 ∈ Gf | c ∈ N · Afin}
and

U1(N) = {

 a b

c d

 ∈ Gf | c, d− 1 ∈ N · Afin}.

For φ ∈ Sk(U1(N)) define a function fφ by the formula

fφ(hi) = φ(h)j′(h, i)k(det(h))−1

for h ∈ GL+
2 R. Then φ 7→ fφ defined an isomorphism

Sk(U1(N)) ∼= Sk(Γ1(N)).

Morover, if ε is a mod N Dirichlet character then

S
(U0(N),ε)
k

∼= Sk(Γ0(N), ε).

4.7. Now we shall consider some results from ([67] p.170 and pp.176-
177). Given an automorphic representation of GL2AQ we may restrict it to
GL2Afin. Suppose we have an integer M =

∏
p p

fp define compact open
subgroups of GL2Afin as follows:

K0(M) = {k = (1, k2, . . . , kp, . . . ) | kp ≡

 ∗ ∗

0 ∗

 (mod pfp)}

and

K1(M) = {k = (1, k2, . . . , kp, . . . ) | kp ≡

 1 ∗

0 1

 (mod pfp)}

so that K1(M) ⊂ K0(M). Hence every continuous character of
K0(M)/K1(M) inflates to give a continuous character of K0(M) which
is trivial on K1(M).
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Proposition 4.8.
Given a smooth representation (π, V ) of GL2Afin there exists an inte-

ger M =
∏
p p

fp and a continuous character λ of K0(M), which is trivial
on K1(M), such that V (K0(M),λ) 6= {0}.

Remark 4.9. In Proposition 4.8 the character λ need not necessarily be
an idélic lift of a classical Dirichlet character as in ([67] §4.12). However,
when λ is such a lift and when V is the restriction of an automorphic
representation, then the space V (K0(M),λ) would be isomorphic to a space
of newforms, as in §4.6.

4.10. Proof of Proposition 4.8
Let v1 ∈ V be non-zero. Then v1 is fixed by a compact open subgroup

K ′ and for some N we must have K(N) ⊆ K ′ where

K1(M) = {k = (1, k2, . . . , kp, . . . ) | kp ≡

 1 0

0 1

 (mod pfp)}

for N =
∏
p p

fp . Set

v2 = π(ifin(

 N 0

0 1

−1

))v1.

Now

K1(N2) ⊂

 N 0

0 1

−1

K(N)

 N 0

0 1


so that π(k)v2 = v2 for all k ∈ K1(N2).

Now there is an isomorphism K0(M)/K1(M) ∼= Z/M)∗×Z/M)∗ ([67]
p.171). Now let λ run through the characters of this finite abelian group.
Define

vλ =
1

|(Z/N2)∗|2
∑
g

λ(g)−1π(g)(v2) ∈ V (K0(M),λ)

where g runs through K0(N2)/K1(N2). Well-known properties of charac-
ters of finite groups ([126]) yield the relation

v2 =
∑
λ

vλ

so that at least one vλ is non-zero. 2

Remark 4.11. Let V be an irreducible cuspidal automorphic represen-
tation, as defined in ([67] §5.1.14), which is a subspace of the space of all
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cuspidal automorphic forms with central character ω. Set

Vk = {v ∈ V | πK∞(

 cos(θ) sin(θ)

−sin(θ) cos(θ)

)v = e
√
−1kθ, all θ ∈ R}.

Then V is an admissible (U(gl2C),K∞)×GL2Afin-module.
In particular, the spaces of newforms V (K(N),1)

k (and hence the sub-
spaces V (K(N),λ)

k ) are all finite-dimensional.





CHAPTER 4

GLnK in general

In this chapter I shall verify Conjecture 3.3 for GLnK for all n ≥ 2
where K is a p-adic local field. For GL2K this was accomplished (in Chap-
ter Two, Theorem 4.9 and Corollary 4.10) by means of explicit formulae, in
order to introduce the ideas of the general proof gradually. In this chapter
I shall adopt a similar gradual approach, going into considerable detail in
the GL3K case before giving the general case.

For GL2K the proof of Chapter Two Conjecture 3.3 was accomplished
by constructing a double complex in k[GL2K],φmon using several
bar-monomial resolutions together with a simplicial action on the tree for
GL2K. For GL2K, by some low-dimensional good fortune, the construc-
tion of the differential in the double complex was made particularly easy
(see the introduction to Chapter Two). For GLnK with n ≥ 3 we have
to use in a crucial way the naturality of the bar-monomial resolutions in
order to apply the construction of the monomial complex given in Chapter
Two §3. This requires a simplicial action on a space Y which, for GLnK
with n ≥ 2, we take to be the Bruhat-Tits building. Such buildings are
constructed from BN-pairs.

In §1 we recall the definition and properties of BN-pairs. In §2 we
recall the association of a building to a BN-pair with particular emphasis
on SL2K,GL2K,SL3K and GL3K when K is a p-adic local field. In §3 we
verify Chapter Two Conjecture 3.3 for all GLnK using the contractibility
properties of the Bruhat-Tits building, which are explained in detail in
several GL3K examples in §2.

As explained in §2.11 the Bruhat-Tits building for GLnK is a factor of
the Baum-Connes space EGLnK and from this the crucial contractibility
properties follow. Here I should point out that Chapter Eleven, Appendix
IV explains the construction of E(G, C) for any locally p-adic Lie group and
the family C of compact open modulo the centre subgroups. This simplicial
G-space has all the contractibility properties required for the verification of
the analogue of Chapter Two, Conjecture 3.3 for all admissible representa-
tions of G with a fixed choice of central character φ. I leave to the reader
the mustering of all the details for that verification!

107
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1. BN-pairs

1.1. We shall start by recalling the theory of BN-pairs and their build-
ings in order to examine closely the cases of SLnK and GLnK for n = 2, 3.
More complete accounts of this topic are to be found in [4] and [35] . See
also [11], [60] and [61].

Definition 1.2. ([35] p.107)
Let G be a group with subgroups B and N . This is a BN-pair if
(i) G = 〈B,N〉,
(ii) T = B

⋂
N �N ,

(iii) W = N/T = 〈S〉 for some set S such that the following conditions
hold:

(BN1): C(s)C(w) ⊆ C(w)
⋃
C(sw) for all s ∈ S,w ∈ W , where

C(w) = BwB which depends only on the coset of w ∈ N/T since T ⊆ B
and T is normal in N .

(BN2): sBs−1 6⊆ B for all s ∈ S.

The terminology is: (G,B,N, S) is a Tits system and W is the Weyl
group. A special subgroup of W , W ′ ⊆ W , is one of the form W ′ = 〈S′〉
with S′ a subset of S.

Proposition 1.3. ([35] p.107)
Assume that S consists of elements of order two and that (BN1) holds.

Then
(a) B

⋃
C(s) is a subgroup of G for every s ∈ S.

(b) BW ′B is a subgroup of G for every special subgroup W ′ ⊆W .
(c) As a set G is the disjoint union of the C(w) as w runs through W .
(d) C(s)C(w) = C(sw) if l(sw) ≥ l(w) where l(w), the length of

w ∈W ([35] p.34), is the minimal d such that w = s1s2 . . . sd with si ∈ S.

Proof
Clearly, taking W ′ = {1, s} we have (b) implies (a). To prove (b) we

shall show that C(w)C(w′) ⊆ BW ′B for w,w′ ∈ W”. Write w = s1 . . . sd
with si ∈ S′ and W ′ = 〈S′〉. When d = 1 the axiom (BN1) implies that
C(w)C(w′) ⊆ BW ′B. By induction on d we shall show that

C(w)C(w′) ⊆
⋃

εi=0,1

C(sε11 s
ε2
2 . . . sεdd w

′)

which implies (b) since sε11 s
ε2
2 . . . sεdd w

′ ∈ W ′. Equivalently we may show
that

wBw′ ⊆
⋃

εi=0,1

Bsε11 s
ε2
2 . . . sεdd w

′B.
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By induction

wBw′ = s1(s2 . . . sdBw′)

⊆ s1(
⋃
εi=0,1 Bsε22 . . . sεdd w

′B)

⊆
⋃
εi=0,1 Bsε22 . . . sεdd w

′B ∪ (
⋃
εi=0,1 Bs1s

ε2
2 . . . sεdd w

′B)

as required.
To prove (c) we first observe that BWB is a subgroup of G which

contains both B and N so that it must be equal to G. To complete the
proof of (c) we must show that C(w) = C(w′) implies that w = w′ ∈ W .
Assume that d = l(w′) ≤ l(w) then we proof (c) by induction on d. If
d = 0 then w′ = 1 and so C(w) = B. Therefore the image of w ∈ W in
W = N/T = N/(B ∩ N) is trivial, as required. Now suppose that d > 0
and write w′ = sw′′ with s ∈ S and l(w′′) = d− 1. The condition BwB =
Bw′B implies that w′B ⊆ BwB and so w′′B ⊆ sBwB and therefore, by
(BN1), C(w′′) ⊆ C(w)

⋃
C(sw). Therefore, since C(w′′) is the double

B-coset of a single element either C(w′′) = C(w) or C(w′′) = C(sw). By
induction this implies that either w′′ = w or w′′ = sw. If w′′ = w then
l(w) = l(w′′) < d ≤ l(w) which is a contradiction. Hence w′′ = sw and
w′ = sw′′ = ssw = w, as required.

Finally we shall prove (d) by induction on l(w). If l(w) = 0 then w = 1
and the result is obvious. Suppose that l(w) > 0 and write w = w′t with
t ∈ S and l(w′) = l(w) − 1. If C(s)C(w) 6= C(sw) then (BN1) implies
that sBw intersects BwB and so sBw′ intersects BwBt. From (BN1)
we have tBw−1 ⊆ Bw−1B

⋃
Btw−1B and taking inverses we obtain an

inclusion BwBt ⊆ BwB
⋃
BwtB. Therefore sBw′ meets C(w)

⋃
C(wt) =

C(w)
⋃
C(w′).

Assume for the moment that l(sw) ≥ l(w) then we must have l(sw′) ≥
l(w′) for if not

l(sw) = l(sw′t) ≤ l(sw′) + 1 < l(w′) + 1 = l(w).

Therefore, by induction, C(s)C(w′) = C(sw′) and the proof of (c) shows
that either C(sw′) = C(w) or C(sw′) = C(w′). Hence, by (c), either
sw′ = w or sw′ = w′. The latter is impossible since s has order two and so
is non-trivial. However, sw′ = w implies that l(sw) = l(w′) < l(w), which is
also impossible. The only possibility remaining is that C(s)C(w) = C(sw),
which proves (d). 2

Proposition 1.4. ([35] p.108)
Assume that S consists of elements of order two and that both (BN1)

and (BN2) hold. If Proposition 1.3(a) and (d) hold then, for all s ∈ S,w ∈
W ,

C(s)C(w) = C(w)
⋃
C(sw)
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if l(sw) ≤ l(w).

Proof
By (BN1) C(s)C(s) ⊆ B

⋃
C(s). Since C(s)C(s) is closed under

left and right B-multiplication and each of B and C(s) are generated by
any of their elements under left and right B-multiplication we must have
C(s)C(s) = B or C(s)C(s) = B

⋃
C(s), because C(s)C(s) contains B.

Since C(s)C(s) = B implies sBs−1 = sBs ⊆ B, contradicting (BN2), we
have C(s)C(s) = B

⋃
C(s). If l(sw) ≤ l(w) then l(s · sw) = l(w) ≥ l(sw)

so, replacing w by sw in §1.3(d), we obtain

C(s)C(sw) = C(ssw) = C(w).

Multiplying by C(s) we obtain

C(s)Cw) = C(s)C(s)C(sw)

= (B
⋃
C(s))C(sw)

= C(sw)
⋃
C(s)C(sw)

= C(sw)
⋃
C(w),

by Proposition 1.3(d). 2

Definition 1.5. Coxeter systems
Suppose that W is a group and that S is a subset of W whose elements

each have order two and which satisfy W = 〈S〉. The pair (W,S) is called
a Coxeter system ([35] pp. 46-53) if, for all w ∈ W, s, t ∈ S satisfying
l(sw) = l(w) + 1 = l(wt), either l(swt) = l(w) + 2 or swt = w.

Proposition 1.6. ([35] p.109)
Assume that S consists of elements of order two and that Proposition

1.3(c),(d) and Proposition 1.4 hold then (W,S) is a Coxeter system.

Proof
Suppose that l(sw) = l(w) + 1 = l(wt) and that l(swt) < l(w) + 2.

Then we have, by Proposition 1.4,

C(s)C(wt) = C(wt)
⋃
C(swt)

which must be a disjoint union, by Proposition 1.3(c). By Proposition
1.3(d) we have C(wt) = C(w)C(t) so that C(s)C(w)C(t) is the disjoint
union of C(wt) and C(swt). By Proposition 1.3(d) we have C(s)C(w) =
C(sw).

By Proposition 1.4, if l(sw) ≤ l(w), we have

C(s)C(w) = C(w)
⋃
C(sw)
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and taking inverses we find

C(w−1)C(s) = C(w−1)
⋃
C(w−1s).

Replacing w−1 by sw and s by t we obtain, since length is preserved under
taking inverses,

C(sw)C(t) = C(sw)
⋃
C(swt)

since l(swt) ≤ l(w) + 1 = l(sw). Combining all this we have that the
disjoint union of C(sw) and C(swt) equals the disjoint union of C(wt) and
C(swt). Hence C(sw) = C(wt). Therefore sw = wt, by Proposition 1.3(c).
2

Proposition 1.7. ([35] p.109)
If (BN1) and (BN2) hold then every s ∈ S has order two.

Proof
By (BN1) we have sBs−1 ⊆ C(s)C(s−1) ⊆ B

⋃
C(s−1). Hence

(BN2) implies that C(s)C(s−1) meets C(s−1) and so, by left and right
multiplication by B, we must have C(s−1) ⊆ C(s)C(s−1). Also B ⊆
C(s)C(s−1) so we must have C(s)C(s−1) = B

⋃
C(s−1) and the union

is a disjoint union, since each of B and C(s−1) is generated by any of its
elements by left and right multiplication by B.

Taking inverses shows that C(s)C(s−1) is the disjoint union of B and
C(s). Therefore C(s−1) = C(s) and so C(s)C(s) is the disjoint union of
C(s) and B. By (BN1) with w = s we have C(s)C(s) ⊆ C(s)

⋃
C(s2).

Since C(s)C(s) is the disjoint union of two double cosets we must have
C(s)C(s) equals the disjoint union of C(s) and C(s2). Therefore C(s) 6= B
and C(s2) = B so that s 6∈ B but s2 ∈ B which implies that s has order
two in W = N/B ∩N . 2

Definition 1.8. ([35] p.110)
Let (G,B,N, S) be a Tits system as in §1.2. For S′ ⊆ S let W ′ denote

the special subgroup of W given by W ′ = 〈S′〉. Then a special subgroup
of G is a subgroup of the form BW ′B, which is a subgroup by Proposition
1.3(b). When S′ = S then W ′ = G, which for the moment will be allowed
as a special subgroup. However, when we come to the building of a BN-pair
in Definition 2.2 we shall only use the proper special subgroups.

It is shown in ([35] §1D and §2B) that the map S′ 7→ BW ′B is a
bijection of posets from the poset of subsets of S to that of special subgroups
of G.

Proposition 1.9. ([35] p.110)
Let w ∈ W with l(w) = d and w = s1 . . . sd for si ∈ S. Then the

subgroup of G generated by C(w) contains the C(si) for i = 1, . . . , d.
Moreover this subgroup is generated by B and wBw−1.
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Proof
Since the subgroup generated by C(w) contains w and B we have in-

clusions
〈B,wBw−1〉 ⊆ 〈C(w)〉 ⊆ 〈C(s1), . . . , C(sd)〉.

Therefore the result will follow if we establish the inclusions
C(si) ⊆ P = 〈B,wBw−1〉 for each i. Since l(s1w) < l(w) we know, by
Proposition 1.4 (proof), that s1Bw meets BwB so s1B meets BwBw−1

which implies that C(s1) ⊆ P . Hence P also contains s1wBw−1s1 and
applying the induction hypothesis to s1w shows that P contains each of
C(s2, . . . , C(sd). 2

Theorem 1.10. ([35] p.110)
The special subgroups of G are precisely the subgroups containing B.

Proof
Clearly each special subgroup contains B. Conversely suppose that P

is a subgroup containing B. Therefore P is the union of double cosets and
so P = BW ′B where W ′ is the subset of W defined by

W ′ = {w ∈W | C(w) ⊆ P}.
Since C(w−1) = C(w)−1 and C(ww′) ⊂ C(w)C(w′) we see that W ′ is a
subgroup of W . By Proposition 1.9 W ′ contains, for each of its elements
w, the generators s ∈ S which occur in any minimal decomposition of
w. Hence W ′ is a special subgroup of W generated by S′ = W ′

⋂
S and

therefore P is a special subgroup of G. 2

Proposition 1.11. ([35] p.111)
The set S consists of all non-trivial elements w ∈W such thatB

⋃
C(w)

is a subgroup of G.

Proof
Any s ∈ S satisfies the condition that B

⋃
C(s) is a subgroup of G, by

Proposition 1.3(a). Conversely, if w ∈W and B
⋃
C(w) = P is a subgroup

then it is a special subgroup, by Theorem 1.10. The proof of Theorem 1.10
shows that W ′ = W

⋂
S and

W ′ = {w′ ∈W | C(w′) ⊆ P}.
Since C(w) ⊆ P we have w ∈W ′ ⊆ S, as required. 2

Example 1.12. SLn and GLnK for a p-adic local field
Let G = GLnK with n ≥ 2 and K a p-adic local field. Let B denote the

inverse image of the upper triangular subgroup under the homomorphism
GLnOK −→ GLnOK/(πK). Let N denote the subgroup of monomial ma-
trices in GLnK; that is, the matrices which have precisely one non-zero
entry in each row and column.
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When G = SLnK we set B = B
⋂
SLnK and N = N

⋂
SLnK. We

are going to construct a BN-pair from this example, following ([35] pp.128-
138).

Proposition 1.13. ([35] p.129)
Let G = SLnK,GLnK as in Example 1.12. Then G is generated by N

and the elementary matrices in SLnOK , GLnOK , respectively.

Proof
Let X = (xi,j) be a matrix in G. Choose a matrix entry xi,j such

that the valuation vK(xi,j) is minimal. Then pivot to clear out every other
non-zero entry in the i-th row and j-th column. This can be done using
elementary matrices in SLnOK . Now ignore the i-th row and j-th column
and repeat the process to eventually produce a monomial matrix, which
will be in SLnK if X was. 2

Corollary 1.14. ([35] p.130)
Let G = SLnK,GLnK as in Example 1.12. Then G is generated by N

and B.

Proof
The subgroup B contains all the upper triangular matrices in

G
⋂
GLnOK and N contains all the permutation matrices. Therefore the

group generated by B and N contains N and all the elementary matrices
in G

⋂
GLnOK , respectively. 2

1.15. The BN-pair of SLnK when K is a p-adic local field
Continuing with G = SLnK,GLnK as in Example 1.12 we set T =

B
⋂
N and W = N/T . Therefore T is the subgroup of diagonal matrices

in G
⋂
GLnOK . If TK is the subgroup of all the diagonal matrices in G

then the quotient group N/TK is isomorphic to the symmetric group, Σn,
in both cases. Therefore there is a split surjection from W/T to Σn whose
kernel consists of (K∗/O∗K)m ∼= Zm where m = n − 1 if G = SLnK and
m = n if G = GLnK.

Therefore W/T is given isomorphic to the semi-direct product W/T ∼=
Σm ∝ Zm.

When n = 2 and G = SL2K we have W ∼= Σ2 ∝ Z which is generated
by

s1 =

 0 −1

1 0

 and s2 =

 0 −π−1
K

πK 0


so in this case we shall set S = {s1, s2}.

With this definition (SL2K,B,N, S) is a Tits system ([35] pp131-132).
When n ≥ 3 take S = {s1, s2, . . . , sn} where si for 1 ≤ i ≤ n − 1 are

the involutions given by matrices made using the first and the (i + 1)-th
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elements in the standard basis for Kn in the same manner as the first and
second standard basis elements were used to construct s1 for SL2K. Define
sn to be the matrix

sn =



1 0 0 . . . −π−1
K

0 1 0 . . . 0

...
...

...
...

...

πK 0 0 . . . 0


.

Then S = {s1, s2, . . . , sn} generates W and (SLnK,B,N, S) is a Tits sys-
tem ([35] pp135-137).

2. Buildings and BN-pairs

2.1. The building associated to a BN-pair
A Coxeter complex is a simplicial complex associated to a pair (W,S)

where S is a set of generators for a group W , each of order 2. The cosets
of the form w〈S′〉 with w ∈ W and S′ ⊆ S form a poset under inclusion.
The poset with the same objects but the opposite ordering is a simplicial
complex which is called the Coxeter complex associated to (W,S). More
generally a Coxeter complex will mean any simplicial complex which is
simplicially isomorphic to the Coxeter complex associated to (W,S).

A building ([35] p.76) is a simplicial complex ∆ which is the union of
subcomplexes Σ called apartments which satisfy the following axioms:

(B0) Each apartment Σ is a Coxeter complex.

(B1) For any two simplices A,B ∈ ∆ there is an apartment containing
both of them.

(B2) If Σ and Σ′ are two apartments containing simplices A,B ∈ ∆
then there is a simplicial isomorphism Σ

∼=−→ Σ′ fixing A and B pointwise.
In particular, any two apartments are isomorphic.

Let (G,B,N, S) be a Tits system. Consider the poset of left cosets gP
for g ∈ G and P a proper special subgroup as in Definition 1.8 endowed
with the opposite partial ordering to that given by inclusion. The build-
ing associated to this BN-pair consists of the simplicial complex given by
this oppositely ordered poset of cosets of proper special subgroups1. It is
denoted by ∆(G,B).

1The example in §2.2 of how the building for SL2K gives rise to the tree for GL2K,

when K is a local field, illustrates the fact that only proper special subgroups are used
to construct the building.
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The subgroup N is used to define the apartments of ∆(G,B). The
fundamental apartment Σ ⊆ ∆(G,B) is defined to be the subcomplex whose
vertices are the special cosets of the form wP with w ∈ W . Since every
special subgroup contains B this is the set of vertices wP with a coset
representative in N . Define the set A of apartments to consist of all G-
translates of the fundamental apartment.

In a BN-pair every special subgroup is its own normaliser and no two
special subgroups are conjugate ([35] p.111). Furthermore ∆(G,B) is a
(thick) building with apartment system A on which the G-action is (type-
preserving2 and) strongly transitive ([35] p.112).

A maximal element of an apartment is called a chamber.
Since there is a bijection between cosets of proper special subgroups

gP and their conjugates gPg−1 the building is also describeable as the
simplicial complex given by the oppositely ordered poset of conjugates of
proper special subgroups of G.

2.2. The building associated to SLnK when K is a p-adic local field
The building ∆ associated to SLnK is the tree of classes of lattices

when n = 2. Similarly ([35] p.137) the building of SLnK is made from
lattices in Kn. The fundamental chamber is the simplex with vertices
(e1, . . . , ei, πKei+1, . . . , πKen) for 1 ≤ i ≤ n and {ei} the standard basis.
The resulting building is not spherical and therefore is contractible ([35]
p.94).

The action of SLnK extends to an action of GLnK which, as in the
case of n = 2, does not preserve type but a mild barycentric subdivision
renders the GLnK-action simplicial.

Let us look in detail at the cases of SL2K and SL3K.

Example 2.3. SL2K and GL2K when K is a local field
We have

B = {

 α β

πKγ δ

 | α, β, γ, δ ∈ OK , αδ − πKβγ = 1} ⊆ SL2OK

and

W ∼= C2 ∝ Z = 〈s1 =

 0 −1

1 0

 , s2 =

 0 −π−1
K

πK 0

〉.
Consider the group Bs1B. Since B contains the upper triangular sub-

group of SL2OK and Bs1Bs1B ⊆ Bs1B we must have the lower triangular

2By way of example the type of a vertex in the tree for GL2 of a local field is the

distance (mod 2) from the vertex to the vertex represented by the lattice OK ⊕OK . In
general we shall not need the notion of type or of “thickness” here.
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subgroup of SL2OK also contained in Bs1B. Suppose that u v

w z

 ∈ SL2OK

and consider the equation aα+ cβ βa−1

cα−1 α−1a−1



=

 α β

0 α−1

 a 0

c a−1



=

 u v

w z

 .

If z = 0 then  0 −1

1 0

 u v

v−1 0

 =

 v−1 0

u v


so that  u v

v−1 0

 ∈ Bs1B.
Otherwise we have z−1πmK (1 + vw) vπ−mK

wπmK zπ−mK



=

 α avπ−mK

0 α−1

 a 0

αwπmK a−1


and  z−1πmK (1 + vw) vπ−mK

wπmK zπ−mK

 π−mK 0

0 πmK



=

 u v

w z


since 1 = uz − vw so that u = z−1(1 + vw).
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So far then any X ∈ SL2OK lies in

Bs1B

 π−1
K 0

0 πK

m

for some m ≥ 0. If m = 0 then X ∈ Bs1B. If m > 0 then

X =

 u v

w z


and z ∈ OKπmK . Since uz − 1 = vw we have v, w ∈ O∗K so that 1 0

−z/v 1

 u v

w z

 =

 u v

w − zu/v 0


which lies in Bs1B as does the left-hand matrix so X ∈ Bs1B in this
remaining case, too. Hence we have SL2OK ⊆ Bs1B ⊆ SL2OK .

Hence we have verified that Bs1B = SL2OK . Next we shall determine
the identity of Bs2B.

We begin by observing that if a, b, c, d ∈ OK and 1 = ad− bc then

X =

 a bπ−1
K

cπK d

 ∈ SL2K

and

X−1 =

 d −bπ−1
K

−cπK a

 ∈ SL2K

is a matrix of the same form so that these matrices form a subgroup of
SL2K because, if a′, b′, c′, d′ ∈ OK and 1 = a′d′ − b′c′, a bπ−1

K

cπK d

 a′ b′π−1
K

c′πK d′



=

 aa′ + bc′ ab′π−1
K + bd′π−1

K

ac′πK + dc′πK cb′ + dd′

 .

Pro tem let us denote this subgroup by H so that B ⊆ H, s2 ∈ H and
therefore Bs2B ⊆ H. We shall establish the reverse inclusion.

Suppose that a, b, c, d ∈ OK and 1 = ad− bc and that

X =

 a bπ−1
K

cπK d

 ∈ H.
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If b = 0 then X ∈ B and B lies inside every special subgroup so X ∈ Bs2B.
If d = d′πK with d′ ∈ OK then 0 −π−1

K

πK 0

 c d′

−aπK −b

 =

 a bπ−1
K

cπK d

 = X.

It remains to consider X when d ∈ O∗K . Applying the same computation
to X−1 shows that X ∈ Bs2B unless a ∈ O∗K , too.

In s2Bs2 ⊆ Bs2B we have 0 −π−1
K

πK 0

 −d c′

bπK −a

 0 −π−1
K

πK 0



=

 −b aπ−1
K

−dπK c′πK

 0 −π−1
K

πK 0



=

 a bπ−1
K

c′π2
K d


Then  a bπ−1

K

c′π2
K d

 d −bπ−1
K

−cπK a



=

 1 0

d(c′π2
K − cπK) 1 + b(c− c′πK)


which is in B and hence in Bs2B. Therefore we have Y, Y ′ ∈ Bs2B such
that Y X−1 = Y ′ and therefore X ∈ Bs2B, as required.

The only other special subgroup isB itself and we haveB = SL2OK
⋂
H.

The building of SL2K is the opposite poset of the set of SL2K-conjugates
of B,H, SL2OK .

From §2.1 we know that each of B,H, SL2OK is its own normaliser
and since SL2K = BN the conjugates of these groups are contained in the
sets gBg−1, gSL2OKg−1, gHg−1 as g varies through coset representatives
of W = N/B ∩N . The elements of W are represented by the matrices

(s31s2)
m =

 πmK 0

0 π−mK

 , s1(s31s2)
m =

 0 −π−mK

πmK 0


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for m ∈ Z. It is clear that the distinct conjugates of B are precisely πmK 0

0 π−mK

B

 πmK 0

0 π−mK

−1

,

 0 −π−mK

πmK 0

B

 0 −π−mK

πmK 0

−1

as m runs through the integers. Explicitly these subgroups have the fol-
lowing forms.

For α, β, γ, δ ∈ OK and 1 = αδ − βγπK we have 0 −π−mK

πmK 0

 α β

γπK δ

 0 π−mK

−πmK 0



=

 −γπ1−m
K −δπ−mK

απmK βπmK

 0 π−mK

−πmK 0



=

 δ −γπ1−2m
K

−βπ2m
K α


and  πmK 0

0 π−mK

 α β

γπK δ

 π−mK 0

0 πmK



=

 απmK βπmK

γπ1−m
K δπ−mK

 π−mK 0

0 πmK



=

 α βπ2m
K

γπ1−2m
K δ

 .

Therefore we have

(s31s2)
mB(s31s2)

−m

= {

 α βπ2m
K

γπ1−2m
K δ

 | α, β, γ, δ ∈ OK , 1 = αδ − βγπK}
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and

s1(s31s2)
mB(s31s2)

−ms−1
1

= {

 δ −γπ1−2m
K

−βπ2m
K α

 | α, β, γ, δ ∈ OK , 1 = αδ − βγπK}

Similarly the distinct conjugates of SL2OK are contained (with some
repetition) in the set

(s31s2)
mSL2OK(s31s2)

−m
⋃
s1(s31s2)

mSL2OK(s31s2)
−ms−1

1

which are explicitly given by

(s31s2)
mSL2OK(s31s2)

−m

= {

 α βπ2m
K

γπ−2m
K δ

 | α, β, γ, δ ∈ OK , 1 = αδ − βγ}

and

s1(s31s2)
mSL2OK(s31s2)

−ms−1
1

= {

 δ −γπ−2m
K

−βπ2m
K α

 | α, β, γ, δ ∈ OK , 1 = αδ − βγ}.

However when m = 0 we have s1SL2OKs−1
1 = SL2OK and also for ξ a

representative of an element in the residue field OK/(πK) then 1 0

ξ 1


lies in SL2OK − B so that SL2OK contains |OK/(πK)| + 1 conjugates of
B, which agrees with the number of edges out of a vertex in the tree (see
Chapter Two §4.1).

For H we have a similar assertion (with some repetition) and

(s31s2)
mH(s31s2)

−m

= {

 α βπ2m−1
K

γπ1−2m
K δ

 | α, β, γ, δ ∈ OK , 1 = αδ − βγ}
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and

s1(s31s2)
mH(s31s2)

−ms−1
1

= {

 δ −γπ1−2m
K

−βπ2m−1
K α

 | α, β, γ, δ ∈ OK , 1 = αδ − βγ}

Since, in GL2K, we have

H =

 π−1
K 0

0 1

SL2OK

 πK 0

0 1


one finds that H also contains |OK/(πK)|+ 1 conjugates of B.

We see that SL2OK is the stabiliser of the lattice OK⊕OK (as column
vectors with left multiplication byG. AlsoH is the stabiliser ofOK⊕πKOK
since  α βπ−1

K

γπK δ

 u

vπK

 =

 αu+ βv

uγπK + δvπK

 .

The inclusion of lattices is opposite to the inclusion of stabilisers so
the building may be equivalently described in terms of SL2K-translates
of lattices.The action extends to GL2K but only gives exactly the same
simplicial complex if we use lattices up to homothety (i.e. multiplication
by K∗-scalars) in which case we obtain the GL2K-action on the barycentric
subdivision of the tree which we used to make the monomial resolution.

Example 2.4. SL3K and GL3K when K is a local field

B = {X =


a b c

dπK e f

gπK hπK i

 | a, b, c, d, e, f, g, h, i ∈ OK} ⊆ SL3OK

and

W ∼= Σ3 ∝ (Z⊕ Z).

The generators of the symmetric group Σ3 in W are represented by

s1 =


0 −1 0

1 0 0

0 0 1

 and s2 =


1 0 0

0 0 −1

0 1 0


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and the third member of the set S is

s3 =


0 0 −π−1

K

0 1 0

πK 0 0

 .

The special subgroups are

B,B〈s1〉B,B〈s2〉B,B〈s3〉B,B〈s1, s2〉B,B〈s1, s3〉B,B〈s2, s3〉B.

Arguing as in the SL2K case we find that B〈s1, s2〉B = SL3OK . These
groups are related to the stabilisers of lattices in K3. For example the
lattice of column vectors

L1 = {

 α
β
γ

 | α, β, γ ∈ OK}
is stabilised under left multiplication by B〈s1, s2〉B. The lattice

L2 = {

 α
β
πKγ

 | α, β, γ ∈ OK}
is stabilised by B〈s1〉B and B〈s3〉B because

a b c

dπK e f

πKg πKh j




0 −1 0

1 0 0

0 0 1




a′ b′ c′

d′πK e′ f ′

πKg
′ πKh

′ j′


 α

β
πKγ



=


a b c

dπK e f

πKg πKh j




0 −1 0

1 0 0

0 0 1


 a′α+ b′β + c′πKγ

d′πKα+ e′β + f ′πKγ
πKg

′α+ πKh
′β + j′πKγ



=


a b c

dπK e f

πKg πKh j


 α′′

β′′

πKγ
′′

 =

 aα′′ + bβ′′ + cπKγ
′′

dπKα
′′ + eβ′′ + fπKγ

′′

πKgα
′′ + πKhβ

′′ + jπKγ
′′


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and


0 0 −π−1

K

0 1 0

πK 0 0


 α

β
πKγ

 =

 −γ
β

πKα

 .

Therefore B〈s1, s3〉B is the stabiliser of the above lattice.
Similarly B〈s2, s3〉B is the stabiliser of the lattice

L3 = {

 α
πKβ
πKγ

 | α, β, γ ∈ OK}.

These facts are sketchily mentioned in ([35] p.137).
The incidence condition on two lattices L,L′ which implies they define

a 1-simplex in the building is πKL ⊆ L′ ⊆ L. We have incidence relations

πKL1 ⊆ L2 ⊆ L1

πKL1 ⊆ L3 ⊆ L1

πKL2 ⊆ L3 ⊆ L2

and the fundamental simplex in the building for SL3K is as shown below,
with stabilisers adjacent to the simplex which they stabilise.
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L3

B〈s2, s3〉B
B〈s1, s3〉B

L2

B〈s1, s2〉BL1

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

B〈s2〉B B〈s1〉B

B〈s3〉B

B

Consider the matrix

W =


0 −1 0

1 0 0

0 0 1




1 0 0

0 π−1
K 0

0 0 1

 =


0 −π−1

K 0

1 0 0

0 0 1

 .

Therefore

W


α

βπK

γπK

 =


0 −π−1

K 0

1 0 0

0 0 1




α

βπK

γπK

 =


−β

α

γπK


so that W (L3) = L2. Similarly

W


α

β

γπK

 =


−βπ−1

K

α

γπK


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and

W


α

β

γ

 =


−βπ−1

K

α

γ

 .

Therefore

W (L2) = {


−βπ−1

K

α

γπK

 | α, β, γ ∈ OK} = L4

and

W (L1) = {


−βπ−1

K

α

γ

 | α, β, γ ∈ OK} = π−1
K L3.

We have incidence relations
πK(π−1

K L3) = L3 ⊆ L1 ⊆ π−1
K L3

πK(π−1
K L3) = L3 ⊆ L2 ⊆ π−1

K L3

πK(π−1
K L3) = L3 ⊆ L4 ⊆ π−1

K L3

so that {L2, π
−1
K L3, L4} is a 2-simplex in the building and W maps the

fundamental simplex to it simplicially.
The action by SL3K preserves the type of a lattice. This is the valua-

tion (modulo 3) of the determinant whose columns are an OK-basis for the
lattice. Hence we find that

lattice type mod 3
L1 0
L2 1
L3 2
L4 0

π−1
K L3 2

This means that W (L1, L2, L3) = (π−1
K L3, L4, L2) acts like (0, 1, 2) 7→

(2, 0, 1) on types.
The action by SL3K on the building, whose vertices are represented by

lattices (or by their stabilisers) is simplicial. This action extends to GL3K
if we represent vertices by the homothety classes of lattices but the action
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is not simplicial, because U rotates the fundamental simplex. However
the GL3K-action becomes simplicial if we barycentrically subdivide the
fundamental simplex and all its translates by adding the centroid as a 0-
simplex and the three 1-simplices given by the lines from the vertices to
the centroid. All these added simplices are stabilised only by K∗ ·B.

The calculation

U


α

β

γ

 =


0 π−1

K 0

0 0 π−1
K

1 0 0




α

β

γ

 =


βπ−1

K

γπ−1
K

α


shows that

U(L1) = π−1
K L2, U(L2) = π−1

K L3, U(L3) = L1.

Therefore U3 = π−2
K and (uU)3 = πK .

In ([140] p.48) the building of GL3K is described as a plane trian-
gulated by equilateral triangles3. This description agrees with the above
analysis. The action by U rotates the entire plane through 2π/3 fixing only
the barycentre of the fundamental simplex.

L3

(B〈s2, s3〉B)K∗
��

���
���

��

(B〈s1, s3〉B)K∗HH
HHH

HHH
HH

L2

(B〈s1, s2〉B)K∗L1

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

(B〈s2〉B)K∗ (B〈s1〉B)K∗

(B〈s3〉B)K∗

〈BK∗, U〉

3This is actually only one apartment. Tits says that the building itself is obtained

by ”ramifying along every edge” of the triangulated plane. My thanks to Gerry Cliff for
correcting me on this point.
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Now we examine how U conjugates these stabilisers. We have

UXU−1 =


0 π−1

K 0

0 0 π−1
K

1 0 0




a b c

dπK e f

gπK hπK i




0 0 1

πK 0 0

0 πK 0



=


d eπ−1

K fπ−1
K

g h iπ−1
K

a b c




0 0 1

πK 0 0

0 πK 0



=


e f d

hπK i g

bπK cπK a



so that UBU−1 = B.
Also

Us1U
−1 =


0 π−1

K 0

0 0 π−1
K

1 0 0




0 −1 0

1 0 0

0 0 1




0 0 1

πK 0 0

0 πK 0



=


π−1
K 0 0

0 0 π−1
K

0 −1 0




0 0 1

πK 0 0

0 πK 0



=


0 0 π−1

K

0 1 0

−πK 0 0


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so that Us1U−1 ∈ s3B
⋂
Bs3. In addition

Us3U
−1 =


0 π−1

K 0

0 0 π−1
K

1 0 0




0 0 −π−1
K

0 1 0

πK 0 0




0 0 1

πK 0 0

0 πK 0



=


0 π−1

K 0

1 0 0

0 0 −π−1
K




0 0 1

πK 0 0

0 πK 0



=


1 0 0

0 0 1

0 −1 0



so that Us3U−1 ∈ s2B
⋂
Bs2.

Now let me describe what one gets from the action of GL3K on homo-
thety classes of lattices. The normaliser in NGL3KBK

∗ = 〈BK∗, U〉 and
NGL3KBK

∗/BK∗ is a cyclic group of order three generated by the image
of U . Let λ : NGL3KBK

∗ −→ k∗ be the resulting character of order three.
The non-simplicially subdivided building gives an exact sequence of

admissibles

0 −→ c− IndGL3K
〈BK∗,U〉(kλ) −→ c− IndGL3K

B〈s1〉BK∗(k)

−→ c− IndGL3K
B〈s1,s2〉BK∗(k) −→ k −→ 0.

When we make the simplicial subdivision we obtain

0 −→ c− IndGL3K
BK∗ (k) −→ c− IndGL3K

BK∗ (k)⊕ c− IndGL3K
B〈s1〉BK∗(k)

−→ c− IndGL3K
B〈s1,s2〉BK∗(k)⊕ c− IndGL3K

〈BK∗,U〉(k) −→ k −→ 0.
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Next we take four bar-monomial resolutions of restrictions of V :

WV,∗,BK∗
ε−→ V

WV,∗,B〈s1〉BK∗
ε1−→ V

WV,∗,B〈s1,s2〉BK∗
ε0−→ V

WV,∗,〈BK∗,U〉
ε′0−→ V.

By analogy with the GL2K case we construct monomial morphisms of chain
complexes ψ̃ which cover, via the augmentations of the monomial resolu-
tions onto V , the 3-term complex obtained from the simplicial subdivision
complex by replacing the k’s by V ’s.

c− IndGL3K
BK∗ (WV,∗,BK∗)

ψ̃ ↓

c− IndGL3K
BK∗ (WV,∗,BK∗)⊕ c− IndGL3K

B〈s1〉BK∗(WV,∗,B〈s1〉BK∗)

ψ̃ ↓

c− IndGL3K
B〈s1,s2〉BK∗(WV,∗,B〈s1,s2〉BK∗)⊕ c− IndGL3K

〈BK∗,U〉(WV,∗,〈BK∗,U〉).

In a manner similar to the GL2K case we obtain the total complex of
this double complex which gives a candidate for a GL3K-monomial resolu-
tion of V

M∗
ε−→ V −→ 0

in which, for i ≥ 0, M i is given by

c− IndGL3K
BK∗ (WV,i−2,BK∗)⊕

c− IndGL3K
BK∗ (WV,i−1,BK∗)⊕ c− IndGL3K

B〈s1〉BK∗(WV,i−1,B〈s1〉BK∗)⊕

c− IndGL3K
B〈s1,s2〉BK∗(WV,i,B〈s1,s2〉BK∗)⊕ c− IndGL3K

〈BK∗,U〉(WV,i,〈BK∗,U〉).

Now we work towards monomial exactness for GL3K.
Let (J, φ) ∈ MGL3K,φ satisfy (K∗, φ) ≤ (J, φ) with J being compact

open modulo the centre K∗. We wish to examine exactness in the middle
of

M
((J,φ))
i+1 −→M

((J,φ))
i −→M

((J,φ))
i−1

for i ≥ 1. A Line of M i is given by one of the following types g ⊗BK∗ L2,
g ⊗BK∗ L1, g ⊗B〈s1〉BK∗ L′1, g ⊗B〈s1,s2〉BK∗ L0 or g ⊗〈BK∗,U〉 L′0. Here
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L2, L1, L
′
1, L0, L

′
0 are Lines in WV,i−2,BK∗ , WV,i−1,BK∗ , WV,i−1,B〈s1〉BK∗ ,

WV,i,B〈s1,s2〉BK∗ or WV,i,〈BK∗,U〉 respectively.
The stabiliser pair of the above five types of Lines has the form

g(J ′, φ′)g−1 where J ′ ⊆ BK∗, J ′ ⊆ BK∗, J ′ ⊆ B〈s1〉BK∗,
J ′ ⊆ B〈s1, s2〉BK∗ or J ′ ⊆ 〈BK∗, U〉 respectively.

Consider the inclusions

〈BK∗, U〉 ≥ BK∗ ≤ B〈s1〉BK∗ ≤ B〈s1, s2〉BK∗.

Proposition 2.5. If J ⊆ B〈s1, s2〉BK∗ is conjugate to a subgroup
of 〈BK∗, U〉 then J is conjugate to a subgroup of BK∗.

Proof
The following works for all n ≥ 2.
〈BK∗, U〉 is not subconjugate to B〈s1, s2〉BK∗ = GL3OKK∗ because

the valuation of the determinant of any matrix in the latter is congruent to
zero modulo 3 but for any conjugate of U this is 1 (modulo 3). 2

2.6. Example 2.4 continued
Up to GL3K-conjugation we have one of the following four mutually

exclusive (by Proposition 2.5) cases:

Case A: J ⊆ BK∗.
Case B: J ⊆ B〈s1〉BK∗ but J is not conjugate to a subgroup of

〈BK∗, U〉.
Case C: J ⊆ B〈s1, s2〉BK∗ but J is not conjugate to a subgroup of

either 〈BK∗, U〉 or B〈s1〉BK∗.
Case D: J ⊆ 〈BK∗, U〉 but J is not conjugate to a subgroup of

B〈s1, s2〉BK∗.

Remark 2.7. The four cases in §2.6 exhaust all possibilities provided
that every compact open modulo the centre subgroup of GL3K is conjugate
to a subgroup of at least one simplex stabiliser in the Bruhat-Tits building.
For now we shall assume that this condition holds.

In fact, I am going to illustrate the verification only in Case A. To make
matters even more tedious, I am going to do the verification by comput-
ing the spectral sequence of the double-complex M∗ in “slow motion”. I
hope that proceeding in this manner will gradually introduce the technical
homotopy theoretic properties of the building which make the verification
work.

The final general proof will then be a sort of short “reprise” which ex-
perts would understand without the preparatory examination of the GL2K
and GL3K situations.
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2.8. Monomial exactness in Case A
If J ⊆ BK∗ then M ((J,φ))

i for i ≥ 0 is equal to

c− IndGL3K
BK∗ (WV,i−2,BK∗)((J,φ))

⊕c− IndGL3K
BK∗ (WV,i−1,BK∗)((J,φ))

⊕c− IndGL3K
B〈s1〉BK∗(WV,i−1,B〈s1〉BK∗)

((J,φ))

⊕c− IndGL3K
B〈s1,s2〉BK∗(WV,i,B〈s1,s2〉BK∗)

((J,φ))

⊕c− IndGL3K
〈BK∗,U〉(WV,i,〈BK∗,U〉)((J,φ)).

As in the GL2K-case this is equal to

⊕g−1Jg⊆BK∗ g ⊗BK∗ W
((g−1Jg,g∗(φ)))
V,i−2,BK∗

⊕g−1Jg⊆BK∗ g ⊗BK∗ W
((g−1Jg,g∗(φ)))
V,i−1,BK∗

⊕⊕g−1Jg⊆B〈s1〉BK∗ g ⊗B〈s1〉BK∗ W
((g−1Jg,g∗(φ)))
V,i−1,B〈s1〉BK∗

⊕g−1Jg⊆B〈s1,s2〉BK∗ g ⊗B〈s1,s2〉BK∗ W
((g−1Jg,g∗(φ)))
V,i,B〈s1,s2〉BK∗

⊕g−1Jg⊆〈BK∗,U〉 g ⊗〈BK∗,U〉W
((g−1Jg,g∗(φ)))
V,i,〈BK∗,U〉 .

Recall the the chain complex (M∗, d) is the admissible monomial double
complex and (M ((J,φ))

∗ , d) is a sub-double complex. The differential is given
by the formula d = dY ± d where dY comes from the simplicial structure
of the building Y and d complex from the differentials in the various bar-
monomial resolutions which were used in Chapter Two §3.1 to construct
(M∗, d).

We want to evaluate the homology groups Hm(M ((J,φ))
∗ , d) for m ≥ 0,

expecting to discover that this is zero unlessm = 0 in which case it is V (J,φ).
The homology of a double-complex may be computed using a spectral se-
quence. This spectral sequence is derived from a filtration FnM ((J,φ))

∗ .
Explicitly the filtration is defined by

F 2M
((J,φ))
i = C2.i−2 ⊕ C1.i−1 ⊕ C0.i

F 1M
((J,φ))
i = C1.i−1 ⊕ C0.i

F 0M
((J,φ))
i = C0.i
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where

C2,i−2 = ⊕g−1Jg⊆BK∗ g ⊗BK∗ W
((g−1Jg,g∗(φ)))
V,i−2,BK∗

C1,i−1 = ⊕g−1Jg⊆BK∗ g ⊗BK∗ W
((g−1Jg,g∗(φ)))
V,i−1,BK∗

⊕⊕g−1Jg⊆B〈s1〉BK∗ g ⊗B〈s1〉BK∗ W
((g−1Jg,g∗(φ)))
V,i−1,B〈s1〉BK∗

C0,i = ⊕g−1Jg⊆B〈s1,s2〉BK∗ g ⊗B〈s1,s2〉BK∗ W
((g−1Jg,g∗(φ)))
V,i,B〈s1,s2〉BK∗

⊕⊕g−1Jg⊆〈BK∗,U〉 g ⊗〈BK∗,U〉W
((g−1Jg,g∗(φ)))
V,i,〈BK∗,U〉 .

This filtration is increasing with n so that

0 = F−1M
((J,φ))
i ⊆ F 0M

((J,φ))
i ⊆ F 1M

((J,φ))
i

⊆ F 2M
((J,φ))
i = F 3M

((J,φ))
i . . .

and d(FnM ((J,φ))
∗ ) ⊆ FnM ((J,φ))

∗−1 .
The first step in the spectral sequence computation is to define

E0
n,i−n = FnM

((J,φ))
i /Fn−1M

((J,φ))
i

and to compute the differential induced by d

d0 : E0
n,∗−n −→ E0

n,∗−n−1

and the homology groups

E1
n,i−n =

Ker(E0
n,i−n −→ E0

n,i−n−1)
Im(E0

n,i+1−n −→ E0
n,i−n)

.

Since dY (FnM ((J,φ))
i ) ⊆ Fn−1M

((J,φ))
i−1 the differential d0 is equal to

that induced by d, the differential in the various bar-monomial resolutions.
Therefore the only possibly non-zero d0-differentials which we must calcu-
late are

E0
2,i−2

∼= ⊕g−1Jg⊆BK∗ g ⊗BK∗ W
((g−1Jg,g∗(φ)))
V,i−2,BK∗

↓ d0

E0
2,i−3

∼= ⊕g−1Jg⊆BK∗ g ⊗BK∗ W
((g−1Jg,g∗(φ)))
V,i−3,BK∗ ,
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E0
1,i−1

∼= ⊕g−1Jg⊆BK∗ g ⊗BK∗ W
((g−1Jg,g∗(φ)))
V,i−1,BK∗

⊕⊕g−1Jg⊆B〈s1〉BK∗ g ⊗B〈s1〉BK∗ W
((g−1Jg,g∗(φ)))
V,i−1,B〈s1〉BK∗

↓ d0

E0
1,i−2

∼= ⊕g−1Jg⊆BK∗ g ⊗BK∗ W
((g−1Jg,g∗(φ)))
V,i−2,BK∗

⊕⊕g−1Jg⊆B〈s1〉BK∗ g ⊗B〈s1〉BK∗ W
((g−1Jg,g∗(φ)))
V,i−2,B〈s1〉BK∗

and

E0
0,i
∼= ⊕g−1Jg⊆B〈s1,s2〉BK∗ g ⊗B〈s1,s2〉BK∗ W

((g−1Jg,g∗(φ)))
V,i,B〈s1,s2〉BK∗

⊕g−1Jg⊆〈BK∗,U〉 g ⊗〈BK∗,U〉W
((g−1Jg,g∗(φ)))
V,i,〈BK∗,U〉

↓ d0

E0
0,i−1

∼= ⊕g−1Jg⊆B〈s1,s2〉BK∗ g ⊗B〈s1,s2〉BK∗ W
((g−1Jg,g∗(φ)))
V,i−1,B〈s1,s2〉BK∗

⊕g−1Jg⊆〈BK∗,U〉 g ⊗〈BK∗,U〉W
((g−1Jg,g∗(φ)))
V,i−1,〈BK∗,U〉 .

Since d0 is induced by d the argument used in the GL2K cases shows
that the only possibly non-zero E1

n,i−n’s are

E1
2,0
∼= ⊕g−1Jg⊆BK∗ g ⊗BK∗ V (g−1Jg,g∗(φ)),

E1
1,0
∼= ⊕g−1Jg⊆BK∗ g ⊗BK∗ V (g−1Jg,g∗(φ))

⊕⊕g−1Jg⊆B〈s1〉BK∗ g ⊗B〈s1〉BK∗ V (g−1Jg,g∗(φ))

and

E1
0,0
∼= ⊕g−1Jg⊆B〈s1,s2〉BK∗ g ⊗B〈s1,s2〉BK∗ V (g−1Jg,g∗(φ))

⊕g−1Jg⊆〈BK∗,U〉 g ⊗〈BK∗,U〉 V (g−1Jg,g∗(φ)).

The next step in the spectral sequence computation is to compute the
differentials induced by dY in the chain complex of E1

p,q’s

0 −→ E1
2,0

dY−→ E1
1,0

dY−→ E1
0,0 −→ 0.

The homology group at E1
p,q is denoted by E2

p,q.
Consider the group E1

2,0. In the picture of the subdivided fundamental
simplex in Example 2.4 the upper right 2-simplex has stabiliser BK∗ and
every other 2-simplex in the building Y is a translate of this one. Hence
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the summands in E1
2,0 are in bijective correspondence with the 2-simplices

of Y which are fixed by J . On the summand corresponding to the coset
representative g the map g ⊗BK∗ w 7→ g ⊗BK∗ gw combine to give an
isomorphism

E1
2,0
∼= C2(Y J ; k)⊗k V (J,φ)

where Ci(Z; k) denotes the i-dimensional simplicial chains with coefficients
in k of a simplicial complex Z. Similar remarks hold for E1

1,0 and E1
0,0

and the complex (E1
n,0, dY ) is identified with the complex (C∗(Y J ; k) ⊗k

V (J,φ), dY ⊗ 1).
By Proposition 2.12 the subcomplex Y J is non-empty and contractible

for each compact open modulo K∗ subgroup J . Therefore the groups E2
p.q

are all zero except for E2
0,0.

In a general spectral sequence calculation one inductively has differen-
tials of the form dr : Erp,q −→ Ep−r,q+r−1 for r ≥ 2 satisfying drdr = 0 from
which one calculates the homology at Erp,q which gives Er+1

p,q . For a given
pair (p, q) the groups Erp,q stabilise as r increases to give E∞p,q. The family
E∞p,m−p form the associated graded group to a filtration on the homology,
in this case, Hm(M ((J,φ))

∗ , d), which the spectral sequence “calculates”.
In our case the spectral sequence stabilises at E2

∗,∗ and the filtration in
the homology has only one step so that

Hm(M ((J,φ))
∗ , d) =

 V (J,φ) if m = 0,

0 otherwise

which establishes monomial exactness for M∗ −→ V .
Before proceeding to Proposition 2.12 we shall pause for two of the

simplest examples of the pair (J, φ).

Example 2.9. (J, φ) = (K∗, φ)

The group M
((K∗,φ))

i is equal to

⊕g−1K∗g⊆BK∗ g ⊗BK∗ W
((K∗,φ))

V,i−2,BK∗

⊕g−1K∗g⊆BK∗ g ⊗BK∗ W
((K∗,φ))

V,i−1,BK∗

⊕⊕g−1K∗g⊆B〈s1〉BK∗ g ⊗B〈s1〉BK∗ W
((K∗,φ))

V,i−1,B〈s1〉BK∗

⊕g−1K∗g⊆B〈s1,s2〉BK∗ g ⊗B〈s1,s2〉BK∗ W
((K∗,φ))

V,i,B〈s1,s2〉BK∗

⊕g−1K∗g⊆〈BK∗,U〉 g ⊗〈BK∗,U〉W
((K∗,φ))

V,i,〈BK∗,U〉.
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Taking the homology using the internal d-differentials first we see that the
E1
∗,∗-term of the spectral sequence of the double-complex is isomorphic to

the chain complex

0 −→ c− IndGL3K
BK∗ (V ) −→ c− IndGL3K

BK∗ (V )⊕ c− IndGL3K
B〈s1〉BK∗(V )

−→ c− IndGL3K
B〈s1,s2〉BK∗(V )⊕ c− IndGL3K

〈BK∗,U〉(V ) −→ 0.

In turn this is equal to

0 −→ c− IndGL3K
BK∗ (k)⊗ V

−→ c− IndGL3K
BK∗ (k)⊗ V ⊕ c− IndGL3K

B〈s1〉BK∗(k)⊗ V

−→ c− IndGL3K
B〈s1,s2〉BK∗(k)⊗ V ⊕ c− IndGL3K

〈BK∗,U〉(k)⊗ V −→ 0.

The homology of this is just V = V (K∗,φ) in dimension zero because

0 −→ c− IndGL3K
BK∗ (k) −→ c− IndGL3K

BK∗ (k)⊕ c− IndGL3K
B〈s1〉BK∗(k)

−→ c− IndGL3K
B〈s1,s2〉BK∗(k)⊕ c− IndGL3K

〈BK∗,U〉(k) −→ 0.

is the simplicial chain complex of the building Y , which equals the fixed
points Y K

∗
and which is contractible.

Example 2.10. (J, φ) = (〈K∗, U〉, φ)
Here we must have φ(U)3 = φ(πK)−2.
Write σ̂ for the barycentre of the original fundamental simplex and

observe that U fixes σ̂ and no other vertex. This is because there are
precisely two vertex orbits, that of σ̂ and that of any one of the three
vertices of the original fundamental simplex (a triangle). Therefore Y σ̂ is
a point in this example.

The group M ((〈K∗,U〉,φ))
i is equal to

⊕g−1〈K∗,U〉g⊆BK∗ g ⊗BK∗ W
((g−1〈K∗,U〉g,g∗(φ)))
V,i−2,BK∗

⊕g−1(〈K∗,U〉g⊆BK∗ g ⊗BK∗ W
((g−1〈K∗,U〉g,g∗(φ)))
V,i−1,BK∗

⊕⊕g−1〈K∗,U〉g⊆B〈s1〉BK∗ g ⊗B〈s1〉BK∗ W
((g−1〈K∗,U〉g,g∗(φ)))
V,i−1,B〈s1〉BK∗

⊕g−1〈K∗,U〉g⊆B〈s1,s2〉BK∗ g ⊗B〈s1,s2〉BK∗ W
((g−1〈K∗,U〉g,g∗(φ)))
V,i,B〈s1,s2〉BK∗

⊕g−1〈K∗,U〉g⊆〈BK∗,U〉 g ⊗〈BK∗,U〉W
((g−1〈K∗,U〉g,g∗(φ)))
V,i,〈BK∗,U〉
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which is simply isomorphic to

W
((〈K∗,U〉,φ))
V,i,〈BK∗,U〉 ,

which immediately establishes the monomial exactness for the pair
(〈K∗, U〉, φ).

2.11. Buildings, extended buildings and EG
Let Y denote the building associated to SLnK when K is a p-adic local

field, which was described in §2.2. The building of SLnK is the simplicial
complex whose vertices are lattices in Kn ([35] p.137). The fundamental
chamber is the simplex with vertices (e1, . . . , ei, πKei+1, . . . , πKen) for 1 ≤
i ≤ n and {ei} the standard basis. The resulting building is not spherical
and therefore is contractible ([35] p.94).

The action of SLnK on Y is simplicial extends to an action of GLnK
which, as in the case of n = 2, where the vertices are now thought of as
homothety classes of lattices. This extended action does not preserve type
but a mild barycentric subdivision renders the GLnK-action simplicial.
Let Y also denote this simplicial GLnK-space. Since the central K∗ acts
trivially Y is also a building for the projective linear group PGLnK.

If one lets GLnK act on the real line R where X ∈ GLnK acts via
translation by vK(det(X)) the product Y × R is denoted by EGLnK, a
space which is central to the classification of spaces with proper GLnK-
actions ([13], [100], [11]).

Proposition 2.12.
In the notation of §2.11 let J ⊆ GLnK be a compact open modulo the

centre subgroup. Then, after a suitable simplicial subdivision if necessary,
the fixed point subcomplex Y J is non-empty and contractible.

Proof
In order to show that Y J is non-empty subcomplex it suffices to con-

sider the J ’s which are maximal in the poset of conjugacy classes of compact
open modulo the centre subgroups. This is a finite set of “ends”. For each
such J we have only to show that there is a J-fixed point in Y which, by
subdivision, we may assume is a vertex. Then Y J will be a non-empty sub-
complex. Since the set of “ends” is finite only a finite number of simplicial
subdivisions is necessary.

The existence of a J-fixed point is an immediate consequence of the
Bruhat-Tits fixed point theorem for groups acting on CAT(0) spaces ([4],
[139], [140]). Alternatively, from the proper GLnK-actions point of view,
if Y J were empty then one easily finds that EGLnK does not classify all
GLnK-spaces with proper actions.

The groups GLnK,SLnK,PGLnK are locally compact topological
groups. Suppose that G is a locally compact topological group and that F
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is a family of subgroups which is closed under conjugation and passage to
subgroups. The space EG is the universal space in the sense of [100] (see
also [13] p.7 Remark 2.5) for G-CW-complexes having stabilisers which lie
in F . This universal space always exists and for J ∈ F the fixed point
subspace EGJ is contractible. When G = SLnK and F is the family of
compact subgroups then ESLnK = Y . When G = GLnK and F is the
family of compact subgroups then EGLnK = Y × R with the action de-
scribed in §2.11. If J ⊆ GLnK∗ contains K∗ and is compact open modulo
K then we may write J = K∗H where H is compact open. Then EGLnKH

is contractible. Therefore the image of EGLnKH under projection onto Y
is also contractible but this is Y H = Y J . 2

Remark 2.13. In §2.6 I delineated four cases of stabiliser group and
in §2.8 showed how to prove monomial exactness in Case A. In fact, by the
contractibility part of Proposition 2.12, it is clear that the argument applies
also to Cases B-D. There remained the question whether for all the pairs
(J, φ) under consideration the subcomplex Y J was non-empty.The fixed-
point part of Proposition 2.12 takes care of this problem. By a suitable
simplicial subdivision we may assume that every compact open modulo the
centre stabilises a simplex of Y . In the GL3K example the subdivision
may introduce some new simplex stabilisers which do not occur in Cases
A-D (actually this does not happen) but the argument illustrated in Case
A works in all cases for all GLnK. I shall give the complete verification of
Chapter Two, Conjecture 3.3 in the next section.

3. Verification of Chapter Two, Conjecture 3.3

3.1. We begin this section by recapitulating the situation of Chapter
Two, §3. We are studying (left) admissible k-representations of GLnK with
central character φ. Here K continues to be a p-adic local field. As usual
k is an algebraically closed field of arbitrary characteristic. If V is such an
admissible k-representation.

Let Y be the simplicial complex upon which GLnK acts simplicially
given by a simplicial subdivision of the Bruhat-Tits building ofGLnK (§2.2;
for more details [4], [11], [35], [36], [37], [60], [61], [139], [140]).

We shall assume that Y has been chosen according to Proposition 2.12,
namely such that for every compact open modulo the centre subgroup J ⊆
GLnK the fixed point subcomplex Y J is non-empty and contractible.

For each simplex σ of Y , by Chapter Two, Theorem 2.4, we have a
k[Hσ ],φmon-bar monomial resolution of V

WV,∗,Hσ −→ V −→ 0.

Form the graded k-vector space which in degree m is equal to

Mm = ⊕α+n=m WV,α,Hσn
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which is a double complex with two commuting differentials dY and d.
The differential dY comes from the simplicial structure of Y together with
the natural chain maps between bar-monomial resolutions. Explicitly, for
x ∈WV,α,Hσn , it is given by

dY (x) =
∑

σn−1 face of σn

d(σn−1, σn) iHσn ,Hσn−1 (x).

If d denotes any of the differentials in the bar-monomial resolutions the
total differential d : Mm −→Mm−1 when m = α+ n is given by

d(x) = dY (x) + (−1)ndσn(x)

and dd = 0.
Finally M∗ has an obvious structure of a k[GLnK],φmon-Line Bundle

since the GLnK-action permutes the summands WV,∗,Hσn , each of which
is a k[Hσn ],φmon-Line Bundle.

We are now ready to complete the verification of Chapter Two, Conjec-
ture 3.3 in general having, by way of illustration and introduction, verified
the case n = 2 in Chapter Two §§4.1-4.15 and sketched the verification for
n = 3 in Example 2.4 and §2.8.

Theorem 3.2. (Verification of Chapter Two, Conjecture 3.3)
(i) If Y is the Bruhat-Tits building for GLnK, suitably subdivided to

make theGLnK-action simplicial as in §3.1, then (M∗, d) is a chain complex
in k[GLnK],φmon equipped with a canonical augmentation homomorphism

in k[GLnK],φmod of the form M0
ε−→ V .

(ii) For n ≥ 2

. . . −→M i

d−→M i−1

d−→ . . .
d−→M0

ε−→ V −→ 0

is a monomial resolution in k[GLnK],φmon. That is, for each (H,φ) ∈
MGLnK,φ

. . . −→M
((H,φ))
i

d−→M
((H,φ))
i−1

d−→ . . .
d−→M

((H,φ))
0

ε−→ V (H,φ) −→ 0

is an exact sequence of k-vector spaces.

Proof
Part (i) is established in Chapter Two, Theorem 3.2.
For part (ii) we begin by choosing GLnK-orbit representatives of the

q-dimensional simplices {σqα | α ∈ A(q)} for each q ≥ 0. Recall that Y
is finite-dimensional. Let Hσqα = stabGLnK(σqα), which is compact open
modulo the centre K∗.

By naturality of the bar-monomial resolutions the monomial complex
given by the direct sum of the WV,∗,Hσ as σ varies through the GLnK-orbit
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of σqα is isomorphic to

c− IndGLnKHσqα
(WV,∗,Hσqα

).

Therefore

M∗
∼= ⊕q ⊕α∈A(q) c− IndGLnKHσqα

(WV,∗−q,Hσqα
).

As in the case n = 3 in Example 2.4 and §2.8, for (H,φ) ∈ MGLnK,φ we
have

M ((H,φ))
∗

∼= ⊕q ⊕α∈A(q) c− IndGLnKHσqα
(WV,∗−q,Hσqα

)((H,φ))

∼= ⊕q ⊕α∈A(q) ⊕g−1Hg≤Hσqα
g ⊗Hσqα W

((g−1Hg,g∗(φ)))
V,∗−q,Hσqα

.

Define a decreasing filtration on M ((H,φ))
∗ by

F pM
((H,φ))
i = ⊕j≤p Cj,i−j

where

Cj,i−j = ⊕α∈A(j) ⊕g−1Hg≤H
σ
j
α

g ⊗H
σ
j
α

W
((g−1Hg,g∗(φ)))
V,i−j,H

σ
j
α

.

In the spectral sequence associated to this filtration we have

E0
p,i−p = F pM

((H,φ))
i /F p−1M

((H,φ))
i

∼= Cp,i−p.

The differential d0 : E0
p,i−p −→ E0

p,i−p−1 is induced by the internal differen-
tial of the WV,∗−q,Hσqα

’s and by monomial exactness of these resolution we
find that, as in the GL2K andGL3K examples, the homology E1

p,s vanishes
unless s = 0. Furthermore, as explained in the GL3K example,

E1
p,0
∼= ⊕α∈A(p) ⊕g−1Hg≤Hσpα

g⊗Hσpα V
(g−1Hg,g∗(φ)) ∼= Cp(Y H ; k)⊗kV (H,φ)

and d1 : E1
p,0 −→ E1

p−1,0 may be identified with dY ⊗1. The contractibility
of Y H implies that, in the spectral sequence,

E∞p.r =

 V (H,φ) if (p, r) = (0, 0)

0 otherwise.

This established part (ii) and completes the proof. 2

Remark 3.3. Results analogous to Theorem 3.2 are true for the groups

SLnK ⊂ GLnK0 ⊂ GLnK+,

which were defined in Chapter Two, §4.16, and for PGLnK. The details
are left to the reader.





CHAPTER 5

Monomial resolutions and Deligne
representations

The Langlands correspondence for GLnK when K is a p-adic local field
concerns a canonical bijection between n-dimensional semi-simple Deligne
representations and irreducible smooth complex representations of GLnK.
This correspondence is characterised in terms of local L-functions and ε-
factors of these two types of representations (see, for example, [40] Chapter
Eight). Deligne representations are finite-dimensional representations of the
Weil group WK together with a nilpotent operator satisfying certain prop-
erties. The importance of Deligne representations lies in the result that, if
l is different from p, the category of finite-dimensional representations of
WK over Ql is isomorphic to a category of Deligne representations of WK

over the complex numbers (see Theorem 1.8).
In §1 we recall the definition and properties of Deligne representations

of the Weil group. In §2 we define what is meant by a Deligne representa-
tion. In Conjecture 2.4 we describe the bar-monomial resolution resolution
for a finite-dimensional Deligne representation (ρ, V,n). The verification
of Conjecture 2.4 should be straightforward but for the time being, out of
laziness, I shall leave it unproved.

1. Weil groups and representations

1.1. Galois and Weil groups
The material of this section is a sketch of ([40] Chapter 7).
Let K be a p-adic local field in characteristic zero with residue field

k = OK/PK . Choose an algebraic closure K. Then

Gal(K/K) = lim
←

Gal(E/K)

where the limit runs over finite Galois subextensions E/K of K/K. We
have an extension of groups

{1} −→ IK −→ Gal(K/K) −→ Ẑ −→ {1}
where the inertia group IK = Gal(K/K∞) where K∞ is the unique max-
imal unramified extension of K lying in K. For each integer n such that
HCF (p, n) = 1 then is a unique cyclic extension of K∞ of degree n given

141
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by En = K∞(π1/n
K ) so that E∞ is the maximal tamely ramified extension

of K with
t0 : Gal(E∞/K∞)

∼=−→
∏
l 6=p

Zl.

Let ΦK denote the geometric Frobenius - that is, the inverse of the lift
of x 7→ x|k| on residue fields. Then t0(ΦKgΦ−1

K ) = |k|−1t0(g) for g ∈
Gal(E∞/K∞). For this choice of geometric Frobenius the Weil group is the
locally profinite group in the centre of the subextension

{1} −→ IK −→WK −→ Z = 〈ΦK〉 −→ {1}

Hence the Weil group is the dense subgroup of the Galois group generated
by Frobenius elements and the inertia group is an open subgroup. Sending
a geometric Frobenius to 1 yields vK :WK −→ Z and we define

||x|| = q−vK(x) for all x ∈ WK , q = |k|.

For each finite extension E/K we set WE = WK

⋂
Gal(K/E), it is

open and of finite index in WK . It is isomorphic to the Weil group of
E and ([40] p.183) this system of Weil groups enjoys all the well-known
properties of absolute Galois groups.

We consider representations over an algebraically closed field k of char-
acteristic zero.

Since Gal(K/K) is profinite any smooth representation is semisim-
ple. This not true for the Weil group which is locally profinite and has
Z as a quotient. However an irreducible smooth representation of WK is
finite-dimensional. Therefore a smooth irreducible Weil representation is
semi-simple with finite image when restricted to the inertia subgroup - the
subtleties come from the geometric Frobenius elements.

Smooth irreducible Galois representations restrict to smooth irreducible
Weil representations and two such are equivalent if and only if they restrict
to give equivalent Weil representations.

An irreducible smooth Weil representation has finite image if and only if
it is the restriction of a Galois representation if and only if its determinantal
character has finite order ([40] p.184).

If E/K is a finite separable extension then a smooth representation
ρ of WK is semisimple if and only if ResE/K(ρ) is a semisimple smooth
representation of WE . Conversely a smooth representation ρ of WE is
semisimple if and only if IndE/K(ρ) is a semisimple smooth representation
of WK .

Let Gssn (K) denote the set of isomorphism classes of semisimple smooth
representations of WK of dimension n. We have induction and restriction
maps between these sets. A smooth finite-dimensional representation ρ of
WK is semisimple if and only if ΦK(x) is semisimple for every element x
([40] pp.185-6). G0

n(K) is the set isomorphism classes of irreducible smooth
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Weil representations of dimension n. The L-function extends to Gssn (K) via
Artin’s Euler factor definition and the ε-factors extend also ([40] Chapter
7, §30). The L-function is therefore invariant under induction ([40] p.189).

Local class field theory yields the reciprocity map αK : WK −→ K∗

with commutative diagrams featuring restriction, the norm and the Ver-
lagerung.

1.2. Deligne representations
A Deligne representation of WK is a triple (ρ, V,n) in which (ρ, V )

is a finite-dimensional smooth Weil representation and n ∈ Endk(V ) is a
nilpotent endomorphism satisfying ρ(x)nρ(x)−1 = ||x||n. We call (ρ, V,n)
semisimple if and only if (ρ, V ) is semisimple. Write Gn(K) for the equiva-
lence classes of n-dimensional semisimple Deligne representation of the Weil
group so that we have

G0
n(K) ⊂ Gssn (K) ⊂ Gn(K).

We have analogues of the usual constructions of operations on repre-
sentations:

(ρ, V,n)∨ = (ρ∨, V ∨,−n∨) (contragredients),

(ρ1, V1,n1)⊗ (ρ2, V2,n2) = (ρ1 ⊗ ρ2, V1 ⊗ V2, 1⊗ n2 + n1 ⊗ 1),

(ρ1, V1,n1)⊕ (ρ2, V2,n2) = (ρ1 ⊕ ρ2, V1 ⊕ V2,n1 ⊕ n2).

Ker(n) carries a Weil representation and the L-functions and ε-factors
are extended to Deligne representations via this.

Example 1.3. Sp(n)
Let V = kn and definite n(v0, v1, . . . , vn−1) = (0, v0, v1, . . . , vn−2) and

ρ0(x)(v0, v1, . . . , vn−1) = (v0, ||x||v1, ||x||2v2, . . . , ||x||n−1vn−1). Then we
set ρ(x) = ||x||(1−n)/2ρ0(x). The triple (ρ, kn,n) is a semisimple Deligne
representation denoted by Sp(n).

A semisimple Deligne representation of WK is indecomposable if it
cannot be written as the direct sum of two non-zero Deligne representations.
The indecomposable semisimple Deligne representations are precisely those
of the form ρ⊗ Sp(n) for some ρ ∈ G0

n(K).

1.4. l-adic representations
Let l be a prime different from p. Let G be a locally profinite group

and let C be a field of characteristic zero. A C-representation π : G −→
AutC(V ) is defined to be smooth if StabG(v) is an open subgroup of G for
every v ∈ V . Smooth representations form a category RepC(G). An iso-
morphism of fields gives, by extension of scalars, an equivalence of smooth
representation categories. For example an isomorphism of the form Ql

∼= C.
Similarly there is an equivalence of categories of Deligne representations.
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If n is a nilpotent endomorphism then exp(n) = 1 +
∑∞
j=1

nj

j! is a

unipotent automorphism and if u is such then log(u) =
∑∞
j=1 (−1)j−1 uj

j!

is a nilpotent endomorphism.
Consider V a d-dimensional Q

l
-vector space. The valuation Q

l
−→

Q
⋃
{∞} gives a metric on Q

l
– which is not complete. Hence GLd(Ql

) has
an entry-by-entry topology. A representation π : G −→ Aut(V ) ∼= GLd(Ql

)
is continuous if, viewed as a homomorphism to invertible matrices, it is
continuous in this topology. A smooth representation of G on V is always
continuous but not conversely.

We have t : IK −→ Zl given by mapping to Gal(E∞/K∞) then com-
posing with

t0 : Gal(E∞/K∞)
∼=−→
∏
l 6=p

Zl

and finally projecting to the l-adic coordinate. If PK is the wild ramification
group then we have a short exact sequence

0 −→ PK −→ Ker(t) −→
∏

m prime 6=l,p

Zm −→ 0.

We have t(gxg−1) = ||g||t(x) for x ∈ IK , g ∈ WK . The kernel of t contains
no open subgroup of IK .

The following result is important in classifying l-adic Weil representa-
tions.

Theorem 1.5.
Let (σ, V ) be a finite-dimensional continuous representation ofWK over

Ql with l 6= p. Then there exists a unique nilpotent nσ ∈ EndQl
(V ) such

that
σ(y) = exp(t(y)nσ)

for all y in some open subgroup of IK .

Proof
Uniqueness follows from nσ = t(y)−1log(σ(y)), which is independent of

y providing t(y) 6= 0. For existence assume that σ takes values in GLdQl

and let Zl denote the integral closure of Zl in Ql. Then 1 + lmMdZl for
m ≥ 1 is an open subgroup of GLdQl normalising 1 + lm+1MdZl with
abelian quotient of exponent l.

Viewing σ as a continuous homomorphism WK −→ GLdQl, let J de-
note the set of g ∈ Ker(t) such that σ(g) ∈ 1 + l2MdZl. Thus J is an open
subgroup of Ker(t) with σ(J) ⊆ 1+ l2MdZl. Its image in 1+l2MdZl

1+l3MdZl
is trivial

so that σ(J) ⊆ 1+ l3MdZl. By induction σ(J) = {1}. Since J is open there
is an open subgroup H0 of IK such that H0

⋂
Ker(t) ⊆ J . Shrinking H0
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if necessary we may assume that σ(H0) ⊆ 1 + l2MdZl. There is an open,
normal subgroup of finite index in WK such that H

⋂
IK ⊂ H0.

The restriction of σ to H
⋂
IK therefore factors through a continuous

homomorphism φ : t(H
⋂
IK) −→ 1 + l2MdZl; that is σ(h) = φ(t(h)) for

all h ∈ H
⋂
IK .

Therefore we have σ(ΦhΦ−1)q = σ(h) for all h ∈ H
⋂
IK and every

Frobenius element of WK . Suppose that σ(h)(v) = αv then σ(Φ)v is an
eigenvector for σ(ΦhΦ−1) with eigenvalue α. Hence αq is also an eigenvalue
for σ(h). As σ(h) is invertible this implies that α is a root of unity. Since
σ(h) ∈ 1 + l2MdZl then (σ(h)− 1)/l2 is integral over Zl.

However ([40] Lemma p.205) if α is a root of unity such that (α−1)/l2

is integral over Zl then α = 1.
Next choose h0 ∈ H

⋂
IK with t(h0) 6= 0 and set

nσ = t(h0)−1log(σ(h0)) which is nilpotent. Now put A = Zlt(h0). We have
two continuous homomorphisms – x 7→ φ(x) and x 7→ exp(xnσ) – which
coincide on h0 and hence on the closure A of Zlh0. Putting H ′ = t−1(A),
which is open, since A is open in Zl, yields the result. 2

Remark 1.6. (i) In Theorem 1.5 (σ, V ) is smooth if and only if nσ = 0.
In particular, (σ, V ) is smooth if V is one-dimensional.

Also, since ||g|| = 1 for g ∈ IK we see that nσ commutes with σ(IK).
(ii) If x ∈ IK , g ∈ WK we have – provided we are in H in some sense

–
σ(gxg−1) = exp(t(gxg−1)n) = exp(||g||t(x)n)

and

σ(gxg−1) = σ(g)exp(t(x)n)σ(g)−1 = exp(t(x)σ(g)nσ(g)−1)

so that
||g||n = σ(g)nσ(g)−1.

1.7. The equivalence of representation categories
Fix a Frobenius Φ ∈ WK and define

σΦ(Φax) = σ(Φax)exp(−t(x)nσ) a ∈ Z, x ∈ IK
Therefore, by Theorem 1.5, the homomorphism

σΦ :WK −→ AutQl
(V )

is trivial on some open subgroup of IK . It therefore yields a smooth rep-
resentation of WK . By Theorem 1.5, the triple (σΦ, V,nσ) is a Deligne
representation of WK on V .

Theorem 1.8. ([40] p.206)
Let Repf

Ql
(WK) denote the category of finite-dimensional continuous

representations of WK over Ql. Let Φ ∈ WKbe a Frobenius element and
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t : IK −→ Zl a continuous surjection. Then the map

(σ, V ) 7→ (σΦ, V,nσ)

is functorial and induces an equivalence of categories

Repf
Ql

(WK) '−→ D− Repf
Ql

(WK).

The isomorphism of the Deligne representation (σΦ, V,nσ) depends only on
the isomorphism class of (σ, V ); that is, it does not depend on the choice
of Φ and t.

1.9. Theorem 1.8 gives a canonical bijection between the set of isomor-
phism classes of finite-dimensional continuous representations of WK over
Ql and the set of isomorphism classes of Deligne representations of WK

over Ql. The latter can be transported from Ql to C.
The Langlands programme concerns the Φ-semisimple (σ, V )’s - that

is, those for which (σΦ, V,nσ) is semisimple.

Proposition 1.10. ([40] p.208)
Let (σ, V ) be a finite-dimensional continuous representation ofWK over

Ql. The following are equivalent:
(i) (σ, V ) is Φ-semisimple.
(ii) There is a Frobenius element Ψ ∈ WK such that σ(Ψ) is semisim-

ple.
(iii) For every g ∈ WK − IK the automorphism σ(g) is semisimple.

Theorem 1.11. ([40] p.208)
Let l be a prime not equal to p and let n ≥ 1 be an integer. There is

a canonical bijection between the following sets of isomorphism classes of
representations:

(i) n-dimensional Φ-semisimple continuous representations ofWK over
Ql

(ii) n-dimensional semisimple continuous Deligne representations of
WK over Ql.

The choice of an isomorphism Ql
∼= C induces a bijection of these sets

with isomorpism classes of n-dimensional semisimple Deligne representa-
tions of WK over C.

Remark 1.12. GLdFq
(i) In [93] and in [40] §25.4 p.159) we find two approaches to correspon-

dences involving Deligne representations of the Weil group and irreducible
complex representations of GLdFq. The first is combinatorial and the sec-
ond is a special case of the Langlands correspondence.

(ii) It is worth pointing out the analogy between the nilpotent operator
in a Deligne representation and the differential operators of (U(gl2C),K∞)-
modules associated to automorphic representations (Chapter Three, §§1.14-
1.16) via the (U(gl2C),K∞)×GL2Afin-module formulation.
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2. The bar-monomial resolution of a Deligne representation

2.1. We continue with the situation and notation of §1.1.
Let M(WK) denote the poset of pairs (H,φ) where H is a subgroup

of finite index in M(WK) and φ : H −→ k∗ is a continuous character.
Therefore the image of φ restricted to H

⋂
IK is finite. Given (H,φ) there

are infinitely many continuous characters which agree with φ on H
⋂
IK ,

since we may tensor φ with any homomorphism of the form

H ⊆ WK −→WK/IK ∼= Z −→ k∗.

Let (ρ, V,n) be a Deligne representation in Gn(K). If v ∈ V (H,φ) then

φ(g)−1ρ(g)(n(v)) = ρ(g)(n(ρ(g)−1(v))) = ||g||n(v) = q−vK(g)n(v)

so that n(V (H,φ)) ⊆ V (H,||−||·φ).

Proposition 2.2.
If the characteristic of k is not equal to p then there are only finitely

pairs (H,φ) ∈M(WK) for which V (H,φ) 6= 0.

Proof
The representation ρ factors through a quotient WK/N where N is a

normal subgroup which lies in the inertia group and where IK/N is finite.
Therefore, in order that V (H,φ) may possibly be non-zero it is necessary
that φ is trivial on H

⋂
IK/H

⋂
N . Hence there are only a finite number

of possibilities for the restriction of φ to IK . Therefore it suffices to choose
φ and prove that there are only a finite number of characters of the form
φi = || − ||i · φ such that V (H,φi) 6= 0.

If the characteristic of k is non-zero and not equal to p then q is non-zero
and of finite order in k∗ so that there are only a finite number of φi’s. If the
characteristic of k is zero assume that the result is false and choose non-zero
vectors vi1 , vi2 , . . . , vit with t strictly greater than the dimension of V and
vis ∈ V (H,φis ). There is a non-trivial linear dependence relation between
the vis ’s. Choose the shortest possible such linear dependence relation and
assume, rearranging the vis ’s if necessary, that it involves vi1 , vi2 , . . . , vir
with ij ≤ ir for all 1 ≤ j ≤ r − 1. That is, we have

a1vi1 + a2vi2 + . . .+ arvir = 0

with each aj non-zero. Choose any g ∈ H which does not lie in the inertia
group. Hence ||g|| 6= 0, 1. Applying ρ(g) to the relation yields

a1φ(g)||g||i1vi1 + a2φ(g)||g||i2vi2 + . . .+ arφ(g)||g||irvir = 0.

Subtracting φ(g)||g||ir times the first relation from the second leads to a
shorter non-trivial linear dependence relation, which is a contradiction. 2
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2.3. We may define a monomial category k[WK ]mon of Line Bundles
and morphism by replacing Mφ(G) by M(WK) (and relinquishing the
central character condition).

Let (ρ, V,n) be a Deligne representation in Gn(K). Set

S = ⊕(H,φ)∈M(WK),V (H,φ) 6=0 IndWK

H (kφ)

and set AS = End
k[WK ]mon(S). Following Chapter One §5 set

M̃S,i = Hom
k[WK ]mod(V(S), V )⊗k AS ⊗k . . .⊗k AS

and, by the same formulae as in the bar-monomial resolution define a com-
plex

. . .
d−→ M̃S,i ⊗k S

d−→ . . .
d−→ M̃S,1 ⊗k S

d−→ M̃S,0 ⊗k S
ε−→ V −→ 0.

All the differentials and the augmentation commute with the n on V and
post-composition with n on Hom

k[WK ]mod(V(S), V ), because
post-composition commutes with pre-composition. Endowed with post-
composition with n each M̃S,i ⊗k S becomes a Deligne k[WK ]-monomial
Line-Bundle and (M̃S,∗ ⊗k S, d) is a chain complex of such. We define a
monomial resolution of a Deligne representation in the obvious manner.

The bar-monomial chain complex given above is a monomial resolu-
tion of the representation V restricted to the inertia group. This follows
from the properties of the bar-monomial resolution for finite-dimensional
representations of finite groups.

The following conjecture should not be too difficult to prove - perhaps
by an explicit chain homotopy.

Conjecture 2.4. Let (ρ, V,n) be a finite-dimensional Deligne repre-
sentation over an algebraically closed field of characteristic zero. Then the
complex of §2.3

. . .
d−→ M̃S,i ⊗k S

d−→ . . .
d−→ M̃S,1 ⊗k S

d−→ M̃S,0 ⊗k S
ε−→ V −→ 0,

endowed with the nilpotent endomorphism induced by n, is a monomial
resolution of the Deligne representation V .



CHAPTER 6

Kondo style invariants

In [85] a Gauss sum is attached to each finite-dimensional complex
irreducible representation V of GLnFq. The Kondo-Gauss sum is a scalar
d × d-matrix where d = dimC(V ). In Chapter Twelve (Appendix III, §3)
I recapitulate the construction of [85] but giving the formulae in terms of
character values, which simultaneously removes the irreducibility condition
and reveals the functorial properties (e.g. invariance under induction; see
Appendix III, Theorem 3.2).

In this chapter the theme is the association of ε-factors, L-functions and
Kondo-style invariants to the terms in a monomial resolution of an admissi-
ble representation V of GLnK when K is a p-adic local field. The examples
here suggest that eventually one may be able to construct the ε-factors and
L-functions of [66] by merely applying variations of my constructions to
the monomial modules which occur in the monomial resolution of V and
taking the Euler characteristic.

In §1 ρ is a finite-dimensional complex representation ρ of a compact
modulo the centre subgroup J of GLnK. To this I associate a Kondo-style
Gauss sum τJ(ρ), defined by the formula used in Appendix III, §3, and
show that, at least for GL2K, that τJ(ρ) is given by a “Haar integral”
over J when the multiplicity of the trivial representation in ρ is zero (as in
Appendix III, Lemma 1.7).

In §2 we recapitulate the properties and construction of the Haar inte-
gral on a locally p-adic Lie group G. Then we recall in the case G = K,K∗

Weil’s approach [142] to Tate’s thesis, which derives the local functional
equation (Corollary 2.23) Then we study the simple case of G = 〈K∗, u〉
which is a finite modulo the centre subgroup of GL2K. From the case
G = K,K∗ we construct meromorphic extension to the whole complex
plane of eigendistributions which are analogous to those of [142] and de-
rive a functional equation in Example 2.28.

In §3 I explain how the case when G is finite modulo the centre extends
the local functional equation to the compact open modulo the centre sub-
groups of GLnK. I conclude the section with several questions related to
what conjecturally might happen if one could take the Euler characteristic

149
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of the constructions in §2 applied term-by-term to a monomial resolution
of an admissible representation V of GLnK.

1. Kondo style epsilon factors

1.1. Let K be a p-adic local field with valuation ring OK and prime
ideal PK . Write UnK = 1 + PnK for n ≥ 1 and U0

K = O∗K . The standard
additive character on K is

ψK : K
traceK/Qp−→ Qp −→ Qp/Zp ⊂ C∗

where the final map is given by 1/n+ Z 7→ e2π
√
−1/n

We have a chain of fractional ideals

· · · ⊂ P3
K ⊂ P2

K ⊂ PK ⊂ OK ⊂ P−1
K OK ⊂ P

−2
K OK ⊂ · · ·

and D−1
K = PeK – a fractional ideal called the codifferent (or inverse dif-

ferent) – is the biggest fractional ideal on which ψK is trivial. That is,
ψK(PeK) ⊆ Zp and ψK(Pe−1

K ) 6⊆ Zp. The different is the fractional ideal
DK = P−eK .

1.2. Kondo-Gauss sums for compact modulo the centre subgroups
For n ≥ 1 let UnK = 1 + πnKMmOK ⊆ U0

K = GLmOK where MmOK is
the ring of m×m matrices with entries in OK .

Let J be a compact modulo the centre subgroup of GLmK which con-
tains the centre K∗ and let ρ be a continuous, finite-dimensional complex
representation of J . Let nJ(ρ) be the least integer such that ρ factorises
through J/J

⋂
U
nJ (ρ)
K . Set fJ(ρ) = PnJ (ρ)

K , which shall be called the J-
conductor of ρ (or sometimes merely the conductor of ρ if the identity of J
is clear).

Choose c ∈ K such that OK · c = fJ(ρ)DK , where DK is the different
of K so that DKD−1

K = OK .
Define the Kondo-Gauss sum τJ(ρ) by

τJ(ρ) =
1

dim(ρ)

∑
X∈J∩U0

K
/J∩UnJ (ρ)

K

χρ(c−1X)ψK(Trace(c−1X)).

Here χρ is the character function given by X 7→ Trace(ρ) ∈ C.

Lemma 1.3.
Suppose that ρ restricted to the centre J

⋂
K∗ = K∗ is given by a

central character φ (for example, if ρ is irreducible). Then τJ(ρ) is well-
defined in §1.2.

Proof
The χρ(c−1X) term is well-defined because if X,X ′ ∈ J

⋂
U0
K satisfy

X ′ = XU with U ∈ J
⋂
U
nJ (ρ)
K then we have ρ(U) = I, the identity, so
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that

χρ(c−1X ′) = φ(c)−1χρ(XU) = φ(c)−1χρ(X) = χρ(c−1X).

Also, if U = I +W , then

ψK(Trace(c−1X ′)) = ψK(Trace(c−1X + c−1W ))

= ψK(Trace(c−1X))ψK(Trace(c−1W ))

= ψK(Trace(c−1X))

because Trace(c−1W ) ∈ D−1
K . 2

Example 1.4. If nJ(ρ) = 0 then ρ is J-unramified and the formula
becomes

τJ(ρ) =
1

dim(ρ)
dim(ρ)φ(c−1)ψK(Trace(c−1)) = φ(c−1) = φ(D−1

K ).

Lemma 1.5.
If n ≥ 0 and d ∈ P−nK D

−1
K then

∑
x∈OK/PnK

ψK(xd) =

 |NPK |
n if d ∈ D−1

K ,

0 otherwise.

Proof
If d ∈ D−1

K then xd ∈ D−1
K and ψK(xd) = 1. Otherwise, if x ≡

y (modulo PnK) then xd ≡ yd (modulo PnKd) and PnKd ⊆ D
−1
K so that

ψK(xd) = ψK(yd) and the sum is well-defined. But if d 6∈ D−1
K there exists

x1 ∈ OK such that ψK(x1d) 6= 1 and so∑
x∈OK/PnK

ψK(xd) =
∑

x∈OK/PnK

ψK((x+x1)d) = ψK(x1d)
∑

x∈OK/PnK

ψK(xd),

which shows that the sum is zero. 2

Corollary 1.6.
If n ≥ 0 and d ∈ P−nK D

−1
K then

∑
x∈O∗

K
/Un

K

ψK(xd) =



1 if n = 0,

|NPK |n−1(|NPK | − 1) if d ∈ D−1
K and n ≥ 1,

−|NPK |n−1 if d 6∈ D−1
K , πKd ∈ D−1

K ,
n ≥ 1,

0 if πKd 6∈ D−1
K , n ≥ 1.
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Proof
Again the sum is well-defined. Since OK/PnK is local, O∗K/UnK =

(OK/PnK)∗ = OK/PnK − PK/PnK . Therefore the order of O∗K/UnK is equal
to |NPK |n−1(|NPK | − 1) when n ≥ 1 and to 1 when n = 0. This yields
the formulae when d ∈ D−1

K . The formula∑
x∈O∗

K
/Un

K

ψK(xd) =
∑

x∈OK/PnK

ψK(xd)−
∑

x∈OK/Pn−1
K

ψK(πKxd)

yields the other two formulae. 2

Lemma 1.7.
In the situation of §1.2 and Lemma 1.3 suppose that 1 ≤ n < nJ(ρ) <<

t. Then, if cn ∈ P−nK D
−1
K and the multiplicity of 1 in ρ is zero (i.e. the

Schur inner product satisfies 〈ρ, 1〉J∩Un
K
/J∩Ut

K
= 0),∑

X∈J∩Un
K
/J∩Ut

K

χρ(cnX)ψK(Trace(cnX)) = 0.

In general∑
X∈J∩Un

K
/J∩Ut

K
χρ(cnX)ψK(Trace(cnX))

= φ(cn)ψK(cn)m[J
⋂
UnK : J

⋂
U tK ]〈ρ, 1〉J∩Un

K
/J∩Ut

K
.

Proof
This is a well-defined sum. If X ≡ X ′ (modulo PtK · MmOK) then

Trace(cnX − cnX ′) ∈ D−1
K so that

1 = ψK(Trace(cnX − cnX ′)) = ψK(Trace(cnX))ψK(Trace(cnX ′))−1.

Also
χρ(cnX ′) = φ(cn)χρ(X ′) = φ(cn)χρ(XU)

for some U ∈ U tK so that ρ(XU) = ρ(X) and therefore

χρ(cnX ′) = φ(cn)χρ(X) = χρ(cnX).

Then, if X ∈ UnK with n ≥ 1 we have

cnX ∈ cn + cnPnK ·MmOK ⊆ cn +D−1
K ·MmOK .

Therefore the sum is equal to∑
X∈J∩Un

K
/J∩Ut

K
χρ(cnX)ψK(mcn)

= ψK(cn)mφ(cn)
∑
X∈J∩Un

K
/J∩Ut

K
χρ(X)

= φ(cn)ψK(cn)m[J
⋂
UnK : J

⋂
U tK ]〈ρ, 1〉J∩Un

K
/J∩Ut

K
,

as required. 2
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The proof of Lemma 1.7 also yields the following result, since

〈ρ, 1〉
J∩UnJ (ρ)

K
/J∩Ut

K

= dimC(ρ).

Lemma 1.8.
In the situation of §1.2 and Lemma 1.3 suppose that

1 ≤ nJ(ρ) << t. Then, if cnJ (ρ) ∈ P
−nJ (ρ)
K D−1

K ,∑
X∈J∩UnJ (ρ)

K
/J∩Ut

K

χρ(cnJ (ρ)X)ψK(Trace(cnJ (ρ)X))

= φ(cnJ (ρ))ψK(cnJ (ρ))m[J
⋂
U
nJ (ρ)
K : J

⋂
U tK ]dimC(ρ).

Lemma 1.9.
In the situation of §1.2 and Lemma 1.3 suppose that 1 ≤ n < nJ(ρ) <<

t and cn ∈ P−nK D
−1
K . Suppose that n = nJ(ρ)− 1, then∑

X∈J∩U0
K
/J∩Ut

K
χρ(cnX)ψK(Trace(cnX))

= [J ∩ UnK : J ∩ U tK ]
∑
X∈J∩U0

K
/J∩Un

K
χ
V
J∩Un

K
(cnZi)ψK(Trace(cnZi)).

where V is the vector space which affords the representation ρ.

Proof
Let Z1, . . . , Zs ∈ J

⋂
U0
K be a set of coset representatives for

J
⋂
U0
K/J

⋂
UnK and let W1,W2 . . .Wv ∈ J

⋂
UnK be a set of coset rep-

resentatives for J
⋂
UnK/J

⋂
U tK . Hence {ZiWj | 1 ≤ i ≤ s, 1 ≤ j ≤ v} is

a set of coset representatives for J
⋂
U0
K/J

⋂
U tK . In addition

cnZiWj ∈ cnZi + cnZiPnK ⊆MmOKcnZi + ZiD−1
K MmOK .

Therefore ∑
X∈J∩U0

K
/J∩Ut

K
χρ(cnX)ψK(Trace(cnX))

=
∑s
i=1

∑v
j=1 φ(cn)χρ(ZiWj)ψK(Trace(cnZi)).

Now we shall use the fact that n = nJ(ρ) − 1 and we consider the
matrix representation of∑s

i=1

∑v
j=1 φ(cn)ρ(ZiWj)ψK(Trace(cnZi))

=
∑s
i=1

∑v
j=1 φ(cn)ρ(Zi)ρ(Wj)ψK(Trace(cnZi))

=
∑s
i=1 φ(cn)ρ(Zi)ψK(Trace(cnZi))(

∑v
j=1 ρ(Wj)).

The Wj ’s runs through J
⋂
U
nJ (ρ)−1
K /J

⋂
U tK and ρ on this quotient group

factors through the abelian quotient J
⋂
U
nJ (ρ)−1
K /J

⋂
U
nJ (ρ)
K . Therefore,
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in terms of matrices, we may diagonalise ρ on J
⋂
U
nJ (ρ)−1
K /J

⋂
U tK as

Wj 7→



λ1(Wj) 0 0 . . . . . . 0 0 0

0 λ2(Wj) 0 . . . . . . 0 0 0

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 λk(Wj) . . . . . . 0 0

0 0 0 0 0 0 1 . . . 0 0

...
...

...
...

...
...

...
...

...
...


where λ1, . . . , λk are the only non-trivial characters

J
⋂
U
nJ (ρ)−1
K /J

⋂
U tK −→ C∗

appearing on the diagonal of this matrix representation of ρ. Therefore the
matrix

∑v
j=1 ρ(Wj) has the form, summed over J ∩ UnJ (ρ)−1

K /J ∩ U tK ,∑v
j=1 ρ(Wj)

=
∑
W



λ1(W ) 0 0 . . . . . . 0 0 0

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 λk(W ) . . . . . . 0 0

0 0 0 0 0 0 1 . . . 0 0

...
...

...
...

...
...

...
...

...
...



= [J ∩ UnJ (ρ)−1
K : J ∩ U tK ]

 0 0

0 Id−k


where the three 0’s are the k× k, k× (d− k), (d− k)× k zero matrices and
Id−k is the (d− k)× (d− k) identity matrix and d = dimC(V ). The matrix
Id−k comes from the trivial action of ρ on the fixed-points V J∩U

nJ (ρ)−1
K .
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Therefore, for each 1 ≤ i ≤ s

φ(cn)
∑v
j=1 χρ(ZiWj)ψK(Trace(cnZi))

= [J ∩ UnJ (ρ)−1
K : J ∩ U tK ]φ(cn)×∑v

j=1 χ
V
J∩U

nJ (ρ)−1
K

(Zi)ψK(Trace(cnZi))

= [J ∩ UnJ (ρ)−1
K : J ∩ U tK ]

∑v
j=1 χ

V
J∩U

nJ (ρ)−1
K

(cnZi)ψK(Trace(cnZi))

= [J ∩ UnK : J ∩ U tK ]
∑
X∈J∩U0

K
/J∩Un

K
χ
V
J∩Un

K
(cnZi)ψK(Trace(cnZi)),

Next I shall prove Lemma 1.9 in general, by an induction based on the
proof of that special case.

Lemma 1.10.
In the situation of §1.2 and Lemma 1.3 suppose that 1 ≤ n < nJ(ρ) <<

t and cn ∈ P−nK D
−1
K . Then

∑
X∈J∩U0

K
/J∩Ut

K
χρ(cnX)ψK(Trace(cnX))

= [J ∩ UnK : J ∩ U tK ]
∑
Z∈J∩U0

K
/J∩Un

K
χ
V
J∩Un

K
(cnZ)ψK(Trace(cnZ)).

where V is the vector space which affords the representation ρ.

Proof
Let Z1, . . . , Zs ∈ J

⋂
U0
K be a set of coset representatives for

J
⋂
U0
K/J

⋂
UnK and let W1, . . . ,Wv ∈ J

⋂
UnK be a set of coset represen-

tatives for J
⋂
UnK/J

⋂
U tK . Hence {ZiWj} is a set of coset representatives

for J
⋂
U0
K/J

⋂
U tK . Let us subdivide the Wi’s so that

W1, . . . ,Wv1 is a set of coset representatives for J
⋂
U
nJ (ρ)−1
K /J

⋂
U tK

Wv1+1, . . . ,Wv1+v2 are coset representatives of
J
⋂
U
nJ (ρ)−2
K /J

⋂
U
nJ (ρ)−1
K

Wv1+v2+1, . . . ,Wv1+v2+v3 is a set . . . for J
⋂
U
nJ (ρ)−3
K /J

⋂
U
nJ (ρ)−2
K

...
...

...
...

...
...

...
...

Wv1+...+vnJ (ρ)−n−1+1, . . . ,Wv1+...+vnJ (ρ)−n is a set . . . for
J
⋂
UnK/J

⋂
Un+1
K .
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Let du = [J ∩ UuK : J ∩ U tK ]. By the inductive step explained in the
proof of Lemma 1.9 we have∑

X∈J∩U0
K
/J∩Ut

K
χρ(cnX)ψK(Trace(cnX))

=
∑s
i=1

∑v1+...+vnJ (ρ)−n
j=1 φ(cn)χρ(ZiWj)ψK(Trace(cnZi))

= dnJ (ρ)−1

∑s
i=1

∑v2+...+vnJ (ρ)−n
j=1 φ(cn)χ

V
J∩U

nJ (ρ)−1
K

(ZiWj)×
ψK(Trace(cnZi))

= dnJ (ρ)−2

∑s
i=1

∑v3+...+vnJ (ρ)−n
j=1 φ(cn)χ

V
J∩U

nJ (ρ)−2
K

(ZiWj)×
ψK(Trace(cnZi))

= dn
∑s
i=1 φ(cn)χV J∩UnK (Zi)ψK(Trace(cnZi)),

as required. 2

Lemma 1.11.
In the situation of §1.2 and Lemma 1.3 suppose that 0 = n = nJ(ρ) <<

t. Then, if c0 ∈ D−1
K ,∑
X∈J∩U0

K
/J∩Ut

K
χρ(c0X)ψK(Trace(c0X))

= [J ∩ U0
K : J ∩ U tK ]dimC(ρ)φ(c0).

Proof
Since ρ is trivial on J

⋂
U0
K∑

X∈J∩U0
K
/J∩Ut

K
χρ(c0X)ψK(Trace(c0X))

=
∑
X∈J∩U0

K
/J∩Ut

K
φ(c0)dimC(ρ)ψK(Trace(c0X))

= [J ∩ U0
K : J ∩ U tK ]dimC(ρ)φ(c0),

because Trace(c0X) ∈ D−1
K so that ψK(Trace(c0X)) = 1. 2

Lemma 1.12.
In the situation of §1.2 and Lemma 1.3 suppose that

〈cnJ (ρ)〉 = P−nJ (ρ)D−1
K ,∑

X∈J∩U0
K
/J∩UnJ (ρ)

K

χρ(X)ψK(Trace(c0X)) = dimC(ρ) τJ (ρ)
φ(c0)

.

Proof
By definition. 2
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Lemma 1.13.
In the situation of §1.2 and Lemma 1.3 suppose that cn ∈ P−nK D

−1
K and

1 ≤ nJ(ρ) < n << t. Then

∑
X∈J∩UnJ (ρ)

K
/J∩Ut

K

χρ(cnX)ψK(Trace(cnX))

= φ(cn)[J ∩ UnK : J ∩ U tK ]
∑
X∈J∩UnJ (ρ)

K
/J∩Un

K

ψK(Trace(cnX)).

Proof
Let Z1, . . . , Zs ∈ J

⋂
U
nJ (ρ)
K be coset representatives for

J
⋂
U
nJ (ρ)
K /J

⋂
UnK and let W1, . . . ,Wv ∈ J

⋂
UnK be a set of coset rep-

resentatives for J
⋂
UnK/J

⋂
U tK . Hence {ZiWj} are coset representatives

for J
⋂
U
nJ (ρ)
K /J

⋂
U tK . Then

∑
X∈J∩UnJ (ρ)

K
/J∩Ut

K

χρ(cnX)ψK(Trace(cnX))

= φ(cn)
∑s
i=1

∑v
j=1 ψK(Trace(cnZiWj))

= φ(cn)
∑s
i=1

∑v
j=1 ψK(Trace(cnZi))ψK(Trace(cnZi(Wj − 1)))

= φ(cn)[J ∩ UnK : J ∩ U tK ]
∑
X∈J∩UnJ (ρ)

K
/J∩Un

K

ψK(Trace(cnX)),

as required. 2

The formula of Lemma 1.13 features a constant which depends on the
identity of J , which is an issue I shall examine below.

Lemma 1.14.
In the situation of §1.2 and Lemma 1.3 suppose that cn ∈ P−nK D

−1
K and

1 ≤ nJ(ρ) < n << t. Then

∑
X∈J∩U0

K
/J∩Ut

K
χρ(cnX)ψK(Trace(cnX))

=
∑
Z∈J∩U0

K
/J∩UnJ (ρ)

K

φ(cn)χρ(Z)[J ∩ UnK : J ∩ U tK ]A(Z,W )

where A(Z,W ) =
∑
W∈J∩UnJ (ρ)

K
/J∩Un

K

ψK(Trace(cnZW )).

Proof
Let Z1, . . . , Zs ∈ J

⋂
U0
K be a set of coset representatives for

J
⋂
U0
K/J

⋂
U
nJ (ρ)
K and let W1, . . . ,Wv ∈ J

⋂
U
nJ (ρ)
K be a set of coset
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representatives for J
⋂
U
nJ (ρ)
K /J

⋂
U tK . Therefore∑

X∈J∩U0
K
/J∩Ut

K
χρ(cnX)ψK(Trace(cnX))

=
∑s
i=1

∑v
j=1 φ(cn)χρ(ZiWj)ψK(Trace(cnZiWj))

=
∑
Z∈J∩U0

K
/J∩UnJ (ρ)

K

φ(cn)χρ(Z)[J ∩ UnK : J ∩ U tK ]A(Z,W ),

as required. 2

The formula of Lemma 1.14 contains occurrences of the constant from
Lemma 1.13, which depends on the identity of J , which is an issue I shall
examine below.

Lemma 1.15.
In the situation of §1.2 and Lemma 1.3 suppose that

〈cnJ (ρ)〉 = P−nJ (ρ)
K D−1

K

and 1 ≤ nJ(ρ) << t. Then∑
X∈J∩U0

K
/J∩Ut

K
χρ(cnJ (ρ)X)ψK(Trace(cnJ (ρ)X))

= [J ∩ UnJ (ρ)
K : J ∩ U tK ]τJ(ρ).

Proof
Let Z1, . . . , Zs ∈ J

⋂
U0
K be a set of coset representatives for

J
⋂
U0
K/J

⋂
U
nJ (ρ)
K and let W1, . . . ,Wv ∈ J

⋂
U
nJ (ρ)
K be a set of coset

representatives for J
⋂
U
nJ (ρ)
K /J

⋂
U tK . Therefore∑

X∈J∩U0
K
/J∩Ut

K
χρ(cnJ (ρ)X)ψK(Trace(cnJ (ρ)X))

=
∑s
i=1

∑v
j=1 φ(cnJ (ρ))χρ(ZiWj)ψK(Trace(cnJ (ρ)ZiWj))

=
∑s
i=1

∑v
j=1 φ(cnJ (ρ))χρ(Zi)ψK(Trace(cnJ (ρ)Zi))×

ψK(Trace(cnJ (ρ)Zi(Wj − 1)))

=
∑s
i=1 χρ(cnJ (ρ)Zi)ψK(Trace(cnJ (ρ)Zi))[J ∩ U

nJ (ρ)
K : J ∩ U tK ]

= [J ∩ UnJ (ρ)
K : J ∩ U tK ]τJ(ρ),

as required. 2

1.16. In the situation of §1.2 and Lemma 1.3 suppose that 1 ≤ n <
nJ(ρ) << t. Set ρn equal to the representation given on V J∩U

n
K

ρn : J
⋂
U0
K −→ Aut(V J∩U

n
K )

so that nJ(ρn) ≤ n << t.
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If 1 ≤ nJ(ρn) ≤ n << t we have

∑
X∈J∩U0

K
/J∩Ut

K
χρ(cnX)ψK(Trace(cnX))

= [J
⋂
UnK : J

⋂
U tK ]

∑
X∈J∩U0

K
/J∩UnJ (ρn)

K

χρn(cnX)ψK(Trace(cnX))

+[J
⋂
UnK : J

⋂
U tK ]φ(cn)〈ψK(cn · −), 1〉

J∩UnJ (ρn)
K

= [J
⋂
U
nJ (ρn)
K : J

⋂
U tK ]τJ(ρn)

+[J
⋂
UnK : J

⋂
U tK ]φ(cn)〈ψK(cn · −), 1〉

J∩UnJ (ρn)
K

.

Theorem 1.17.
In the situation of §1.2 and Lemma 1.3 suppose that H ⊆ J are two

compact modulo the centre subgroups with [J : H] finite and that t is large
enough so that Ut ⊆ H. Let σ be a finite-dimensional representation of H.
Then

1
dimC(σ)

∑
X∈H∩U0

K
/H∩Ut

K
χσ(cnX)ψK(Trace(cnX))

= 1

dimC(Ind
J∩U0

K

H∩U0
K

(σ))

∑
X∈J∩U0

K
/J∩Ut

K
χ

Ind
J∩U0

K

H∩U0
K

(σ)
(cnX)ψK(Trace(cnX)).

Proof
The proof is going to use the same argument as the proof of Theorem

3.2 in Appendix Three. Since H ∩ U tK = J ∩ U tK we may consider σ as a
representation of H̃ = H ∩ U0

K/H ∩ U tK . If J̃ = J ∩ U0
K/J ∩ U tK we have

H̃ ⊆ J̃ and we may set ρ = IndJ̃
H̃

(σ).
By definition

|H̃|
|J̃|·dimC(σ)

∑
X∈J̃ χρ(cnX)ψK(Trace(cnX))

= 1
|J̃|·dimC(σ)

∑
X∈J̃

∑
Y ∈J̃, Y XY −1∈H̃ χσ(cnY XY −1)ψK(Trace(cnX))

= 1
|J̃|·dimC(σ)

∑
X∈J̃

∑
Y ∈J̃, Y XY −1∈H̃ χσ(cnY XY −1)×

ψK(Trace(cnY XY −1))

by the character formula for an induced representation ([126] Theorem
1.2.43). Consider the free action of J̃ on J̃ × J̃ given by (X,Y )Z =
(Z−1XZ, Y Z) for XY,Z ∈ J̃ . The map from J̃ × J̃ to J̃ sending (X,Y ) to
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Y XY −1 is constant on each J̃-orbit. Therefore
1

|J̃|·dimC(σ)

∑
X∈J̃

∑
Y ∈J̃, Y XY −1∈H̃ χσ(cnY XY −1)×

ψK(Trace(cnY XY −1))

= 1
|J̃|·dimC(σ)

|J̃ |
∑
U∈H̃ χσ(cnU)ψK(Trace(cnU)),

as required. 2

1.18. The constant from Lemma 1.13
In the situation of §1.2 and Lemma 1.3 suppose that cn ∈ P−nK D

−1
K and

1 ≤ nJ(ρ) < n. Then, in Lemma 1.13, we encountered the constant∑
X∈J∩UnJ (ρ)

K
/J∩Un

K

ψK(Trace(cnX)).

I would like to evaluate this in the case when J ⊆ GL2K is one of:
Case (i): GL2OK and
Case (ii):

J = {

 a bπK

c d

 | a, b, c, d ∈ OK , ad ∈ O∗K}.
Case (iii):

J = 〈

 0 1

π−1
K 0

 ,

 a bπK

c d

 | a, b, c, d ∈ OK , ad ∈ O∗K〉.
Lemma 1.19.
In Case (i), Case (ii) and Case (iii) of §1.18∑

X∈J∩UnJ (ρ)
K

/J∩Un
K

ψK(Trace(cnX)) = 0

Proof
In Case (i) GL2OK

⋂
U
nJ (ρ)
K = U

nJ (ρ)
K and GL2OK

⋂
UnK = UnK so that

the coset representatives X have the form

I2 + π
nJ (ρ)
K

 a b

c d


with a, b, c, d ∈ OK/Pn−nJ (ρ)

K . Therefore

ψK(cnX) = ψK(cn)2ψK(cnπ
nJ (ρ)
K (a+ d))
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and so∑
X∈GL2OK∩U

nJ (ρ)
K

/GL2OK∩UnK
ψK(Trace(cnX))

=
∑
X∈UnJ (ρ)

K
/Un

K

ψK(Trace(cnX))

= ψK(cn)2|NPK |2n−2nJ (ρ)
∑
a,d∈OK/P

n−nJ (ρ)
K

ψK(cnπ
nJ (ρ)
K (a+ d))

= ψK(cn)2|NPK |3n−3nJ (ρ)
∑
z∈OK/P

n−nJ (ρ)
K

ψK(cnπ
nJ (ρ)
K z)

= 0,

by Lemma 1.5 since cnπ
nJ (ρ)
K generates PnJ (ρ)−n

K D−1
K 6⊆ D

−1
K .

In Case (ii) also we have J
⋂
U
nJ (ρ)
K = U

nJ (ρ)
K and J

⋂
UnK = UnK so

that the sum is again zero.
In Case (iii) the sum to be evaluated coincides with that of Case (ii)

because the intersections of these two J ’s with UmK are the same. 2

1.20. Results in Cases (i), (ii) and (iii) of §1.18
Assume that J is as in Cases (i) and (ii) of §1.18 so that∑

X∈J∩UnJ (ρ)
K

/J∩Un
K

ψK(Trace(cnX))

=
∑
X∈UnJ (ρ)

K
/Un

K

ψK(Trace(cnX))

= 0

when 1 ≤ nJ(ρ) < n and 〈cn〉 = P−nK D
−1
K . In addition, if Z ∈ GL2OK ,

then we also have∑
X∈J∩UnJ (ρ)

K
/J∩Un

K

ψK(Trace(cnZX))

=
∑
X∈UnJ (ρ)

K
/Un

K

ψK(Trace(cnZX))

=
∑
X∈UnJ (ρ)

K
/Un

K

ψK(Trace(cnZ))ψK(Trace(cnZ(X − I2)))

=
∑
X∈UnJ (ρ)

K
/Un

K

ψK(Trace(cnZ))ψK(Trace(cn(X − I2)))

= 0,

because during this sum the matrices Z(X − I2) run over a set which is
independent of Z ∈ GL2OK .
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If ρJ∩U
n
K denotes the representation of J given by the

J
⋂
UnK-fixed points of ρ then for any irreducible ρ we have

ρJ∩U
n
K =

 ρ if nJ(ρ) ≤ n,

0 otherwise.

Therefore, by Lemma 1.10, 1 ≤ n < nJ(ρ) << t and 〈cn〉 = P−nK D
−1
K

and ρ is an irreducible J-representation∑
X∈J∩U0

K
/J∩Ut

K
χρ(cnX)ψK(Trace(cnX))

= [J ∩ UnK : J ∩ U tK ]
∑
X∈J∩U0

K
/J∩Un

K
χ
ρ
J∩Un

K
(cnZi)ψK(Trace(cnZi))

= 0.

In addition, if n = 0 with ρ non-trivial , irreducible and 1 ≤ nJ(ρ) << t
then 〈c0〉 = D−1

K so that∑
X∈J∩U0

K
/J∩Ut

K
χρ(c0X)ψK(Trace(c0X))

= φ(c0)
∑
X∈J∩U0

K
/J∩Ut

K
χρ(X)

= φ(c0)[J ∩ U0
K : J ∩ U tK ]〈ρ, 1〉J∩U0

K

= 0.

From Lemma 1.15 we have, if 1 ≤ nJ(ρ) << t and

〈cnJ (ρ)〉 = P−nJ (ρ)
K D−1

K ,∑
X∈J∩U0

K
/J∩Ut

K
χρ(cnJ (ρ)X)ψK(Trace(cnJ (ρ)X))

= [J ∩ UnJ (ρ)
K : J ∩ U tK ]

∑
X∈J∩U0

K
/J∩UnJ (ρ)

K

χρ(cnJ (ρ)X)×
ψK(Trace(cnJ (ρ)X)).

Next we turn to the range 1 ≤ nJ(ρ) < n << t and 〈cn〉 = P−nK D
−1
K .

By Lemma 1.14∑
X∈J∩U0

K
/J∩Ut

K
χρ(cnX)ψK(Trace(cnX))

=
∑
Z∈J∩U0

K
/J∩UnJ (ρ)

K

φ(cn)χρ(Z)[J ∩ UnK : J ∩ U tK ]A(Z,W )

= 0,

where A(Z,W ) =
∑
W∈J∩UnJ (ρ)

K
/J∩Un

K

ψK(Trace(cnZW )).
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Therefore if ρ is non-trivial, irreducible with nJ(ρ) ≥ 1 and
〈cn〉 = P−nK D

−1
K then

limN0,t→∞
∑

0≤n≤N0<<t

∑
X∈J∩U0

K
/J∩Ut

K

χρ(cnX)ψK(Trace(cnX))
dimC(ρ)[J∩Un

K
:J∩Ut

K
]

=
∑
X∈J∩U0

K
/J∩UnJ (ρ)

K

χρ(cnJ (ρ)X)ψK(Trace(cnJ (ρ)X))

dimC(ρ)

= τJ(ρ).

Next we examine the case when nJ(ρ) = 0 so that

limN0,t→∞
∑

0≤n≤N0<<t

∑
X∈J∩U0

K
/J∩Ut

K

χρ(cnX)ψK(Trace(cnX))
dimC(ρ)[J∩Un

K
:J∩Ut

K
]

= limN0,t→∞
∑

0≤n≤N0<<t

∑
X∈J∩U0

K
/J∩Ut

K

φ(cn)dimC(ρ)ψK(Trace(cnX))

dimC(ρ)[J∩Un
K

:J∩Ut
K

]

= limN0,t→∞
∑

0≤n≤N0<<t

∑
X∈J∩U0

K
/J∩Ut

K

φ(cn)ψK(Trace(cnX))

[J∩Un
K

:J∩Ut
K

]

= φ(c0) + limN0,t→∞
∑

1≤n≤N0<<t

∑
X∈J∩U0

K
/J∩Ut

K

φ(cn)ψK(Trace(cnX))

[J∩Un
K

:J∩Ut
K

]
.

However, if n ≥ 1, let X1, . . . , Xs ∈ J
⋂
U0
K be a set of coset repre-

sentatives of J ∩ U0
K/J ∩ U1

K and let W1, . . . ,Wv ∈ U1
K be a set of coset

representatives of J ∩ U1
K/J ∩ U tK . Therefore∑

X∈J∩U0
K
/J∩Ut

K
ψK(Trace(cnX))

=
∑s
i=1

∑v
j=1 ψK(Trace(cnZiWj))

=
∑s
i=1 ψK(Trace(cnZi))

∑v
j=1 ψK(Trace(cnZi(Wj − I2)))

=
∑s
i=1 ψK(Trace(cnZi))

∑v
j=1 ψK(Trace(cn(Wj − I2)))

= 0,

by the argument used in §1.20. Hence we have shown that

limN0,t→∞
∑

0≤n≤N0<<t

∑
X∈J∩U0

K
/J∩Ut

K

χρ(cnX)ψK(Trace(cnX))
dimC(ρ)[J∩Un

K
:J∩Ut

K
]

= φ(c0)

= τJ(ρ)

in this case also.
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2. Tate’s thesis in the compact modulo the centre case

2.1. Let K be a p-adic local field and let OK , πK , PK etc. be as in §1.1.
Throughout this section G will be a locally p-adic Lie group containing K∗

within its centre and such that G/K∗ is compact. In fact we rather favour
the case when G/K∗ is finite, reducing the more general case to this one.
For example, within GL2K we have the subgroup

G = 〈K∗, u〉 ⊂ GL2K

where, as usual,

u =

 0 1

π−1
K 0


so that u2 = π−1

K ∈ K∗.

2.2. Let G be a locally profinite group and C∞c (G) the space of locally
constant functions f : G −→ C of compact support [40]. For any such
function there are compact open subgroups C1, C2 such that f(c1gc2) =
f(g) for all g ∈ G, ci ∈ Ci. Hence f is a linear combination of characteristic
functions of C\G/C with C = C1

⋂
C2.

For example, if G is the additive group of a p-adic local field K then
any compact open subgroup contains a compact open subgroup of the form
PnK of finite index. Hence any f ∈ C∞c (K) is a finite linear combination
of characteristic functions Φx+Pn

K
of cosets x+ PnK . Hence there exists an

integer r ≥ 0 such that f(x) 6= 0 implies x ∈ P−rK and f is constant on each
coset x+ PrK . This Schwartz-Bruhat space is denoted by S(K) in ([86] p.
115; see also [143]) (see §2.3).

Another important example is given by G = K∗. As usual, set U0
K =

O∗K and UnK = 1 + PnK for n ≥ 1. Any compact open subgroup of K∗

contains a compact open subgroup of the form UnK of finite index. Hence
any f ∈ C∞c (K∗) is a finite linear combination of characteristic functions
ΦxUn

K
(with n ≥ 0). Suppose that f =

∑t
i=1 αiΦxiUniK then we may

assume that all ni’s are equal so that f is constant on each coset intersection
(x + PrK)

⋂
K∗ for large enough r. Also xiUniK ⊂ P

vK(xi)
K + Pni+vK(xi)

K so
that, for large enough r ≥ 0, f(x) 6= 0 implies that x ∈ PrK

⋂
K∗. Hence

we have an inclusion C∞c (K∗) ⊂ C∞c (K) = S(K) given by extending f by
f(0) = 0.

On C∞c (G) we have left and right translation given respectively by
λg(f)(x) = f(g−1x) and ρg(f)(x) = f(xg). A right Haar integral is a
non-zero linear functional

IG : C∞c (G) −→ C
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such that I(ρg(f)) = IG(f) and IG(f) ≥ 0 if f ≥ 0. If it exists then IG is
unique up to multiplication by positive scalars. G is called unimodular if
any right Haar measure is also a left Haar measure.

We shall start by recalling the explicit formulae for the Haar integral
on K and K∗.

Example 2.3. Haar integration on K
Let r be a positive integer. A measure on P−rK is a family of functions

φK,r,n : P−rK /PnK −→ C for n ≥ N0 which satisfy

φK,r,n(x+ PnK) =
∑

y+Pn+1
K

| y∈x+Pn
K

φK,r,n+1(y + Pn+1
K ).

In this case the sum

IK,r,n(f) =
∑

x∈P−r
K
/Pn

K

f(x)φK,r,n(x+ PnK)

is well-defined for each n >> 0 and independent of n. This is because f is
locally constant so that there is an n such that f(x) depends only on the
coset x+ PnK and in this case

IK,r,n+1(f)

=
∑
y∈P−r

K
/Pn+1

K
f(y)φK,r,n+1(y + Pn+1

K )

=
∑
x∈P−r

K
/Pn

K
f(x)

∑
y+Pn+1

K
| y∈x+Pn

K
φK,r,n+1(y + Pn+1

K )

= IK,r,n(f).

If, for example, we set φK,r,n(x+PnK) = |OK/PK |(1/2)−n for all n ≥ 0
then∑

y+Pn+1
K

| y∈x+Pn
K
φK,n+1(y + Pn+1

K ) = |PnK/P
n+1
K ||OK/PK |(1/2)−n−1

= |OK/PK |(1/2)−n,
as required. Usually the integer |OK/PK | is denoted by q.

Now let f ∈ C∞c (K), the set of compactly supported and locally con-
stant functions

f : K −→ C.
This means (see §2.2) that there exists an integer t ≥ 0, depending on f ,
such that

(i) f(x) 6= 0 implies that x ∈ P−tK and
(ii) if x, y ∈ K and x− y ∈ PtK then f(x) = f(y).
Recall that there is a chain of fractional ideals of the form

P−rK ⊂ P−r−1
K ⊂ . . . ⊂ K.
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Choosing integers r, n >> 0 we define

IK(f) = IK,r,n(f)

which will serve as a formula for a Haar integral on K once we have verified
invariance under right translation, which is seen as follows.

For a ∈ K set fa(x) = f(a+ x). Choose r so large that a ∈ P−rK then
as x+PnK runs through P−rK /PnK so does a+x+PnK and vice versa so that
IK,r,n(f) = IK,r,n(fa), as required.

In the integral notation it is usual to write IK(f) =
∫
K
f(x)dx, in the

spirit of calculus!

Example 2.4. Haar integration on K∗

If f ∈ C∞c (K∗) it is simple enough to find a multiplicative measure on
K∗ to define IK∗(f) =

∫
f(x)d∗x. Alternatively, we may extend f by zero

at 0 to give a function (denoted still by f) lying in C∞c (K) and set

IK∗(f(x)) = IK(f(x)|x|−1).

Recall that the normalised absolute value of x ∈ K∗ is given by

|x|K = |OK/PK |−vK(x) = q−vK(x).

Explicitly, for r, n >> 0

IK∗(f(x))

= IK(f(x)|x|−1)

= IK,r,n(f(x)|x|−1)

=
∑
x∈OKπ−rK /Pn

K
f(x)qvK(x)φK,r,n(x+ PnK).

This is well-defined and will serve as a formula for a Haar integral on K∗

once we have verified invariance under right multiplication, which is seen
as follows. Given a ∈ K∗ we may write a = bπjK with b ∈ O∗K . Therefore
as x runs through P−rK /PnK the element ax runs through PKπ−r+jK /Pn+j

K
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and vice versa when r, r + j, n, n+ j >> 0 . Therefore

IK(f(x)|x|−1)

=
∑
ax∈OKπ−r+jK

/Pn+j
K

f(ax)qvK(ax)φK,r,n+j(ax+ Pn+j
K )

=
∑
x∈OKπ−rK /Pn

K
f(ax)qvK(x)qjφK,r,n+j(ax+ Pn+j

K )

=
∑
x∈OKπ−rK /Pn

K
f(ax)qvK(x)qjq(1/2)−n−j

=
∑
x∈OKπ−rK /Pn

K
f(ax)qvK(x)q(1/2)−n

= IK(f(ax)|x|−1),

as required.

Definition 2.5. Eigendistributions [86]
Let S(K) denote the space of Schwartz-Bruhat functions on K and let

S′(K) be the space of tempered distributions on K, which is the space of
continuous linear functionals λ : S(K) −→ C. A complex-valued function is
in S(K) if and only if there exists an integer r ≥ 0 such that (a) supp(f) ⊆
P−r (compact support) and f is constant on cosets of Pr (locally constant)
(see [15]).

The multiplicative group K∗ acts on S(K) by

(r(a)f)(x) = f(xa) for x ∈ K, a ∈ K∗

and on S′(K) by

〈r′(a)(λ), f〉 = 〈λ, r(a−1)f〉 for λ ∈ S′(K), f ∈ S(K)

where 〈−,−〉 : S′(K)× S(K) −→ C is the evaluation/integration pairing.
For a character ω of K∗ define

S′(ω) = {λ ∈ S′(K) | r′(a)(λ) = ω(a)λ for all a ∈ K∗},

the space of ω-eigendistributions.

2.6. The space S′(ω) can be analysed geometrically. First observe that
K∗ acting on K has only two orbits {0} and K∗. We have an inclusion
(extension by zero; see §2.2)

C∞c (K∗) ⊂ S(K).

By duality there is a short exact sequence of distributions

0 −→ S′(K)0 −→ S′(K) −→ C∞c (K∗)′ −→ 0

where S′(K)0 is the space of distributions supported at 0. This sequence
is compatible with the K∗-action and, taking ω-eigenspaces, we have the
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following exact sequence

0 −→ S′(ω)0 −→ S′(ω) −→ C∞c (K∗)′(ω)

where S′(ω)0 is the space of ω-eigendistributions supported at 0.

Lemma 2.7. ([86] Lemma 3.2 p.116)
The space C∞c (K∗)′(ω) is one-dimensional and is spanned by ω(x)d∗x.

In particular, for any λ ∈ S′(ω) there is a complex number c such that

ResS(K)
C∞c (K∗)(λ) = c · ω(x)d∗x.

That is, if supp(f) ⊂ K∗ is compact then

〈λ, f〉 = c ·
∫
K∗

f(x)ω(x)d∗x.

Lemma 2.8. ([86] Lemma 3.3 p.116)
The delta distribution δ0 is defined by 〈δ0, f〉 = f(0), which is obviously

K∗-invariant and supported at 0. Then

S′(K)0 = C · δ0 ⊂ S′(ω0),

where ω0 = 1 and for ω 6= ω0, S′(ω)0 = 0.

The fundamental local uniqueness result is:

Theorem 2.9. ([86] Theorem 3.4 p.117)
For any character ω of K∗ dimCS

′(ω) = 1.

Definition 2.10. Zeta integrals on K∗

For a character ω of K∗ (i.e. a unitary quasicharacter) the local zeta
integral is

ζ(s, ω, f) =
∫
K∗

f(x)ωωs(x)d∗x =
∫
K

f(x)ω(x)|x|s−1dx.

where s ∈ C and ωs(x) = |x|s for x ∈ K∗.

Proposition 2.11.
In §2.10 ζ(s, ω, f) is absolutely convergent for all f ∈ S(K) provided

that Re(s) > 0. In this range the distribution f 7→ ζ(s, ω, f) defines a
non-zero element ζ(s, ω) ∈ S′(ωωs).
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Proof
Consider the zeta integral in its additive manifestation

ζ(s, ω, f) =
∫
K
f(x)ω(x)|x|s−1dx

= IK(f(x)ω(x)ωs−1(x))

= IK,r,n(f(x)ω(x)ωs(x)|x|−1)

=
∑
x∈P−r

K
/Pn

K
f(x)ω(x)q−(s−1)vK(x)φK,r,n(x+ PnK)

=
∑
x∈P−r

K
/Pn

K
f(x)ω(x)q−(s−1)vK(x)q(1/2)−n.

for r, n >> 0. Here the choice of r and n depend upon f .
The absolute value of qvK(x)q(1/2)−n as x varies through the terms in

the sum is qnq(1/2)−n = q1/2. The absolute value of f(x)ω(x) is bounded
as x varies, since the sum is finite. Therefore, if α = Re(s) is the real part
of s, then the absolute value of ζ(s, ω, f) is bounded by a constant times

q−α(−r) + q−α(−r+1) + q−α(−r+2) + . . .+ q−α(n−1) + q−αn

= qrα−q−(n+1)α

1−q−α ,

which shows that ζ(s, ω, f) is absolutely convergent when Re(s) > 0, as
required.

The eigendistribution condition is equivalent to the relation that

ζ(s, ω, f(− · a−1)) = 〈ζ(s, ω), f(− · a−1)〉 = ω(a)ωs(a)ζ(s, ω, f),

which follows immediately from invariance of the Haar integral under right
multiplication by a−1 ∈ K∗. 2

2.12. The case when ω is unramified
Suppose that ω is unramified (i.e. ω(x) = 1 if x ∈ O∗K).
Let f ∈ S(K) have compact support in K∗ and consider the integral

ζ(s, ω, f) =
∫
K∗

f(x)ωωs(x)d∗x

which is absolutely convergent when Re(s) > 0. We would like to modify
this into a function which is absolutely convergent over the whole plane.
The idea is to kill the support of an arbitrary f ∈ S(K) by applying a
suitable element of the group-ring Z[F ∗] - namely τ = 1− π−1

K .
Since f is constant in a sufficiently small neighbourhood of 0, say PrK ,

we have for any x ∈ Pr+1
F then

(r(τ)f)(x) = f(x)− r(π−1
K )f(x) = f(x)− f(xπ−1

K ) = 0.
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Thus there is a distribution ζ0(s, ω) ∈ S′(ωωs) defined by

〈ζ0(s, ω), f〉 =
∫
K∗

(r(τ)f)(x)ωωs(x)d∗x.

In the halfplane Re(s) > 0 we have

〈ζ0(s, ω), f〉

=
∫
K∗

(f(x)− f(xπ−1
K ))ωωs(x)d∗x

=
∫
K∗

f(x)ωωs(x)d∗x−
∫
K∗

f(xπ−1
K )ωωs(x)d∗x

= (1− ω(πK)ωs(πK))ζ(s, ω; f)

= (1− ω(πK)q−s)ζ(s, ω); f)

= L(s, ω)−1〈ζ(s, ω), f〉.

In terms of distributions this says that for Re(s) > 0

ζ(s, ω) = L(s, ω)ζ0(s, ω).

Proposition 2.13.
In §2.12 the integral

∫
K∗

r(τ)(f)(x)ωωs(x)d∗x is absolutely convergent
for all s ∈ C and the distribution ζ0(s, ω) is meromorphic analytic for all
s ∈ C.

Also if ΦX is the characteristic function of X then

〈ζ0(s, ω),ΦOK 〉 =
∫
K∗

ΦO∗
K
d∗x 6= 0.

Proof
Suppose that h(x) ∈ S(K) is such that for some integer r > 0 h(x) = 0

when either x ∈ PrK or x ∈ K −P−rK . Then, as in the proof of Proposition
2.11,

ζ(s, ω, h) =
∫
K
h(x)ω(x)|x|s−1dx

=
∑
x∈P−r

K
/Pn

K
h(x)ω(x)q−(s−1)vK(x)q(1/2)−n

=
∑
x∈P−r

K
/Pr

K
h(x)ω(x)q−(s−1)vK(x)q(1/2)−n

for n >> r > 0. Here r depends on h. Since n is arbitrarily large we see that
the sum is absolutely convergent for all s ∈ C and ζ0(s, ω) is meromorphic
throughout the complex plane, as required.
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Finally

〈ζ0(s, ω),ΦOK 〉

=
∫
K∗

ΦOK (x)ωωs(x)d∗x−
∫
K∗

ΦOK (xπ−1
K )ωωs(x)d∗x

=
∫
K∗

ΦOK (x)ωωs(x)d∗x−
∫
K∗

ΦPK (x)ωωs(x)d∗x

=
∫
K∗

ΦO∗
K
d∗x,

as required. 2

Remark 2.14. By Proposition 2.11, §2.12 and Proposition 2.13, when
ω is unramified, the right hand side of the equation ζ(s, ω) = L(s, ω)ζ0(s, ω)
gives the meromorphic analytic continuation of ζ(s, ω) to the whole s plane.
Moreover it interprets the local L-factor as a constant of proportionality
between two natural bases of the one-dimensional space S′(ωωs) away from
the poles of L(s, ω). Thus ζ0(s, ω) is never zero and gives a basis vector for
S′(ωωs) for all s.

2.15. Ramified local theory
Suppose that ω is ramified (i.e. non-trivial on O∗). The conductor

c(ω) is the smallest integer c such that ω is trivial on 1 + PcK . Since any
f ∈ S(K) is constant in a neighbourhood of 0 the integral∫

K∗−Pn
K

f(x)ωωs(x)d∗x

is independent of n for n >> 0. This is seen as follows.
Recall that the integral over K∗ is, for r,N >> 0,∑

x∈P−r
K
/PN

K

f(x)φ(x)|x|s−1φK,r,N (x+ PNK ).

The integral over K∗
⋂
PnK is∑

x∈(K∗
⋂
Pn
K

)/PN
K

f(x)φ(x)|x|s−1φr,N (x+ PNK ).

The integral over K∗
⋂
Pn+1
K is∑

x∈(K∗
⋂
Pn+1
K

)/PN
K

f(x)φ(x)|x|s−1φr,N (x+ PNK ).

Now K∗
⋂
PnK consists of all the elements of K∗ of the form aπmK with

a ∈ O∗K and m ≥ n. Therefore the difference between these two sums is the
sum over aπnK where a runs through the finite group O∗K/(1 +PNK ). If n is
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large enough that f(x) is constant on K∗
⋂
PnK so the difference between

sums is a constant times ∑
a∈O∗

K
/(1+PN

K
)

φ(a)

which is zero because φ is a non-constant character on the finite group
O∗K/(1 + PNK ).

As in Proposition 2.13, this gives analytic continuation of ζ(s, ω, f) to
the whole s-plane and hence gives a basis vector

ζ0(s, ω) = ζ(s, ω)

for the one-dimensional space S′(ωωs) for all s. We set

L(s, ω) = 1

in this case. Notice that for

f0(x) =

 ω(x)−1 if x ∈ O∗

0 otherwise

we have
〈ζ0(s, ω), f0〉 6= 0.

Thus in the ramified case Remark 2.14 also holds.

Example 2.16. G = 〈K∗, u〉
Consider the finite modulo the centre group

G = 〈K∗, u〉 ⊂ GL2K

where, as usual,

u =

 0 1

π−1
K 0


so that u2 = π−1

K ∈ K∗.
In this example we are going to imitate the material of §§2.5-2.15.
Let S(G) equal the set of compactly supported and locally constant

functions
f : G −→ C.

Since G is homeomorphic to two copies of K∗, given by the cosets K∗ and
K∗u, we have

i : S(K∗)⊕ S(K∗) = C∞c (K∗)⊕ C∞c (K∗)
∼=−→ S(G)

given by given by i(f1, f2) = f where

f(

 α 0

0 α

) = f1(α) f(

 0 α

απ−1
K 0

) = f2(α).
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Hence f ∈ S(G) if and only if there exists an integer r ≥ 0, depending
on f , such that

(i) f(x) 6= 0 implies that x ∈ P−rK
⋃
P−rK u and

(ii) if x, y ∈ K and x − y ∈ (M2OK)πrK then f(x) = f(y), f(xu) =
f(yu).

Set S′(G) equal to the space of continuous linear functionals (distribu-
tions) λ : S(G) −→ C.

As in §2.6, evaluation (λ, f) 7→ λ(f) gives a non-singular pairing

〈−,−〉 : S′(G)× S(G) −→ C.

Now consider the action of G on S(G) given, for x, g ∈ G, by
r(g)(f)(x) = f(xg). By duality we have r′(g) : S′(G) −→ S′(G) satis-
fying

〈r′(g)(λ), f〉 = 〈λ, r(g−1)(f)〉.

Consider

r(

 α−1 0

0 α−1

) and r(u−1) = r(

 0 πK

1 0

).

We have

r(

 α−1 0

0 α−1

)(f1, f2)(

 β 0

0 β

)

= (f1, f2)(

 βα−1 0

0 βα−1

) = f1(βα−1),

r(

 α−1 0

0 α−1

)(f1, f2)(

 0 β

βπ−1
K 0

)

= (f1, f2)(

 0 βα−1

βα−1π−1
K 0

) = f2(βα−1)
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r(

 0 πK

1 0

)(f1, f2)(

 β 0

0 β

)

= (f1, f2)(

 0 βπK

β 0

) = f2(βπK),

r(

 0 πK

1 0

)(f1, f2)(

 0 β

βπ−1
K 0

)

= (f1, f2)(

 β 0

0 β

) = f1(β).

Therefore

r(

 α−1 0

0 α−1

)(f1, f2) = (r(α−1)(f1), r(α−1)(f2)

and

r(u−1)(f1, f2) = (r(πK)(f2), f1).

Now suppose we have a continuous character φ : G −→ C∗ whose
restriction to K∗ is the fixed choice of central character φ; equivalently
φ(u)2 = φ(πK)−1. Given a space of distributions S′(G) with G-action the
space of φ-eigendistributions is

S′(G)(φ) = {λ ∈ S′ | r′(g)(λ) = φ(g)λ for all g ∈ G}.

Therefore we have an isomorphism

µ : C∞c (K∗)′(φ)
∼=−→ ((C∞c (K∗)′ ⊕ C∞c (K∗))′(φ)

given by µ(λ) = (λ, φ(u)λ). To check that this is an isomorphism consider,
for λ1, λ2 ∈ C∞c (K∗)′ and f1, f2 ∈ C∞c (K∗) the pairing

〈(λ1, λ2), (f1, f2)〉 = 〈λ1, f1〉 · 〈λ2, f2〉.
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We have
〈r′(u)(λ1, λ2), (f1, f2)〉

= 〈(λ1, λ2), r(u−1)(f1, f2)〉

= 〈(λ1, λ2), (r(πK)(f2), f1)〉

= 〈λ2, f1〉 · 〈λ1, r(πK)(f2)〉

= 〈λ2, f1〉 · 〈r′(π−1
K )(λ1), f2〉

= 〈(λ2, r
′(π−1

K )(λ1)), (f1, f2)〉
so that

(λ2, r
′(π−1

K )(λ1)) = r′(u)(λ1, λ2) = φ(u)(λ1, λ2)
which implies that λ2 = φ(u)λ1 and

(r′(π−1
K )(λ1), r′(π−1

K )(λ2)) = φ(u)2(λ1, λ2) = φ(π−1
K )(λ1, λ2)

so that λ1, λ2 = φ(u)λ1 ∈ C∞c (K∗)′(φ), as required.
Therefore we have shown the following result:

Proposition 2.17.
In §2.16 dimC(S′(G)(φ)) = 1.

Example 2.18. Haar integration on G = 〈K∗, u〉 ⊂ GL2K
Let G = 〈K∗, u〉 be the group considered in §2.16.
The uniqueness, up to scalars, of the Haar integral means that Haar

integration is natural, up to scalars, with respect to subgroups. If we have
an inclusion of a closed subgroup H ⊆ G then the composition which takes
f ∈ C∞c (H) to fext ∈ C∞c (G) given by extending by zero and then forming
IG(fext) gives a right-invariant integral

C∞c (H) ext−→ C∞c (G) IG−→ C
which must be a scalar times IH .

Taking H = K∗ we have, for some non-zero scalar λ1,

λ1IK∗(f) = IG(fext).

Now G = K∗
⋃
K∗u and f ∈ C∞c (G) is equal to the sum

f = ResGK∗(f)ext + ResGK∗u(f)ext.

Therefore
IG(f)

= IG(ResGK∗(f)ext) + IG(ResGK∗u(f)ext)

= λ1IK∗(ResGK∗(f)) + IG(ResGK∗u(f)ext).
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Define a function f1 ∈ C∞c (G) by f1(x) = f(xu) for x ∈ K∗ and
f1(x) = 0 otherwise. Hence f1 = ResGK∗u(f)ext(− · u). For

ResGK∗u(f)ext(z) =

 f(xu) if z = xu, x ∈ K∗,

0 if z ∈ K∗.

Therefore

ResGK∗u(f)ext(− · u)(x) =

 f(xu) if x ∈ K∗,

0 if x 6∈ K∗.

Therefore, by right G-invariance,

IG(f1) = IG(ResGK∗u(f)ext).

Therefore

IG(f) = λ1(IK∗(ResGK∗(f)) + IK∗(ResGK∗(f1))).

Henceforth we shall assume that λ1 = 1 and that

IG(f) = IK∗(ResGK∗(f)) + IK∗(ResGK∗(f1)).

This integral is invariant under right multiplication for consider IG(f(− ·
u)) because we have ResGK∗(f(− · u))(x) = f(xu) = ResGK∗(f1)(x) and
ResGK∗(f(− · u)1)(x) = f(xu2) = ResGK∗(f)(− · π−1

K )(x) which implies

IG(f(− · u)) = IK∗(ResGK∗(f1)) + IK∗(ResGK∗(f(− · π−1
K )))

= IK∗(ResGK∗(f1)) + IK∗(ResGK∗(f)),

as required.

Definition 2.19. Zeta integrals on G
Suppose that φ : G −→ C∗ is a continuous character extending the

chosen central character φ. OnG we may extend ωs to φs by setting φs(u) =
qs/2 = |det(u)|−s/2 since q = ωs(πK)−1 = φs(u)2 = |det(πKI2)|−s/2.

For a character φ of K∗ the local zeta integral is

ζG(s, φ, f)

=
∫
G
f(x)φ(x)φs(x)d∗x

= IK∗(ResGK∗(fφφs) + IK∗(ResGK∗((fφφs)1)).

The distribution
ζG(s, φ) : f 7→ ζG(s, φ, f)

is meromorphic on the half-plane Re(s) > 0.
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2.20. A meromorphic distribution in S′(G)(φ)
Consider

IG((f(x)− φ(u)φs(u)f(x · u))φ(x)φs(x)).

In the formula of §2.18 for IG applied to f we obtain ResGK∗(f(x)) and
ResGK∗(f1(x)) where f1 is given by x 7→ xu. In that formula for IG applied to
f(−·u) we obtain ResGK∗(f1(x)) and ResGK∗(f(x)π−1

K ) (see §2.18). Therefore

IG((f(x)− φ(u)φs(u)f(x · u))φ(x)φs(x))

= IK(ResGK∗(f)(x)φ(x)|x|s−1) + φ(u)φs(u)IK(ResGK∗(f1)(x)φ(x)|x|s−1)

−φ(u)φs(u)IK(ResGK∗(f1)(x)φ(x)|x|s−1)

−φ(u)φs(u)IK(ResGK∗(f)(x · π−1
K )φ(x)|x|s−1)

= IK∗(ResGK∗(f)(x)φ(x)|x|s)− φ(u)φs(u)IK∗(ResGK∗(f)(x · π−1
K )φ(x)|x|s)

= IK∗(ResGK∗(f)(x)φ(x)|x|s)

−φ(u)φs(u)φ(πK)|πK |s)IK∗(ResGK∗(f)(x)φ(x)|x|s))

= (1− φ(u)−1φs(u)−1)IK∗(ResGK∗(f)(x)φ(x)|x|s).

Therefore the distribution

ζG,0(s, φ) : f 7→ IG((f(x)− φ(u)φs(u)f(x · u))φ(x)φs(x))

is (1− φ(u)−1φs(u)−1) times the distribution

f 7→ IK∗(ResGK∗(f)(x)φ(x)|x|s) = ζ(s, φ,ResGK∗(f)).

From §2.12 and §2.15 for Re(s) > 0 we have

IK∗(ResGK∗(f)(x)φ(x)|x|s)

= ζ(s, φ,ResGK∗(f))

=


L(s, φ)ζ0(s, φ,ResGK∗(f)) if φ is unramified

ζ0(s, φ,ResGK∗(f)) if φ is ramified.
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Therefore for Re(s) > 0 we have relations between distributions

ζG,0(s, φ)

=


(1 + φ(u)−1φs(u)−1)−1ζ0(s, φ,ResGK∗(−)) if φ is unramified

(1− φ(u)−1φs(u)−1)ζ0(s, φ,ResGK∗(−)) if φ is ramified.

which gives a meromorphic extension of ζG,0(s, φ) to the whole complex
plane, as in §2.12 and §2.15, which is a basis for S′(G)(φ).

Definition 2.21. Fourier transforms
Let ψK be the non-trivial character of the additive group K which was

introduced in §1.1. Identify K with its topological dual character group

K̂ = Homconts(K,C∗)

by the isomorphism

K
∼=−→ K̂, y 7→ (x 7→ ψK(xy)).

The conductor νK(ψK) of ψK is the largest integer such that ψK is trivial
on P−νK(ψK)

K .
The Fourier transform

f̂(x) =
∫
K

f(y)ψK(xy)dy

of a function f ∈ S(K) is well-defined and lies in S(K). This is a fun-
damental property of the space of Schwartz-Bruhat functions. The map
f 7→ f̂ is an isomorphism ˆ(−) : S(K)

∼=−→ S(K). There is a unique choice
of the Haar measure, the self-dual measure with respect to ψK , such that
Fourier inversion satisfies

ˆ̂
f(x) = f(−x).

For given ψK we fix this choice of dx henceforth. The Fourier transform of
a distribution λ is defined by

〈λ̂, f〉 = 〈λ, f̂〉.

Lemma 2.22.
If λ ∈ S′(ω) is an ω-distribution then λ̂ ∈ S′(ω−1ω1) where ω1(x) = |x|.

By Theorem 2.9, §2.12 and §2.15, ζ̂0(s, ω) is a constant multiple (de-
pending on s, ω and ψK) of ζ0(1 − s, ω−1). Hence we have shown the
following result:

Corollary 2.23. Local functional equation
(i) There exists a non-zero complex number ε(s, ω, ψK) such that

ζ̂0(1− s, ω−1) = ε(s, ω, ψK) · ζ0(s, ω).
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(ii) Given f ∈ S(K) (i) may be written as the relation

ζ(1− s, ω−1, f̂)
L(1− s, ω−1)

= ε(s, ω, ψK) · ζ(s, ω, f)
L(s, ω)

.

Remark 2.24. An alternative formulation of Corollary 2.23(ii) is

ζ(1− s, ω−1, f̂) = ε(s, ω, ψK) · L(1− s, ω−1)
L(s, ω)

ζ(s, ω, f)

in which the constant of proportionality

γ(s, ω, ψK) = ε(s, ω, ψK) · L(1− s, ω−1)
L(s, ω)

is called the local gamma factor. It can have zeroes and poles. This is the
traditional formulation while that of Corollary 2.23 is emphasised in [142].

Various important properties of the ε-factor ε(s, ω, ψK) can be deduced
from Corollary 2.23. For example, if f0 is the standard function with
respect to ω then, as in §2.15, evaluating both sides of Corollary 2.23(i) on
f0 yields the useful identity

ε(s, ω, ψK) = 〈ζ(1− s, ω−1), f̂0〉.

By construction the zeta distribution satisfies

ζ(s, ωωt) = ζ(s+ t, ω).

Since the local L-function is also required to have this property we also
have

ζ0(s, ωωt) = ζ0(s+ t, ω).

The standard function f0 does not change under multiplication by ωt so
that

ε(s, ωωt, ψK) = ε(s+ t, ω, ψK).

For β ∈ K∗ let ψK,β(x) = ψK(βx). If f̂ is the Fourier transform of
f ∈ S(K) with respect to ψK then

√
|β|r(β)f̂ is the Fourier transform with

respect to ψK,β (using the self-dual measure) . Therefore

ε(s, ω, ψK,β) = |β|s− 1
2ω(β)ε(s, ω, ψK).

2.25. Next we give the explicit formulae for the ε-factors, observing
that by the results of Remark 2.24, it suffices to do this for ψ and ω both
in “standard form”. Recall that νK(ψK) is the conductor of ψK , as in
Definition 2.21.

Proposition 2.26.
If φ is unramified then

ε(s, φ, ψK) = φ(πνK(ψK)
F )q(

1
2−s)νK(ψK).
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If φ is ramified with conductor c then

ε(s, φ, ψK) = φ(πνK(ψK)+c
K )q(

1
2−s)(νK(ψK)+c)G(φ, ψK)

where G(φ, ψK) is the Gauss sum

G(φ, ψK) = q
νK (ψK )+c

2

∫
O∗
K

φ−1(y)ψ(π−ν−cK y)dy

with dy the self-dual measure on K with respect to ψK .

Proof
By Remark 2.24 one has to compute the Fourier transform of the stan-

dard function f0 for ω where the character ψ can be taken as standard.
For example, if φ is unramified, f0 is the characteristic function of OK

and assuming νK(ψK) = 0, f̂0 = f0. This gives ε(s, φ, ψK) = 1 in this case.
The general unramified case then follows at once from the final formula in
Remark 2.24.

If φ is ramified f0 is given as in Example 2.15. Then, following ([143]
Proposition 13 p.131)

f̂0(x) =
∫
O∗
K

ω−1ψK(xy)dy

vanishes unless ordK(x) = −νK(ψK) − c where c = c(φ) is the conductor
of φ. In fact

f̂0(x) = G(ω, ψK)q−
νK (ψK )+c

2 f0(πνK(ψK)+c
K x).

The ramified result follows from the fact that G(φ, ψK)G(φ, ψK) = 1 and
that f0 is the standard function for φ−1.

More details on Tate’s thesis may be found in [143] and [40]. 2

Example 2.27. Haar integration on MnK
In order to define Haar integrals on MnK we need functions

φMnK,r,m : MnP−rK /MnPmK −→ C.

For m ≥ 2, r ≥ 0 define

φMnK,r,m(X +MnPmK ) = |OK/PK |−(n2−1)mφK,r,m(Trace(X) + PmK ).

Under the canonical epimorphism, for m ≥ 3,

MnP−rK /MnPmK −→MnP−rK /MnPm−1
K

each coset has inverse image of order |OK/PK |n
2
. Hence there are |OK/PK |n

2

cosets Y +MnPmK above X +MnPm−1
K of which |OK/PK |(n

2−1) have the
same trace modulo MnPm−1

K .
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Therefore for m ≥ 3∑
Y+MnPm+1

K
7→X+MnPmK

φMnK,r,m+1(Y +MnPm+1
K )

=
∑
Y+MnPm+1

K
7→X+MnPmK

|OK/PK |−(n2−1)(m+1)×

φK,r,m+1(Trace(Y ) + Pm+1
K )

=
∑
Z+Pm+1

K
7→Trace(X)+Pm

K
|OK/PK |−(n2−1)mφK,r,m+1(Z + Pm+1

K )

= |OK/PK |−(n2−1)m
∑
Z+Pm+1

K
7→Trace(X)+Pm

K
φK,r,m+1(Z + Pm+1

K )

= |OK/PK |−(n2−1)mφK,r,m(Trace(X) + PmK )

= φMnK,r,m(X +MnPmK ),

as required.

Example 2.28. Local function equation for ζG,0(s, φ) of §2.20
We could state this example using the Fourier transform on M2K via

the Haar integral of §2.27. However, for convenience, we shall use the
Fourier transform on S′(K).

By Lemma 2.8 if ω 6= 1 then the surjection

S′(K) −→ C∞c (K∗)′

ˆ(−) : S(K)
∼=−→ S(K)

induces
ˆ(−) : S′(K)

∼=−→ S′(K)
which restricts to an isomorphism

ˆ(−) : S′(ω)
∼=−→ S′(ω−1ω1)

where ω1(x) = |x| = q−vK(x) for x ∈ K∗.
Hence if ω 6= 1, ω1 we have a Fourier isomorphism

ˆ(−) : C∞c (K∗)′(ω)
∼=−→ C∞c (K∗)′(ω−1ω1).

As in the notation of §2.20 let φ1 denote the extension of ω1 to G and
for f ∈ S(G) let R̂es

G

K∗(f) denote the Fourier transform of the restriction
of f to K∗.

From §2.20 we have an isomorphism

S′(G)(φ)
∼=−→ C∞c (K∗)′(φ)

given by sending ζG,0(s, φ) to (1 + φ(u)−1φs(u)−1)−1ζ0(s, φ,ResGK∗(−)) if
φ is unramified and to (1− φ(u)−1φs(u)−1)ζ0(s, φ,ResGK∗(−)) otherwise.
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Transporting the Fourier transform via this isomorphism to give
ˆ(−) : S′(G)(φ)

∼=−→ S′(G)(φ−1φ1)

the local functional equation transports to give

ζ̂G,0(1− s, φ−1) = (1+φ(u)−1φs(u)−1)
(1+φ(u)−1φ1−s(u)−1)ε(s, φ, ψK)ζG,0(s, φ)

when φ is unramified and

ζ̂G,0(1− s, φ−1) = (1−φ(u)−1φs(u)−1)
(1−φ(u)−1φ1−s(u)−1)ε(s, φ, ψK)ζG,0(s, φ)

when φ is ramified.

3. Monomial resolutions and local function equations

3.1. This short section contains some fundamental questions which
arise from the previous sections of this chapter. Here K continues to be a
p-adic local field. We continue to study complex characters and complex
admissible representations.

Suppose first that H is a subgroup of GLnK which contains K∗ and
which is compact open modulo K∗. Let (H,φ) ∈ Mφ(H). Hence there is
an inverse system of quotients Hα of H which contain K∗, are finite modulo
K∗ and possess a character φα : Hα −→ C∗ through which φ factorises.
An argument analogous to that if §2.16 shows that dimC(S′(Hα)(φα)) = 1.
For two groups Hα and Hβ in the inverse system with quotient map

πα,β : Hα −→ Hβ

we have induced maps

π∗α,β : S(Hβ) −→ S(Hα) and π∗α,β : S′(Hα) −→ S′(Hβ).

The map of eigendistributions will be an isomorphism of one-dimensional
complex vector spaces

π∗α,β : S′(Hα)(φα) −→ S′(Hβ)(φβ).

The direct limit
S′(H)(φ) = lim

→
α

S′(Hα)(φα)

will be a one-dimensional space.

Question 3.2. Is there a meromorphic distribution in S′(H)(φ)?
Is there always a non-zero distribution in ζH,0(s, φ) ∈ S′(H)(φ), as in

Example 2.20, which is meromorphic over the whole complex plane?

Question 3.3. Is there a Fourier transform on S′(H)?
Assuming an affirmative answer to Question 3.2, is there a Fourier

transform, as in Example 2.28, on S′(H) which induces an isomorphism of
the form

ˆ(−) : S′(H)(φ)
∼=−→ S′(H)(φ−1φ1)?
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What is the form of the resulting local functional equation?

Question 3.4. L-series and ε-factors for local admissible representa-
tions

Suppose that we have an affirmative answer to Question 3.2 and Ques-
tion 3.3. Therefore we may apply the local functional equation to each
Line in the monomial resolution for an admissible representation V of
GLnK with central character φ. The function equation for any two Lines
in c − IndGLnKH (φ) should be related and essentially only depend on the
induced monomial representation to which they belong. By this token, for
each summand c−IndGLnKH (φ) in the monomial resolution we should obtain
a functional equation.

Does the “Euler characteristic” of these functional equations make
sense (we might have to capitalise on the finiteness property of Chapter
One, §6)? If so, does the result have a connection with the functional equa-
tion, L-series and ε-factors constructed in the local situation in [66] (see
also ([40] §24) for an account in the case of GL2K).





CHAPTER 7

Hecke operators and monomial resolutions

This chapter recalls how Hecke operators are defined and explains how
they fit in with the exact sequences

M
((H,φ))
∗ −→ V (H,φ) −→ 0

which originate from a monomial resolution of the representation V . Given
two subgroups J and H of G the Hecke operators take the form of k-linear
maps

[JgH] : V (H,φ) −→ V (H′,φ′)

for g ∈ G. In Example 1.1 I describe how, when G is finite, the operators
may be defined via the Double Coset Formula ([126] p.32) for ResGJ IndGH(φ).

In Definition 1.2 it is pointed out that the formulae of Example 1.1
apply equally well when J and H are compact open modulo the centre
subgroups of a locally profinite group. In particular the latter applies to
the adèlic case of an automorphic representation. Then, if J,H are the
usual congruence subgroups Γ0(N),Γ1(N), the [JgH]’s are the classical
Hecke operators ([51] §11.2).

In §1.3 I describe the conditions on H,J and g in order that [HgJ ]
extends to a chain map from from the exact complex

M
((H,φ))
∗ −→ V (H,φ) −→ 0

to
M

((J,φ′))
∗ −→ V (J,φ′) −→ 0.

The chapter concludes with Example 1.4. This solitary example is included
to show that the conditions for [JgH] to extend to the monomial resolution
can indeed be satisfied. These extensions should be especially important
when V is an automorphic representation and V (H,φ) is a space of modular
forms.

1. Hecke operators for an admissible representation

Example 1.1. Let G be a finite group with subgroups H and J . Let
k be an algebraically closed field. Let V be a k-representation of G and let

185
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φ ∈ Ĥ, φ′ ∈ Ĵ be characters. Suppose that g ∈ G and that JgH is equal to
the disjoint union of left cosets of H so that

JgH =
n⋃
i=1

yiH.

In addition suppose that φ′ and (g−1)∗(φ) are equal on J
⋂
gHg−1 where

(g−1)∗(φ)(ghg−1) = φ(h).
In this situation there exists a linear transformation of k-vector spaces,

called a Hecke operator,

[JgH] : V (H,φ) −→ V (J,φ′).

This transformation may be constructed by means of the double coset for-
mula ([126] Theorem 1.2.40) which in our case takes the form of an iso-
morphism of k[J ]-representations

ResGJ IndGH(φ) α−→ ⊕z∈J\G/H IndJ
J
⋂
zHz−1((g−1)∗(φ))

given by α(g ⊗H w) = j ⊗J⋂ zHz−1 hw for g = jzh, j ∈ J, h ∈ H. The

inverse of α is given by α−1(j ⊗J⋂ zHz−1 w) = jz ⊗H w.
Since we have isomorphisms

HomG(IndGJ (φ′), V ) ∼= V (J,φ′) and HomG(IndGH(φ), V ) ∼= V (H,φ)

the transformation [JgH] may be induced by pre-composition with a k[G]-
module homomorphism of the form

IndGJ (φ′) −→ IndGH(φ)

and by Frobenius reciprocity such a map is equivalent to a k[J ]-module
homomorphism of the form

kφ′ −→ ResGJ IndGH(φ) ∼= ⊕z∈J\G/H IndJ
J
⋂
zHz−1((z−1)∗(φ)).

Consider the expression
n∑
i=1

yig
−1 ⊗J⋂ gHg−1 φ

′(yig−1)−1 ∈ IndJ
J
⋂
gHg−1((g−1)∗(φ)).

Since JgHg−1 =
⋃n
i=1 yig

−1gHg−1 the set {y1g−1, . . . , yng
−1} is a com-

plete set of coset representatives for J/J
⋂
gHg−1. In particular yig−1 ∈ J .

For j ∈ J there is a permutation σ(j) of 1, . . . , n such that jyi = yσ(j)(i)h

for some h ∈ H. Therefore jyig−1 = yσ(j)(i)g
−1ghg−1 which implies that

ghg−1 ∈ J
⋂
gHg−1. Therefore

φ(h) = (g−1)∗(φ)(ghg−1) = φ′(ghg−1) = φ′(jyig−1)φ′(yσ(j)(i)g
−1)−1.
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This implies that in IndJ
J
⋂
gHg−1((g−1)∗(φ))∑n

i=1 jyig
−1 ⊗J⋂ gHg−1 φ′(yig−1)−1

=
∑n
i=1 yσ(j)(i)g

−1ghg−1 ⊗J⋂ gHg−1 φ′(yig−1)−1

=
∑n
i=1 yσ(j)(i)g

−1 ⊗J⋂ gHg−1 φ′(ghg−1)φ′(yig−1)−1

=
∑n
i=1 yσ(j)(i)g

−1 ⊗J⋂ gHg−1 φ′(jyig−1)φ′(yσ(j)(i)g
−1)−1φ′(yig−1)−1

= φ′(j)
∑n
i=1 yσ(j)(i)g

−1 ⊗J⋂ gHg−1 φ′(yσ(j)(i)g
−1)−1

= φ′(j)
∑n
i=1 yig

−1 ⊗J⋂ gHg−1 φ′(yig−1)−1.

Therefore 1 7→
∑n
i=1 yig

−1⊗J⋂ gHg−1 φ′(yig−1)−1 gives a k[J ]-module ho-

momorphism from kφ′ to the summand IndJ
J
⋂
gHg−1((g−1)∗(φ)). Applying

α−1 gives a k[J ]-module homomorphism

kφ′ −→ ResGJ IndGH(φ)

given by 1 7→
∑n
i=1 yi ⊗H φ′(yig−1)−1. Hence the required k[G]-module

homomorphism
λ[JgH] : IndGJ (φ′) −→ IndGH(φ)

is given by

λ[JgH](g′ ⊗J w) =
n∑
i=1

g′yi ⊗H φ′(yig−1)−1w.

Since v ∈ V (H,φ) corresponds to the k[G]-module homomorphism g′⊗H 1 7→
g′v ∈ V the composition of this with λ[JgH] is given by

1⊗J 1 7→
n∑
i=1

yi ⊗H φ′(yig−1)−1 7→
n∑
i=1

φ′(yig−1)−1 yiv ∈ V (J,φ′).

In other words, [JgH](v) =
∑n
i=1 φ′(yig−1)−1 yiv ∈ V (J,φ′).

In particular, if φ′ = 1 then [JgH](v) =
∑n
i=1 yiv ∈ V (J,φ′), which is

the formula for the classical Hecke operator ([51] §11.2).

Definition 1.2. Let G be a locally profinite group and let π : G −→
Autk(V ) be an admissible representation. Let H and J be compact open
subgroups with (H,φ), (J, φ′) ∈ MG. The procedure of §1.1 (with c −
IndGH replacing IndGH etc. and using Frobenius reciprocity for compactly
supported induction) yields a linear transformation of k-vector spaces

[JgH] : V (H,φ) −→ V (J,φ′)
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given by the same formula as that of the finite group case in §1.1.
This is the classical Hecke operator of ([51] §11.2) when φ = 1 = φ′.
In the adélic case of an automorphic representation when J,H are the

usual congruence subgroups these are the classical Hecke operators on the
spaces of modular forms ([51] §11.1).

Furthermore, if V has a central character φ and (H,φ), (J, φ′) ∈Mφ(G)
the construction and formulae of §1.1 continue to make sense and extend
the definition of Hecke operators to that situation.

1.3. Hecke operators on the monomial resolution
In the situation of Definition 1.2 suppose that

M∗
ε−→ V −→ 0

is a monomial resolution of V in k[G],φmon. By Frobenius reciporicity in
the monomial category ([19] Remark 1.5(g)) there are isomorphisms

Hom
k[G],φmon(c− IndGH(kφ),Mi) ∼= Hom

k[H],φmon(kφ),

ResGH(Mi)) ∼= M
((H,φ))
i

and
Hom

k[G],φmon(c− IndGJ (kφ′),Mi) ∼= Hom
k[J],φmon(kφ′),

ResGJ (Mi)) ∼= M
((J,φ′))
i ,

since H,J are compact open modulo the centre.
In order that the monomial analogue of λ[JgH] of §1.1

λ[JgH] : c− IndGJ (φ′) −→ c− IndGH(φ)

should be a monomial morphism it is sufficient that for each yi we have
(see Chapter One §1.8)

(J, φ′) ≤ (yiHy−1
i , (y−1

i )∗(φ)).

In that case λ[JgH] is given by the formula

λ[JgH](g′ ⊗J w) =
n∑
i=1

g′yi ⊗H φ′(yig−1)−1w.

and induces a chain map

[JgH] : M ((H,φ))
∗ −→M

((J,φ′))
∗ .

This chain map together with the Hecke operator of §1.1 induces a chain
map between the exact complexes of the monomial resolution from

. . . −→M
((H,φ))
i −→M

((H,φ))
i−1 −→ . . . −→M

((H,φ))
0

ε−→ V (H,φ) −→ 0
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to

. . . −→M
((J,φ′))
i −→M

((J,φ′))
i−1 −→ . . . −→M

((J,φ′))
0

ε−→ V (J,φ′) −→ 0.

The question arises whether or not this ever happens. The following
example is related to the Hecke operator T (p) of ([51] §3.3 and Remark
11.1.1). The classical operators concern the case when φ′ = φ = 1.

In the context of this section it would be interesting to find out how
many of the classical operators described in ([51] Theorem 3.3.1) extend to
give chain maps of the chain complexes derived from the monomial resolu-
tion of V .

Example 1.4. The following example satisfies all the conditions of §1.3.
Let J = H = Γ1(N) ⊂ GL2Qp where N = ps for some s ≥ 1. Explicitly

H = {

 1 +Na b

Nc 1 +Nd

 | a, b, c, d ∈ Zp}.

Let

g =

 1 0

0 p−1

 ∈ GL2Qp

so that

g

 1 +Na b

Nc 1 +Nd

 g−1

=

 1 0

0 p−1

 1 +Na b

Nc 1 +Nd

 1 0

0 p



=

 1 +Na b

Ncp−1 (1 +Nd)p−1

 1 0

0 p



=

 1 +Na bp

Ncp−1 1 +Nd


Therefore

J
⋂
gHg−1 = {

 1 +Na bp

Nc 1 +Nd

 ∈ H | a, b, c, d ∈ Zp}.

Therefore we have a group extension

J
⋂
gHg−1 −→ H −→ Z/p
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and a coset representatives for H/J
⋂
gHg−1 is given by 1, y, y2, . . . , yp−1

where

y =

 1 1

0 1

 .

Since 1 1

0 1

 u v

w x

 1 −1

0 1

 =

 u+ w v + x− u− w

w x− w


we see that y normalises H.

Therefore if we have (J, φ′) = (H,φ) and (H, y−1)∗(φ)) = (H,φ) then
automatically we have φ′ equals φ when restricted to J

⋂
gHg−1. This

happens, for example, for any character of the form

φλ :

 1 +Na bp

Nc 1 +Nd

 7→ λ(Nc)

where λ is any character of the form λ : NZp/N2Zp −→ k∗.
This gives an example of a Hecke operator chain map [Γ1(N)gΓ1(N)]

which is an endomorphism of the complex

M
((Γ1(N),φλ))
∗

ε−→ V (Γ1(N),φλ) −→ 0

coming from the monomial resolution of V .
In the formulae of §1.3 we have yi = yi−1g and

λ[Γ1(N)gΓ1(N)](g′ ⊗Γ1(N) w) =
p∑
i=1

g′yi−1g ⊗Γ1(N) φ
′(yi−1)−1w.



CHAPTER 8

Could Galois descent be functorial?

1. Morphisms and Shintani descent

1.1. Let us examine some examples of possible “Galois naturality” of
Shintani base change [117]. For example, if V is a Galois invariant irre-
ducible of GLsFqn with extension Ṽ to Gal(Fqn/Fq) ∝ GLsFqn , let H ⊆
GLsFqn be a “base change group” for the sub-Galois group Gal(Fqn/Fqd) ⊆
Gal(Fqn/Fq). Examples of such an H include F∗qns or GLaFqn ×GLs−aFqn
[117]. If W is a Gal(Fqn/Fqd)-invariant irreducible of H with extension
W̃ to Gal(Fqn/Fqd) ∝ H and an H-map λ : W −→ V is there a functo-
rial HGal(Fqn/F

qd
)-map of the form Sh(λ) : Sh(W ) −→ Sh(V ) between the

Shintani base change representations of W and V ?
In general Ṽ can only be constructed as a representation of

Gal(Fq2n/Fq) ∝ GLsFqn (see Chapter Two, §6.1 (footnote) and Theorem
3.11; [117] Theorem 1 p.406). However the naturality question introduced
above also has an analogous formulation in the general case.

A weaker alternative question, potentially almost as useful, would be
to ask for a morphism Sh(λ) which is functorial up to multiplication by
scalars.

Example 1.2. In Chapter Ten, Appendix I §§7-8 we find the formulae
to analyse the case for GL2F4 and (H,φ) = (F∗4, φ). Since the fixed subfield
of F4 is F2 we must have φ = 1. Hence ShF∗4 (1) = 1 the trivial one-
dimensional representation of F∗2 = {1}.

In the notation of Appendix I the matrix C generates F∗4. There are
three Galois invariant GL2F4-irreducibles - ν5, ν4 and 1.

We have ν(〈C〉,1)
5 = C the unique C-fixed subspace of the 5-dimensional

ν5 and therefore a non-zero H-map λ. Also ShGL2F4(ν5) = χ, the non-
trivial character of order two on GL2F2

∼= D6. Therefore

ShGL2F4(ν5)
({1},1) = 1

so, at least up to scalars, we have a unique F∗2-map which is a candidate for
Sh(λ). Note that in this example, in the extended representation ν̃5 the
Frobenius σ also fixes ν(〈C〉,1)

5 .

191
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Now consider ν̃4 on which C and Σ, the Frobenius, act by the matrices

C =


1 0 0 0
0 −1 −1 −2
0 1 0 0
0 0 0 1

 and Σ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

We have ν(〈C〉,1)
4 = C2 so that we have a 2-dimensional space of λ’s. In

this case Sh(ν4) = ν, the 2-dimensional irreducible so that

ShGL2F4(ν4)
({1},1) = 2

and we have a 2-dimensional space of potential Sh(λ)’s.
Perhaps the recipe for assigning λ 7→ Sh(λ) should incorporate the

fact that the fixed subspace of the Frobenius on the extension ν̃4 is 1-
dimensional?

Finally, ShGL2F4(1) = 1 and the functorial Sh(λ) ought to be the
identity map of the complex numbers when λ is non-zero.

Example 1.3. A more elaborate example ([117] p.412)
In this section Galois extension is Fq2p/Fq and the irreducible is

R(χ1, χ2) with χi : F∗q2p −→ C∗ and Frobenius action Σ(χ1) = χ2,Σ(χ2) =
χ1 so that

Σ∗R(χ1, χ2) = R(χ1, χ2).

Hence Gal(Fq2p/Fq2) = 〈Σ2〉 fixes χ1 and χ2 so that, by Hilbert’s The-
orem 90,

χ1 = Θ ·Norm : F∗q2p −→ F∗q2 −→ C∗

and
χ2 = Σ∗(Θ) ·Norm : F∗q2p −→ F∗q2 −→ C∗.

Therefore Θ 6= Σ∗(Θ).
From ([117]; [126], Chapter Two) Sh(R(χ1, χ2)) = R(Θ), the Weil

representation associated to Θ, which is an irreducible representation of
GL2Fq.

Let B denote the Borel subgroup of GL2Fq2p consisting of the upper
triangular matrices, which surjects in the obvious manner onto the diagonal
matrices

Diag ∼= F∗q2p × F∗q2p .
By definition we have

R(χ1, χ2) = Ind
GL2Fq2p
B (InfBDiag(χ1 ⊗ χ2)).

Therefore a basis for this representation is given by(
1 0
u 1

)
⊗B 1 with u ∈ Fq2p
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and (
0 1
−1 0

)
⊗B 1 = χ1(−1)

(
0 1
1 0

)
⊗B 1.

From [117] R(χ1, χ2) is realised by the vector space of functions f on
GL2Fq2p with

f(
(
a b
0 d

)
x) = χ1(a)χ2(d)f(x)

and the GL2Fq2p-action is given by (g#f)(x) = f(xg). Therefore the action
first by g2 and then by g1 satisfies (g1#(g2#f))(x) = (g2#f))(xg1) =
f(xg1g2).

Suppose we map f to C[GL2Fq2p ]⊗B Cχ1⊗χ2 by f 7→
∑
g−1 ⊗B f(g).

We have ∑
g−1 ⊗B f(g)

=
∑

(
(
a b
0 d

)
g)−1 ⊗B f(

(
a b
0 d

)
g)

=
∑
g−1

(
a b
0 d

)−1

⊗B f(
(
a b
0 d

)
g)

=
∑
g−1 ⊗B χ1(a)−1χ2(d)−1f(

(
a b
0 d

)
g)

so that

f(
(
a b
0 d

)
x) = χ1(a)χ2(d)f(x)

as required.
Furthermore the left action by z ∈ GL2Fq2p is given by

z(
∑
g−1 ⊗B f(g))

=
∑
zg−1 ⊗B f(g))

=
∑

(gz−1)−1 ⊗B f((gz−1)z))

=
∑
g−1 ⊗B f(gz))

so that (zf)(g) = f(gz).
Shintani has a transformation I on the functions which is the action of

the Frobenius in the semi-direct product. It is given by

(I · f)(g) = q−p
∑

u∈Fq2p

f(
(

0 1
1 0

)(
1 u
0 1

)
Σ(g)).
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Transforming this over to the tensor product followed by left multiplication
by Σ(z) yields

Σ(z)(I(
∑
g−1 ⊗B f(g)))

= Σ(z)(
∑
g−1 ⊗B q−p

∑
u∈Fq2p

f(
(

0 1
1 0

)(
1 u
0 1

)
Σ(g)))

=
∑

Σ(z)g−1 ⊗B q−p
∑
u∈Fq2p

f(
(

0 1
1 0

)(
1 u
0 1

)
Σ(g))

=
∑
g−1 ⊗B q−p

∑
u∈Fq2p

f(
(

0 1
1 0

)(
1 u
0 1

)
Σ(gz))

whereas

I(z(
∑
g−1 ⊗B f(g)))

= I(
∑
zg−1 ⊗B f(g))

= I(
∑
g−1 ⊗B f(gz))

=
∑
g−1 ⊗B q−p

∑
u∈Fq2p

f(
(

0 1
1 0

)(
1 u
0 1

)
Σ(gz)).

Hence on R(χ1, χ2) we have Σ(z) = I ·z ·I−1 which, up to a scalar which we
shall assume Shintani got right, I acts like the Frobenius in the semi-direct
product on R̃(χ1, χ2).

Now consider the action of the diagonal torus H = F∗q2t × F∗q2t on
R(χ1, χ2). In the tensor product realisation a basis for this representation
is given by

(
(

1 0
u 1

)
⊗B 1) with u ∈ Fq2t and (

(
0 1
1 0

)
⊗B 1).

The matrix relation(
α 0
0 β

)(
1 0
u 1

)
=
(

α 0
βu β

)
=
(

1 0
βu/α 1

)(
α 0
0 β

)
shows that the H-action satisfies(

α 0
0 β

)
(
(

1 0
u 1

)
⊗B 1) = χ1(α)χ2(β)

(
1 0

βu/α 1

)
⊗B 1.

We also have(
α 0
0 β

)
(
(

0 1
1 0

)
⊗B 1) = χ1(β)χ2(α)

(
0 1
1 0

)
⊗B 1.
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Therefore

R(χ1, χ2)(T,χ1⊗χ2) = 〈(
(

1 0
0 1

)
⊗B 1)〉 ⊕ 〈

∑
u∈F∗

q2t

(
(

1 0
u 1

)
⊗B 1)〉.

Furthermore, since Σ2 preserves χ1 ⊗ χ2 we see that
R(χ1, χ2)(H,χ1⊗χ2) extends to a two-dimensional representation of
Gal(Fq2t/Fq2) ∝ H.

In ([126] Chapter Two) it is shown that

ResGL2Fq
F∗
q2

R(Θ) = ⊕θ=Θ on F∗q ,θ 6=Θ,Σ(Θ) θ,

the direct sum of the q − 1 characters of F∗q2 which coincide with Θ on the
scalar matrices but are not equal to Θ or its Frobenius translate.

Consider the Gal(Fq2t/Fq2-equivariant map

H = F∗q2t × F∗q2t −→ GL2Fq2t

given by

(α, β) 7→
(
αs1βs2 0

0 αt1βt2

)
.

Via this map H acts of R(χ1, χ2)(H,χ1⊗χ2) as multiplication by

χ1(α)s1χ1(β)s2χ2(α)t1χ2(β)t2 .

This Shintani descends to F∗q2 × F∗q2 acting via (a, 1) as multiplication by

Θ(a)s1Θ(Σ(a))t1 = Θ(a)s1+t1
Θ(Σ(a))t1

Θ(a)t1

and (1, b) by

Θ(b)ssΘ(Σ(b))t2 = Θ(b)s2+t2
Θ(Σ(b))t2

Θ(b)t2
.

Therefore, if s1 ≡ s2 (modulo q2−1), t1 ≡ t2 (modulo q+1) and s1 +t1 ≡ 1
(modulo q2 − 1) then (a, b) acts via multiplication by

Θ(ab)
Θ(Σ(ab))t1

Θ(ab)t1
.

The character of F̂∗q2 given by x 7→ Θ(x)Θ(Σ(x))t1

Θ(x)t1 equal to Θ when
restricted to F∗q but is not equal to Θ or Σ∗(Θ) if t1 is chosen correctly.
Therefore this is one of the characters appearing with multiplicity one in
the restriction of R(Θ) to F̂∗q2 . Therefore, up to a scalar, we have a unique
morphism between Shintani descents.

Sometimes, in this example, the only candidate for Sh(λ) is zero.
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1.4. The role of the V (H,φ)’s
Suppose Shintani base change is functorial in the sense of §1.1 and

that V is a Gal(Fqn/Fq)-invariant irreducible representation ofGLsFqn as in
[117]. Suppose that H ⊆ GLsFqn is a subgroup preserved by Gal(Fqn/Fqd)
and that φ ∈ Ĥ is fixed by this Galois action. Then the inclusion

λ : V (H,φ) −→ V

is an H-map. If H is a Gal(Fqn/Fqd)-base change group then functoriality
of base change would yield a HGal(Fqn/F

qd
)-map

Sh(λ) : Sh(V (H,φ)) −→ Sh(V )

which is unique (possibly only up to scalars).
If (H,φ) is not Galois-fixed we could form the subspace given by

W =
∑

σ∈Gal(Fqn/F
qd

)

V (σ(H),(σ−1)∗(φ)) ⊆ V.

Sometimes this inclusion will be a J-map of Gal(Fqn/Fqd) irreducible rep-
resentations of base change groups. In this case functoriality would lead
one to expect a JGal(Fqn/F

qd
)-map

Sh(W ) −→ Sh(V ),

unique up to scalars.

1.5. The role of monomial resolutions
The discussion of §1.4 suggests (to an inrepressible optimist) that the

functoriality of base change would yields not just a JGal(Fqn/F
qd

)-map
Sh(W ) −→ Sh(V ) but also morphisms of the complexes of Chapter One
coming from the monomial resolutions and mapping from

M(Sh(W ))((J
′,χ′))

∗ −→ Sh(W )(J
′,χ′)

to

M(Sh(V ))((J
′,χ′))

∗ −→ Sh(V )(J
′,χ′)

for suitable choices of (J ′, χ′).

1.6. Is there a canonical choice of morphism?
Suppose that, in §1.4, there were a JGal(Fqn/F

qd
)-map

Sh(λ) : Sh(W ) −→ Sh(V ),

unique up to scalars. How could it be normalised in order to become unique?
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The formulae for examples which I have encountered suggest the Mar-
shall McLuhan-style slogan “the morphism IS the invariant”. That is, some-
how (I have the local field case in mind here) the formula can be read off
the formulae for the epsilon factor or local L-function invariant 1.

1.7. A simple observation
Suppose that V is a finite-dimensional complex Gal(Fqm/Fq)-invariant

irreducible representation of GLnFqm and that

λ : F∗qm × F∗qm −→ GLnFqm

is a Gal(Fqm/Fq)-equivariant homomorphism. Let φ be a Gal(Fqm/Fq)-
invariant character and denote by Cφ the associated one-dimensional rep-
resentation.

We have

dimCHomF∗
qm
×F∗

qm
(Cφ, V )

= 1
|Fqm |2

∑
(h1,h2)∈F∗

qm
×F∗

qm
φ(h1, h2)−1χV (h1, h2).

If dimCHomF∗
qm
×F∗

qm
(Cφ, V ) = 1 and m is prime we may write

ResGLnFqm
F∗
qm
×F∗

qm
(V ) = Cφ ⊕ (⊕ti=1 Cφi)⊕ (⊕sj=1 Cψj ⊕ Σ∗ψj ⊕ . . .⊕ Σm,∗ψj)

where φi for 1 ≤ i ≤ t are Gal(Fqm/Fq)-invariant characters different
from φ. The extension of V to a representation of the semi-direct product
Gal(Fqm/Fq) ∝ GLnFqm is denote by Ṽ . The restriction of Ṽ to Gal(Fqm/Fq) ∝
(F∗qm×F∗qm) is given by the sum of φ̃, φ̃1, . . . , φ̃t and the obvious extensions
of the Cψj ⊕ Σ∗ψj ⊕ . . .⊕ Σm,∗ψj ’s.

Suppose that h1, h2 ∈ F∗qm and

(w1, w2) = (h1Σ(h1)) . . .Σm−1(h1), h2Σ(h2)) . . .Σm−1(h2)) ∈ F∗q × F∗q

and for any wi there are |F∗qm |/ F∗q | hi’s whose norm is wi.

1Perhaps this is getting to be really too optimistic, attributable no doubt to my

(like Herbert Marshall McLuhan) spending too much time in Edmonton, Alberta!
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The character function on (Σ, h1, h2) of the extension to each of the
Cψj ⊕ Σ∗ψj ⊕ . . .⊕ Σm,∗ψj ’s to the semi-direct product is zero. Therefore

dimCHomF∗q×F∗q (Sh(Cφ), Sh(V ))

= 1
|Fq|2

∑
(w1,w2)∈F∗q×F∗q

Sh(φ)(w1, w2)−1χSh(V )(w1, w2)

= 1
|Fq|2

| F∗q |
2

|F∗
qm
|2
∑

(w1,w2)∈F∗q×F∗q
wi=hiΣ(hi))...Σm−1(hi)

φ)(h1, h2)−1χṼ (Σ, h1, h2))

= 1
|Fqm |2

∑
(h1,h2)∈F∗

qm
×F∗

qm
φ(h1, h2)−1(φ(h1, h2) +

∑t
i=1 φi(h1, h2))

= 1.

This discussion, by induction, establishes the following result, which is
a further modest contribution to the topic of functoriality of Shintani base
change.

Proposition 1.8.
Let V be a finite-dimensional complex Gal(Fqm/Fq)-invariant

irreducible representation of GLnFqm and let

λ : F∗qm × F∗qm −→ GLnFqm

be a Gal(Fqm/Fq)-equivariant homomorphism. Let φ be a Gal(Fqm/Fq)-
invariant character and denote by Cφ the associated one-dimensional rep-
resentation.

If dimCHomF∗
qm
×F∗

qm
(Cφ, V ) = 1 then

dimCHomF∗q×F∗q (Sh(Cφ), Sh(V )) = 1.

Example 1.9. One last base change naturality example
Let j : H −→ GLtFqm be a homomorphism where H is a subgroup

with a Galois action by Gal(Fqm/Fq) with respect to which H is a “Shin-
tani base change group”. For example, H might be the product of several
GLaiFqm ’s. Suppose that j commutes with the Gal(Fqm/Fq)-action. Let V2

be a complex irreducible representation of Gal(Fqm/Fq) which is Galois in-
variant. Therefore there exists, for each g ∈ Gal(Fqm/Fq) an automorphism
Ig ∈ AutC(V2) such that for v2 ∈ V2, x ∈ GLtFqm we have

Ig(xv2) = g(x)Ig(v2) or equivalently xI−1
g (v2) = I−1

g (g(x)v2).

Let V1 be a complex irreducible representation of H which is also
Gal(Fqm/Fq)-invariant. In addition suppose that

dimCHomH(V1, j
∗(V2)) = 1.
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Therefore there is an H-isomorphisms

Φ : V2

∼=−→ V1 ⊕W and i : V1 −→ V2

such that Φ(i(v1)) = (v1, 0).
There is also Jg ∈ AutC(V1) such that, for v1 ∈ V1,

Jg(xv1) = g(x)Jg(v1).
Consider the composition

V1
Jg−→ V1

i−→ V2

I−1
g−→ V2

Φ−→ V1 ⊕W.
This first maps xv1 to Jg(xv1) = g(x)Jg(v1) and then to g(x)i(Jg(v1)) and
thereafter to I−1

g (g(x)i(Jg(v1))) = xI−1
g (i(Jg(v1))). If Φ(I−1

g (i(Jg(v1)))) =
(α, β) ∈ V1 ⊕W the final image of xv1 is (xα, xβ). By Schur’s Lemma the
first coordinate of I−1

g (i(Jg())) is a scalar multiple of the identity map of V1

and by the H-multiplicity of V1 in V2 the second component of I−1
g (i(Jg()))

must be zero. Since the composition is injective the scalar multiple in the
first coordinate is non-zero and may be chosen equal to 1.

In other words we may choose the restriction of IΣ to V1 to be equal
to JΣ where Σ is the Frobenius Galois automorphism.

Now let Sh(V1) ∈ Irr(HGal(Fqm/Fq)) and Sh(V2) ∈ Irr(GLtFq).
Consider now the dimension

dimCHom
H

Gal(Fqm/Fq)(Sh(V1), Sh(V2))

1

|HGal(Fqm/Fq)|

∑
Y ∈HGal(Fqm/Fq) χSh(V1)(Y )χSh(V2)(Y ).

Let Σ denote the Frobenius automorphism. There is an automorphism
IΣ ∈ AutC(V2) satisfying, for x ∈ GLtFqm , v ∈ V2,

IΣ(x · v) = Σ(x) · IΣ(v)

and ImΣ = ±1. Therefore (Σ, x)·v = x·IΣ(v) defines an irreducible represen-
tation ρ′ on V2 of the semi-direct product Gal(F2m

q /Fq) ∝ GLtFqm2 When
ImΣ = 1 ρ′ factors through a representation ρ̃ of Gal(Fmq /Fq) ∝ GLtFqm . In
either case

χρ′(Σ, x) = χSh(V2)([xΣ(x) . . .Σm−1(x)]).

Here [xΣ(x) . . .Σm−1(x)] denotes the unique conjugacy class in GLnFq
given by the intersection of the conjugacy class of xΣ(x) . . .Σm−1(x) in
GLnFqm with GLnFq.

I shall take the assumption that H is a “Shintani base change group”
to mean that the analogous extension ρ′′ to Gal(F2m

q /Fq) ∝ H, constructed
using JΣ, satisfies the analogous character formula

χρ′′(Σ, x) = χSh(V1)([xΣ(x) . . .Σm−1(x)]).

2My convention for the product is given by (g1, x1)(g2, x2) = (g1g2, x1g1(x2)).
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Since JΣ may be taken to be the restriction of IΣ to H the conjugacy
class in HGal(F2m

q /Fq) = HGal(Fmq /Fq) denoted by [xΣ(x) . . .Σm−1(x)] is the
same in the χρ′′(Σ, x) formula as in the χρ′(Σ, x)-formula provided that
x ∈ H.

Also, since JΣ may be taken to be the restriction of IΣ to H, there is
a non-zero map of representations from ρ′′ to ρ′. Therefore the equation

dimCHomH(V1, j
∗(V2)) = 1

implies that
dimCHomGal(F2m

q /Fq)∝H(ρ′′, j∗(ρ′)) = 1.

We have
dimCHomGal(F2m

q /Fq)∝H(ρ′′, j∗(ρ′))

= 1
|Gal(F2m

q /Fq)∝H|
∑

(Σi,x)∈Gal(F2m
q /Fq)∝H χρ′′(Σi, x)χρ′(Σi, x)

= 1
|Gal(F2m

q /Fq)∝H|
∑

(1,x)∈Gal(F2m
q /Fq)∝H χρ′′(1, x)χρ′(1, x)

+ 1
|Gal(F2m

q /Fq)∝H|
∑m−1
i=1

∑
(Σi,x)∈Gal(F2m

q /Fq)∝H χρ′′(Σi, x)χρ′(Σi, x)

= 1
2mdimCHomH(V1, j

∗(V2))

+ 1
2m|H|

∑2m−1
i=1

∑
(Σi,x)∈Gal(F2m

q /Fq)∝H χρ′′(Σi, x)χρ′(Σi, x).

Next we observe the ImΣ = ±1 = JmΣ implies that

χρ′′(Σi, x)χρ′(Σi, x) = χρ′′(Σm+i, x)χρ′(Σm+i, x).

Therefore
dimCHomGal(F2m

q /Fq)∝H(ρ′′, j∗(ρ′))

= 1
mdimCHomH(V1, j

∗(V2))

+ 1
m|H|

∑m−1
i=1

∑
(Σi,x)∈Gal(F2m

q /Fq)∝H χρ′′(Σi, x)χρ′(Σi, x).

Also, from [117] or the observation of Digne-Michel described in (Chap-
ter Ten, §10.3), we have the following relation between sizes of conjugacy
classes

|GLtFqm | · |GLtFq conjugacy class of [xΣ(x) . . .Σm−1(x)]|

= |GLtFq| · |GLtFqm conjugacy class of (Σ, x)|.

This relation is a consequence of Lang’s Theorem (see Chapter Ten §10)
and I am assuming that H being a “Shintani base change group” includes
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the implication that the analogous relation holds for H. That is, for x ∈ H,

|H| · |HGal(Fqm/Fq) conjugacy class of [xΣ(x) . . .Σm−1(x)]|

= |HGal(Fqm/Fq)| · |H conjugacy class of (Σ, x)|.

To count the size of conjugacy classes of (Σi, x) in the semi-direct product
(rather than just conjugation by elements of H) we observe that

(Σ, 1)(Σi, x)Σ, 1)−1 = (Σi,Σ(x)).

Now, for simplification, assume that m is prime so that each Σi for
1 ≤ i ≤ m− 1 generates the Galois group. In which case each term in the
sum of of the form

χSh(V1)[xΣ(x) . . .Σm−1(x)]|χSh(V2)([xΣ(x) . . .Σm−1(x)]|)

Therefore the relation between character sums simplifies to

1− 1
m

= m−1
m dimCHom

H
Gal(F2mq /Fq)(Sh(V1), Sh(V2))

so that
dimCHom

H
Gal(Fmq /Fq)(Sh(V1), Sh(V2)) = 1

as required.
Finally, when m is composite we proceed by induction on m, grouping

together the terms
χρ′′(Σi, x)χρ′(Σi, x)

according to the fixed field of Σi, say Fqd , and using the result that

dimCHom
H

Gal(Fmq /F
qd

)(ShFmq /F
qd

(V1), ShFmq /F
qd

(V2)) = 1

for all divisors d > 1.

2. Galois base change of automorphic representations

2.1. Local fields
Let L/K be a Galois extension of unramified q-adic local fields with

residue field extension Fq2p/Fq. Let χ+
1 , χ

+
2 : L∗ −→ C∗ be continuous

characters such that

ResL
∗

O∗
L
(χ+
i ) = InfO

∗
L

F∗
q2p

(χi)

in the notation of Example 1.3. In addition suppose that Σ(χ+
1 ) = χ+

2

and Σ(χ+
2 ) = χ+

1 where Σ ∈ Gal(L/K) ∼= Gal(Fq2p/Fq) corresponds to the
Frobenius of Example 1.3. Then there is a Gal(L/K)-invariant admissible
irreducible R(χ+

1 , χ
+
2 ) of GL2L [63] which is related to R(χ1, χ2) by c-Ind

induction. In fact, the entire base change from R(χ+
1 , χ

+
2 ) to an admissible
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irreducible of GL2K is related to the Shintani base change of Example 1.3
by c-Ind induction.

Hence one is led to conjecture that base change for GLn of local fields
might be functorial in the analogous sense to that of §1.1. The pay-off for
such functoriality of local base change could be very interesting. Suppose
that Π is a Gal(L/K)-invariant admissible irreducible of GLnL. Let E
be Tammo tom Dieck’s space (see Appendix IV) associated to the class
of cyclic subgroups of Gal(L/K). Let σ be a simplex of E with stabiliser
Hσ = StabGal(L/K)(σ), which is a cyclic group. Assigning to σ the Hσ-base
change of Π, functoriality of base change would give a sheaf of admissible
representations on E . The Cech complex of this sheaf would be a complex
of Gal(L/K) × GLnK admissible representations. Since each fixed-point
sub-complex EHσ is contractible the spectral sequence for computing the
Cech sheaf cohomology simplifies and yields an interesting “base change
complex” of admissible Gal(L/K)×GLnK representations.

2.2. Automorphic representations
Cyclic Galois base change for automorphic representations of GLnAF ,

F being a number field, was established in [7]. This was accomplished by
proving local cyclic base change for GLn and appealing to the Tensor Prod-
uct Theorem (Chapter Three, §2). If V is an automorphic representation
we have seen (Chapter Three §4 and Chapter Seven §1) that the subspaces
V (H,λ) can sometimes be spaces of automorphic forms. For example, in
the adèlic language, Hecke characters may be interpreted as automorphic
forms on GL1 and modular forms as automorphic forms on GL2. Therefore
Galois base change for automorphic representations of GL2 is related to a
similar base change for modular forms. This was first studied, for GL2

and quadratic extensions, by Doi and Naganuma in [55] and [56], using
Weil’s converse to Hecke theory, as did Jacquet in [81]. Saito [107] intro-
duced the use of a twisted trace formula to treat the case of base change
for some Hilbert modular forms in cyclic extensions of totally real fields.
Saito’s method was recast in terms of automorphic forms on adèlic groups
by Shintani [118] and Langlands [91].

For further details see ([39] pp.84-88 and pp.90-103) and, of course, [7].
Functoriality of base change may fit in with base change for modular

forms in the following manner. By the Tensor Product Theorem and the
Multiplicity One Theorem ([39], [91]) functoriality of local base change for
GL2 should imply functoriality for base change of adèlic representations. If
V in §1.4 were an automorphic representation and

λ : V (H,φ) −→ V
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is the embedding of a line spanned a “modular form” then the morphism
of base changes, analogous to

Sh(λ) : Sh(V (H,φ)) −→ Sh(V )

of §1.4, Sh(V (H,φ)) being a line, would have image spanned by a “base
changed modular form”.

3. Integrality and the proof of Shintani’s theorem

3.1. This section sketches Shintani’s proof of Galois base change (Ga-
lois descent) for finite-dimensional complex irreducible representationsof
GLnFqd . Shintani’s proof is a baby version of the local base change proof
of [7], where “baby” means that applications of the highly technical twisted
trace formula are replaced by applications of the elementary character
(trace) functions for representations of finite groups. That is not to dero-
gate either the complexity or the importance of Shintani’s result. Far from
it, for [117] served as the insight and the motivation for the fundamental
[91] and many subsequent papers.

Since §1 and §2 of this chapter were concerned with speculation about
functoriality of base change for GLn and its subgroups for finite and local
fields, I should try to present a sketch proof of the main result of [117]
which contains at least one fundamental difference. In what follows the
main difference will consist of reducing the proof to an integrality condition
related to the Explicit Brauer Induction formula of Appendix I, §5 and
therefore, by inference, to the monomial resolutions of Chapter One and
Chapter Two.

If G is a finite group recall that R(G) (Appendix I, §5) denotes the
complex representation ring of G; i.e. R(G) = K0(C[G]). An element of
R(G) will be called a virtual representation (or simply a character in the
terminology of ([69] Theorem 1)). Any finite-dimensional complex repre-
sentation V of G defines a class in R(G) and two representations V,W
become equal in R(G) if and only if they are equivalent. In general the
elements of R(G) are formal differences x = V1 − V2 of finite-dimensional
representations Vi of G. The character function of x given by the conjugacy
class function on G defined by

x(g) 7→ Trace(x)(g) = TraceV1(g)− TraceV2(g) ∈ C

uniquely characterises x ∈ R(G) (see [126]).

3.2. Any complex-valued conjugacy class function f on a finite group
G defines an element of R(G) ⊗ C. Conversely, via its trace function, any
element of R(G) gives rise to such a conjugacy class function. In order
to describe all the class functions arising from R(GLnFq) we shall need a
necessary and sufficient recognition criterion.
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Recall that G is an M-group [77] if every finite-dimensional complex
irreducible representation of G has the form IndGH(φ) for some character φ ∈
Ĥ. Following [69] G will be called an elementary group if it is isomorphic
to a product H × C with H a p-group and C a cyclic group whose order
is not divisible by the prime p. As in Chapter One, §1, M(G) denotes the
poset of pairs (H,φ) with H ⊆ G and φ ∈ Ĥ.

Proposition 3.3.
The following conditions on the class function f of §3.2 are equivalent:

(i) f ∈ R(G) ⊂ R(G)⊗ C,

(ii) for every M-group H ⊆ G
ResGH(f) ∈ R(H) ⊂ R(H)⊗ C,

(iii) for every elementary group H ⊆ G
ResGH(f) ∈ R(H) ⊂ R(H)⊗ C,

(iv) for every (H,φ) ∈M(G)
1
|G|

∑
(H,φ)=(H0,φ0)<...<(Hr,φr)

∑
h∈H

φ(h)−1f(h) ∈ Z.

Here the sum is taken over all ascending chains onM(G) starting at (H,φ).

Proof:
Since the restriction map on representations R(G) ⊗ C −→ R(H) ⊗ C

maps R(G) to R(H) we see that (i) immediately implies (ii) and (iii).
By Brauer’s induction theorem [33] every virtual representation λ ∈

R(G) may be written as a Z-linear combination of the form

λ =
t∑
i=1

αiIndGLsFqn
Ji

(φi)

where φ : Ji −→ C∗ is a character and Ji ⊆ G is an elementary group.
In particular take λ = 1 and multiply the relation by the conjugacy class
function f to obtain, via Frobenius reciprocity, a relation between class
functions

f =
t∑
i=1

αif · IndGJi(φi) = αiIndGJi(ResGJi(f) · φi)

which shows that if each ResGJi(f) ∈ R(Ji) ⊂ R(Ji) ⊗ C then f ∈ R(G) ⊂
R(G)⊗ C, proving (iii).
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In ([126] Proposition 2.1.17) a topological argument3 shows that

1 =
∑
α

IndGHα(1) ∈ R(G)

in which every Hα is an M-group. The proof of part (iii) applied to this
relation proves (ii).

Let aG and bG denote the explicit Brauer induction homomorphism of
Appendix I. §5 and its left inverse. If V is a representation of G then

dimC(V (H,φ)) = dimC(HomH(Cφ, V )

= dimC(HomG(IndGH(Cφ), V )

= |H|
|G|
∑
h∈H φ(h)−1χV (h)

where χV is the trace function of V . By additivity the formula is true
for any V ∈ R(G). Therefore, by Appendix I §5, the expression in (iv) is
precisely the coefficient of (H,φ)G ⊗ 1 in (aG ⊗ 1)(f) ∈ R+(G)⊗C. Hence
if f ∈ R(G) then this expression has integral coefficients and conversely the
integrality of the coefficients implies that (aG⊗1)(f) ∈ R+(G) ⊂ R+(G)⊗C
and so f = bG ⊗ 1(aG ⊗ 1(f)) ∈ R(G), which proves that (iv) is equivalent
to (i). 2

Definition 3.4. Choose an injective homomorphism θ : F∗q −→ C∗.
Let G be a finite group and let

ρ : G −→ GLnFq

be a homomorphism. For X ∈ G let {ξ1(X), . . . , ξn(X)} denote the set
of eigenvalues of ρ(X) considered as lying in F∗q . Let S(t1, . . . , tn) be any
symmetric function in n variables.

Define a complex-valued conjugacy class function χρ,S on G by the
formula

χρ,S(X) = S(θ(ξ1(X)), . . . , θ(ξn(X))).

Theorem 3.5. ([69] Theorem 1)
Let χρ,S ∈ R(G) ⊗ C correspond to the conjugacy class function of

Definition 3.4. Then χρ,S ∈ R(G)4.

3The M-group induction result together with a simple case of the cyclotomic number

theory (when G is cyclic) used in [33] gives a proof of Brauer’s Induction Theorem in

the form appearing in [33]. I tried in [126] to be clever and eliminate the cyclotomic
number theory with the result of messing up the last step!

4Topologists call this result “Brauer Lifting”. It appears famously in the classic
paper [105]
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Proof:
By Proposition 3.3 it suffices to prove Theorem 3.5 with G replaced by

an elementary subgroup of the form H ×C where H is a p-group for some
prime p and C is a cyclic group of order prime to p.

Now consider the cyclotomic field Q(ξqm−1) where ξa = e2π
√
−1/a and

m is such that Fqm contains all the eigenvalues of all the matrices ρ(X) with
X ∈ H×C. Let P�Z[ξqm−1] be any prime ideal dividing the characteristic
of Fq. Then Z[ξqm−1]/P ∼= Fqm where the isomorphism sends a (qm−1)-th
root of unity x to its residue class x.

We may choose θ in Definition 3.4 so that θ(x) = x.
Now let l be the characteristic of Fq. If l does not divide the order

of H × C then it is well-known that there is a complex representation of
the form ρ1 : H × C −→ GLsZ[ξqm−1] such that reduction modulo P
gives a representation ρ1 of H × C over Fqm which is equivalent to the
Fq-representation ρ. For g ∈ H × C the eigenvalues of ρ1 are precisely the
images under θ of the Fq eigenvalues of g. The i-th elementary symmetric
function of the θ-values of the Fq eigenvalues of g is equal to the i-elementary
symmetric function of ther complex eigenvalues of ρ1 which is the trace
function of the i-th exterior power representation λi(ρ1) of ρ1.

Now assume that l does divide the order of H × C. We may write
H ×C ∼= H1 ×H2 where the order of H1 is not divisible by l and H2 is an
l-group. If g ∈ H × C corresponds to (h1, h2) ∈ H1 ×H2 then h1 and h2

are two commuting elements of GLsFqm and the Fq eigenvalues of h2 are
all equal to 1. Therefore elementary matrix algebra shows that in GLsFqm
we may simultaneously conjugate (h1, 1) and (1, h2) to upper triangular
matrices of the form

ζ1 . . . . . . . . .

0 ζ2 . . . . . .

...
...

...
...

0 0 . . . ζs


and



1 . . . . . . . . .

0 1 . . . . . .

...
...

...
...

0 0 . . . 1


respectively.

Therefore the θ-values of the Fq eigenvalues of g = (h1, h2) are exactly
those of (h1, 1). This reduces us, by projection onto H1 from H×C, to the
case in which l does not divide the order of the subgroup, which completes
the proof. 2

Definition 3.6. Let X ∈ GLnFq then, for θ as in Definition 3.4, set

χΣsr (X) =
∑

1≤i1<...<ir≤n

θ(λi1 . . . λir )
s ∈ C.
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Define Σsr ∈ R(GLnFq) to be the virtual representation, given by The-
orem 3.5, whose character function is χΣsr .

Theorem 3.7. ([69] Theorem 5; see also Theorems 12 and 13)
Each irreducible representation of GLnFq is, in R(GLnFq), equal to an

integral lineat combination of the {Σsr; 1 ≤ r ≤ n, s ∈ Z} of Definition 3.6
and the irreducible representations constructed in Appendix III, §2 as sum-
mands of induction of tensor products from parabolic subgroups (denoted
by Dn1,n2,... ,nr in Appendix III, §2).

3.8. ([117] Lemma 1.4)
Let G be a finite group and let Σ be an automorphism of G of order

m. Let 〈Σ〉 ∝ G denote the semi-direct product of the cyclic group of order
m, generated by Σ, with G. That is, the product G̃ = 〈Σ〉 × G with the
multiplication given by the formula of Appendix I, §3

(Σi, g1) · (Σj , g2) = (Σi+j ,Σi(g1)g2).

Lemma 3.9.
Let ρ be a representation of G on a vector space V with character χV .

Then there exists a representation W of G̃ whose character function with
χW satisfies, for all g ∈ G,

χW (Σ, g) = χV (g · Σ(g) · . . . · Σm−2(g) · Σm−1(g)).

Proof:
Let Σ act on the m-fold tensor product of V with itself by

Σ(v1 ⊗ v2 ⊗ . . .⊗ vm) = vm ⊗ v1 ⊗ v2 ⊗ . . .⊗ vm−1.

Let g act by a formula of the type

g(v1 ⊗ v2 ⊗ . . .⊗ vm) = Σa1(g)(v1)⊗ Σa2(g)(v2)⊗ . . .⊗ Σam(g)(vm).

Therefore
(Σ · g · Σ−1)(v1 ⊗ v2 ⊗ . . .⊗ vm)

= (Σ · g)(v2 ⊗ v3 ⊗ . . .⊗ vm ⊗ v1)

= Σ(Σa1(g)(v2)⊗ Σa2(g)(v3)⊗ . . .⊗ Σam(g)(v1))

= Σam(g)(v1)⊗ Σa1(g)(v2)⊗ Σa2(g)(v3)⊗ . . .⊗ Σam−1(g)(vm))

and in order for this to be Σ(g)(v1 ⊗ v2 ⊗ . . .⊗ vm) we need that

am = a1 + 1, a1 = a2 + 1, . . . , am−1 = am + 1 (modulo m).

This works if

a1 = m− 1, am = 0, am−1 = 1, am−2 = 2, . . . , a2 = m− 2.
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Therefore, if {eα} is a basis of V , then

(Σ, g)(eα1 ⊗ eα2 ⊗ . . .⊗ eαm)

= (1, g)(Σ, 1)(eα1 ⊗ eα2 ⊗ . . .⊗ eαm)

=
∑
i1,i2,...

Σm−1(g)i1,αmei1 ⊗ Σm−1(g)i2,α1ei2 ⊗ . . .⊗ gim,αm−1eim

whose trace is given by∑
α1,α2,...

Σm−1(g)α1,αmΣm−1(g)α2,α1 . . . gαm,αm−1

= Trace(g · Σ(g) · . . . · Σm−2(g) · Σm−1(g)).
2

Corollary 3.10.
Let Σsr ∈ R(GLnFq) be the virtual representation of Definition 3.6.

Then for any integer m > 1 there exists a virtual representation

W ∈ R(Gal(Fqm/Fq) ∝ GLnFqm)

such that

χW (Σ, g) = χΣsr (g · Σ(g) · . . . · Σm−2(g) · Σm−1(g))

for all g ∈ GLnFqm , where Σ is the Frobenius.

Proof:
Lemma 3.9, by additivity, extends to virtual representations. There-

fore we may apply Lemma 3.9 to Σsr ∈ R(GLnFqm), which is a virtual
representation which restricts to Σsr ∈ R(GLnFq). 2

Theorem 3.11. ([117] Theorem 1; see also Lemmas 2.7 and 2.11)
(i) Let ρ be a finite-dimensional complex irreducible representation of

GLnFq. Then there exists an irreducible representation ρ̃ of the semi-direct
product
Gal(Fqm/Fq) ∝ GLnFqm which satisfies, for all g ∈ GLnFqm ,

χρ̃(Σ, g) = εχρ([gΣ(g) . . .Σm−1(g)])

where ε = ±1 is independent of g. Here [gΣ(g) . . .Σm−1(g)] denotes the
unique conjugacy class in GLnFq given by the intersection of the conjugacy
class of gΣ(g) . . .Σm−1(g) in GLnFqm with GLnFq.

(ii) The Shintani base change correspondence (see Appendix I, §4)

Sh : Irr(GLnFqm)Gal(Fqm/Fq) ∼=−→ Irr(GLnFq)

is given by, in the case where ε may be chosen to equal 1 in part (i),

Sh(ResGal(Fqm/Fq)∝GLnFqm
GLnFqm (ρ̃)) = ρ.
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When ε = −1 is the only possibility there is an extension, denoted by ρ′,
of ρ to Gal(Fq2m/Fq) ∝ GLnFqm and

χρ′(Σ, g) = χρ([gΣ(g) . . .Σm−1(g)])

specifies χ(ρ) in this case.

Sketch Proof of Theorem 3.11
Write N(g) for [gΣ(g) . . .Σm−1(g)], which is a conjugacy class in

GLnFq5. It is shown in [117] that every conjugacy class occurs as an
N(g), which also follows from the observation of Digne-Michel in Appendix
I, §10. Observe that N(gxΣ(g)−1) = g−1N(x)g.

The proof consists of an induction in which one assumes for smaller val-
ues s < n that for each ρ ∈ Irr(GLsFq) there exists a virtual representation
ρ̂ ∈ R(Gal(Fqm/Fq) ∝ GLsFqm) such that, for all g ∈ GLsFqm ,

χρ̂(Σ, g) = χρ([gΣ(g) . . .Σm−1(g)]).

There, if (n1, . . . , nr) is a partition of n by strictly positive integers, and
ρi ∈ Irr(GLniFq) there exists a virtual representation

ρ̂i ∈ R(Gal(Fqm/Fq) ∝ GLniFqm)

such that, for all g ∈ GLniFqm ,

χρ̂i(Σ, g) = χρi([gΣ(g) . . .Σm−1(g)]).

If ρ ∈ Irr(GLnFq) is constructed by parabolic inflation-induction from
ρn1 , . . . , ρnr , as in Appendix III, §2, ρ̃ is constructible by parabolic inflation-
induction from ρ̃n1 , . . . , ρ̃nr ([117] Lemmas 2.8 and 2.9).

By additivity, Theorem 3.7 and Corollary 3.10 for each ρ ∈ Irr(GLnFq)
there exists a virtual representation ρ̃ satisfying the character condition
of part (i). A character calculation then shows that ±ρ̃ is an irreducible
representation and, finally, the counting (as in Appendix I, §10) shows that
ρ 7→ ρ̃ gives a bijection as in part (ii). 2

3.12. Integrality is equivalent to Shintani descent
I shall close this chapter by recapitulating and elaborating upon the in-

tegrality remarks of Appendix I, §9 and finally posing a question about a po-
tentially alternative proof of Theorem 3.11. The sketch proof of Shintani’s
Theorem starts from the bottom of Galois descent, with ρ ∈ Irr(GLnFq).
The integrality point of view starts at the top with a Galois invariant ir-
reducible π ∈ Irr(GLnFqm)Gal(Fqm/Fq). As explained in Appendix I, being
Galois invariant is equivalent to there existing an extension of π to

π̃ ∈ Irr(Gal(Fqm/Fq) ∝ GLnFqm)

5N(g) in [117] is constructed from Σm−1(g) . . .Σ(g)g due to the convention used
for the multiplication in the semi-direct producrt (see [117] §1) which differs from mine.
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which is unique up to twisting by a one-dimensional character of
Gal(Fqm/Fq).

Assigning to the conjugacy class [gΣ(g) . . .Σm−1(g)] in GLnFq, as de-
fined in Theorem 3.11(i), the complex number χπ̃(Σ, g) gives a well-defined
class function and hence an element ±Sh(π) of R(GLnFq)⊗ C.

As we saw in the sketch-proof of Theorem 3.11, in order to complete
the proof it is sufficient to show that ±Sh(π) ∈ R(GLnFq). As explained
in Appendix I, §9, this condition is equivalent to the condition that each
coefficient in the Explicit Brauer Induction formula aGLnFq (±Sh(π)) is in-
tegral.

If (H0, φ0) ∈ MGLnFq the coefficient of the GLnFq-conjugacy class of
(H0, φ0) in aGLnFq (±Sh(π)) is given by∑

(H0,φ0)<(H1,φ1)<...<(Hr,φr)
(−1)r |H0|

|GLsFq|dimC(±Sh(π)(Hr,φr))

where the sum is over the set of strictly ascending chains

(H0, φ0) < (H1, φ1) < . . . < (Hr, φr)

ending in (Hr, φr).
Here, as for a virtual representation, dimC(±Sh(π)(Hr,φr)) denotes the

complex number given by

dimC(±Sh(π)(Hr,φr)) = 1
|Hr|

∑
h∈Hr φr(h)−1χ±Sh(π)(h)

= 1
|Hr|

∑
h=[gΣ(g)...Σm−1(g)]∈Hr φr(h)

−1χ±Sh(π)(h)

= ε
|Hr|

∑
h=[gΣ(g)...Σm−1(g)]∈Hr φr(h)−1χρ̃(Σ, g).

Since

(−)(Hr,φr) ∼= HomHr (Cφr ,−) ∼= HomGLnFq (IndGLnFq
Hr

(Cφr ),−)

the above dimension formula can be rewritten in terms of the character
values of IndGLnFq

Hr
(Cφr ) using the formula from ([126] Theorem 1.2.8) and

the sizes of conjugacy classes given in ([117] §2.6(ii); see also Appendix I,
§10).

Question 3.13. In §3.12 we saw that the integrality of each of certain
sums over chains

(H0, φ0) < (H1, φ1) < . . . < (Hr, φr)

implies Theorem 3.11. It is straight forward to compare each of those sums
with similar sums over chains, at least when m is prime,

(Gal(Fqm/Fq)×H0, φ0) < (Gal(Fqm/Fq)×H1, φ1)

< . . . < (Gal(Fqm/Fq)×Hr, φr).
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We know that the Explicit Brauer Induction formula for π̃ has integral
coefficients which involve sums over chains inM(Gal(Fqm/Fq) ∝ GLnFqm)
- in particular, sums over chains commencing at (Gal(Fqm/Fq) × H0, φ0).
Could the latter integrality be used to show that of the sum over chains of
the form (Gal(Fqm/Fq)×Hi, φi)?

4. Some recreational integer polynomials

4.1. Choose an injective homomorphism θ : F∗q −→ C∗ as in Definition
3.4. Recall from Definition 3.6 that Σ1

r (abbreviated here to Σr) is equal
to the following conjugacy class function on GLsFq. For X ∈ GLsFq let
{λ1, . . . , λs} denote the set of eigenvalues of X and set

Σr(X) =
∑

1≤i1<...<ir≤s

θ(λi1 , . . . , λir ) ∈ C.

These functions may be collected into polynomials if we set

X̂ =



θ(λ1) 0 . . . . . . 0
0 θ(λ2) 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 0 . . . 0 θ(λs)


so that the characteristic polynomial of X̂ satisfies

det(tIs − X̂) = ts − Σ1(X)ts−1 + Σ2((X)ts−2 + . . .

+(−1)iΣi((X)ts−i + . . .+ (−1)sΣs((X).

By Theorem 3.5 the element of R(GLsFqn)[t]⊗C given by the complex
polynomial-valued class function X 7→ det(tIs − X̂) lies in R(GLsFqn)[t]
for all s, n ≥ 1. Write P (s, n) for this polynomial.

By the discussion of §3.12 this is equivalent to the condition that for
each (H0, φ0) ∈M(GLsFqn) the sum∑

(H0,φ0)<(H1,φ1)<...<(Hr,φr)
(−1)r |H0|

|GLsFq|dimC(P (s, n)(Hr,φr)) ∈ Z[t].

Here the sum is over the set of strictly ascending chains

(H0, φ0) < (H1, φ1) < . . . < (Hr, φr)

starting at (H0, φ0) ∈M(GLsFqn).
These integer polynomials are given by the coefficients of

(H0, φ0)GLsFqn ∈ R+(GLsFqn)
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in the (polynomial-valued) Explicit Brauer Induction formula. This formula
is natural with respect to restrictions such as the one from R+(GLsFqnd)
to R+(GLsFqn), as explained in Appendix I, §5).

In addition, restriction via the map GLs −→ GLs+t which extends a
matrix by adding zeros off the diagonal and 1’s along the diagonal sends
P (s+ t, n) to P (s, n)(t− 1)t.

These two types of naturality relate the P (s, n)’s to the Brauer lifting
of [105].

Question 4.2. Do there exist closed formulae for the integer polyno-
mials of §4.1?

5. Base change functoriality for stable homotopy theorists

5.1. The Shintani correspondence gives a bijection between Irr(GLsFq)
and Irr(GLsFqn)Gal(Fqn/Fq) for complex irreducibles. Since the former is a
free Z-basis for the complex representation ring R(GLsFq) the additive
extension of the inverse correspondence Sh−1 gives a homomorphism

Sh−1 : R(GLsFq) −→ R(GLsFqn).

Explicitly, if ν = ⊕ti=1 νi with νi ∈ Irr(GLsFq) then

Sh−1(ν) =
t∑
i=1

ResGal(Fqn/Fq)∝GLsFqn
GLsFqn (ρ̃i)

where ρ̃i ∈ Irr(Gal(Fqn/Fq) ∝ GLsFqn) is an irreducible of the first kind
(i.e. [117] Definition 1.1; ρ̃i restricts to ρi ∈ Irr(GLsFqn)) and Sh(ρi) = νi
for 1 ≤ i ≤ t.

Let IR(Irr(GLsFq)) denote the augmentation ideal, generated by vir-
tual representations of dimension zero. Hence IR(Irr(GLsFq)) has a base
consisting of elements of the form ρ − dim(ρ) for ρ ∈ Irr(GLsFq). The
addition extension of Sh−1 gives a homomorphism

Sh−1 : IR(Irr(GLsFq)) −→ IR(Irr(GLsFqn))

given by ρ− dim(ρ) 7→ Sh−1(ρ)− dim(Sh−1(ρ)).
For a finite group G the IR(G)-adic completion of IR(G) is isomorphic

to [BG,BU ], the topological unitary K-theory of BG, which is the set of
based homotopy classes of maps between the classifying space BG of G to
that of the infinite unitary group U =

⋃
n Un(C) [8]. An element ρ−dim(ρ)

is mapped to the homotopy class of the map

Bρ : BG −→ BUdim(ρ)(C) −→ BU.

Question 5.2. Is Sh−1 continuous in the IR(G)-adic topology?
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Question 5.3. A question for homotopy theorists
If the answer to Question 5.2 is affirmative then one could ask whether

or not there is a functorial map induced by Sh−1 of the form

Sh−1 : [BGLsFq, BU ] −→ [BGLsFqn , BU ].

5.4. More generally than §5.2 and Question 5.5, there is a similar ques-
tion in stable homotopy theory.

Let X+ denote a space X with a disjoint base-point adjoined. Let
{X+, Y+} denote the group of stable homotopy classes of maps from X+

to Y+ [6]. There is an isomorphism between {BG+, BUn(C)+} and a com-
pletion of the abelian group on triples (G α←− H

ρ−→ Un(C)) where ρ is a
representation and α is the inclusion of a subgroup. More precisely, if J
is a compact Lie group such as J = Un(C) let R+(G, J) denote the free
abelian group on triples as above. Then R+(G, J) is a module over the
Burnside ring R+(G, {1}) and the completion mentioned above is formed
with respect to the Burnside ring augmentation ideal topology ([97], see
also [102]). Sending a triple (G α←− H ρ−→ J) to the stable homotopy class
of the composition

BG+
Transfer−→ BH+

Bρ−→ BJ+

yields the isomorphism

R+(G, J)∧
∼=−→ {BG+, BJ+}.

This result was first proved in [125] for J = S1 and was proved in general
in [131]. A cosmological6 generalisation of this result appeared as [97].

Question 5.5. A question for stable homotopy theorists
The Euler characteristic of a monomial resolution over C lies inR+(G,S1).

Supposing the monomial resolution to be “continuous in the Burnside ring
topology”, is there a functorial map between stable homotopy groups which
coincides with that induced by the Euler characteristic of the monomial res-
olution of Sh−1?

6. Inverse Shintani bijection and monomial resolutions

6.1. In this section I shall consider the inverse Shintani correspondence
and the resulting homomorphism of complex representation rings

Sh−1 : R(GLsFq) −→ R(GLsFqn)

introduced in §5.1.
Continuing the theme of functoriality of base change I shall consider the

possibility of starting from the monomial resolution of ν ∈ Irr(GLsFq) and
from it constructing a chain complex of representations of the semi-direct
product

6In the sense of SETI.
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Gal(Fqn/Fq) ∝ GLsFqn which, when restricted to GLsFqn , has homology
concentrated in dimension zero and equal to Sh−1(ν) ∈ Irr(GLsFqn).

Let us begin with an elementary example given by Shintani descent
from GL2F4 to GL2F2

∼= D6, the dihedral group of order six, which is
discussed in detail in Chapter Ten, Appendix I.

Example 6.2. Let A,C be the elements of GL2F2 introduced in Chap-
ter Ten, §1. Therefore

D6 = 〈A,C | A2 = C3 = 1, ACA = C2〉.

Let φ be the character of 〈C〉 given by φ(C) = ξ3 as in Chapter Ten, §6.
Set ν = IndD6

〈C〉(φ) ∈ Irr(D6) as in Chapter Ten, §4.

A monomial resolution for ν = IndD6
C3

(φ) over an algebraically closed
field of characteristic different from two is

M∗ : 0 −→ IndD6
{1}(1) ∂−→ IndD6

C3
(φ)⊕ IndD6

C2
(1)⊕ IndD6

C2
(µ)) ε−→ ν −→ 0

where µ is the non-trivial character and the differentials are given by

∂(1⊗{1} 1) = (1⊗C3 1,−(1/2)⊗C2 1,−(1/2)⊗C2 1),

ε(1⊗C3 1, 0, 0)) = 1⊗C3 1,

ε(0, 1⊗C2 1, 0) = 1⊗C3 1 +A⊗C3 1,

ε(0, 0, 1⊗C2 1) = 1⊗C3 1−A⊗C3 1.

In Chapter One, §3 one finds the monomial morphism

((K,ψ), g, (H,φ)) : IndGK(kψ) −→ IndGH(kφ)

given by g′⊗K v 7→ g′g⊗H v when (K,ψ) ≤ (gHg−1, (g−1)∗(φ)). With this
notation the morphism ∂ is equal to

∂ = (({1}, 1), 1, (〈C〉, φ))−1/2(({1}, 1), 1, (〈A〉, 1))−1/2(({1}, 1), 1, (〈A〉, µ)).

In the notation of Chapter Ten, Appendix I, the Euler characteristics
of M ((H))

∗ are given by

χ(M ((D6))
∗ ) 0

χ(M ((C3))
∗ ) φ+ φ2

χ(M ((C2))
∗ ) 1 + µ

χ(M (({1}))
∗ ) 2
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The irreducible representations are 1, χ, ν whose character values are
given by the table

1 χ ν

1 1 1 2
A 1 −1 0
C 1 1 −1

The three Galois invariant irreducibles of GL2F4 are 1, ν4, ν5 explicitly con-
structed in Chapter Ten, Appendix I where explicit extensions to the semi-
direct product Gal(F4/F2) ∝ GL2F4 (1̃, ν̃4, ν̃5 respectively) are also con-
structed.

From Chapter Ten §9 we have the following table of character values
in Gal(F4/F2) ∝ GL2F4

1 ν̃5 ν̃4

(Σ, 1) 1 1 −2
(Σ, B) 1 −1 0
(Σ, C2) 1 1 1

so that, if λ is the non-trivial character of the form

Gal(F4/F2) ∝ GL2F4 −→ Gal(F4/F2)
∼=−→ {±1}

then Theorem 3.11(i) (with ε = 1 in each case) is satisfied by the map
1 7→ 1, χ 7→ ν̃5 and ν 7→ λ⊗ ν̃4.

As a sequence of D6-representations M1 −→M0 is isomorphic to

1⊕ χ⊕ ν ⊕ ν −→ ν ⊕ (1⊕ ν)⊕ (χ⊕ ν).

If we form the two Gal(F4/F2) ∝ GL2F4 representations

N1 = 1⊕ ν̃5 ⊕ ν̃4 ⊕ ν̃4 and N0 = λ⊗ ν̃4 ⊕ (1⊕ λ⊗ ν̃4)⊕ (ν̃5 ⊕ λ⊗ ν̃4)

whose summands are irreducibles of the first kind. We may define a homo-
morphism of representations N1 −→ N0 by sending each irreducible sum-
mand in N1 to the copies of itself in N0 by the same scalar multiplication
as occurred between the corresponding summands in M1 −→M0.

In this simple example this procedure gives an injection whose cokernel,
restricted to GL2F4, is ν4 = Sh−1(ν).

Question 6.3. Suppose that we are in the general Sh−1 situation with
ρ an irreducible representation of GLsFq and Sh−1(ρ) an irreducible rep-
resentation of GLsFqn . Suppose we form the monomial resolution of ρ and
then, in each dimension, form the direct sum of the first kind irreducibles
of the semi-direct provided by Theorem 3.11 and finally construct maps of
representations, each reducing the degree by 1, in the manner analogous to
the simple case of Example 6.2.
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As representations of GLsFqn is the resulting sequence of homomor-
phisms of representations a chain complex and furthermore is its homology
concentrated in dimension zero and isomorphic to Sh−1(ρ)?



CHAPTER 9

PSH-algebras and the Shintani
correspondence

1. PSH-algebras over the integers

1.1. A PSH-algebra is a connected, positive self-adjoint Hopf algebra
over Z. The notion was introduced in [146]. Let R = ⊕n≥0 Rn be an
augmented graded ring over Z with multiplication

m : R⊗R −→ R.

Suppose also that R is connected, which means that there is an augmenta-
tion ring homomorphism of the form

ε : Z
∼=−→ R0 ⊂ R.

These maps satisfy associativity and unit conditions.
Associativity:

m(m⊗ 1) = m(1⊗m) : R⊗R⊗R −→ R.

Unit:

m(1⊗ ε) = 1 = m(ε⊗ 1);R⊗ Z ∼= R ∼= Z⊗R −→ R⊗R −→ R.

R is a Hopf algebra if, in addition, there exist comultiplication and
counit homomorphisms

m∗ : R −→ R⊗R
and

ε∗ : R −→ Z
such that

Hopf
m∗ is a ring homomorphism with respect to the product (x ⊗ y)(x′ ⊗

y′) = xx′ ⊗ yy′ on R⊗R and ε∗ is a ring homomorphism restricting to an
isomorphism on R0. The homomorphism m is a coalgebra homomorphism
with respect to m∗.

The m∗ and ε∗ also satisfy
Coassociativity:

(m∗ ⊗ 1)m∗ = (1⊗m∗)m∗ : R −→ R⊗R⊗R −→ R⊗R⊗R

217
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Counit:

m(1⊗ ε) = 1 = m(ε⊗ 1);R⊗ Z ∼= R ∼= Z⊗R −→ R⊗R −→ R.

R is a cocomutative if
Cocommutative:

m∗ = T ·m∗ : R −→ R⊗R
where T (x⊗ y) = y ⊗ x on R⊗R.

Suppose now that each Rn (and hence R by direct-sum of bases) is a
free abelian group with a distinguished Z-basis denoted by Ω(Rn). Hence
Ω(R) is the disjoint union of the Ω(Rn)’s. With respect to the choice of
basis the positive elements R+ of R are defined by

R+ = {r ∈ R | r =
∑

mωω, mω ≥ 0, ω ∈ Ω(R)}.

Motivated by the representation theoretic examples the elements of Ω(R)
are called the irreducible elements of R and if r =

∑
mωω ∈ R+ the

elements ω ∈ Ω(R) with mω > 0 are call the irreducible constituents of r.
Using the tensor products of basis elements as a basis for R⊗R we can

similarly define (R⊗R)+ and irreducible constituents etc.
Positivity:
R is a positive Hopf algebra if

m((R⊗R)+) ⊂ R+,m∗(R+) ⊂ (R⊗R)+, ε(Z+) ⊂ R+, ε∗(R+) ⊂ Z+.

Define inner products 〈−,−〉 on R, R⊗R and Z by requiring the chosen
basis (Ω(Z) = {1}) to be an orthonormal basis.

A positive Hopf Z-algebra is self-adjoint if
Self-adjoint:
m and m∗ are adjoint to each other and so are ε and ε∗. That is

〈m(x⊗ y), z〉 = 〈x⊗ y,m∗z〉
and similarly for ε, ε∗.

The subgroup of primitive elements P ⊂ R is given by

P = {r ∈ R | m∗(r) = r ⊗ 1 + 1⊗ r}

2. The Decomposition Theorem

Let {Rα | α ∈ A} be a family of PSH algebras. Define the tensor
product PSH algebra

R = ⊗α∈A Rα

to be the inductive limit of the finite tensor products ⊗α∈S Rα with S ⊂ A
a finite subset. Define Ω(R) to be the disjoint union over finite subsets S
of
∏
α∈S Ω(Rα).
The following result of the PSH analogue of a structure theorem for

Hopf algebras over the rationals due to Milnor-Moore [99]
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Theorem 2.1.
Any PSH algebra R decomposes into the tensor product of PSH alge-

bras with only one irreducible primitive element. Precisely, let C = Ω
⋂
P

denote the set of irreducible primitive elements in R. For any ρ ∈ C set

Ω(ρ) = {ω ∈ Ω | 〈ω, ρn〉 6= 0 for some n ≥ 0}

and
R(ρ) = ⊕ω∈Ω(ρ) Z · ω.

Then R(ρ) is a PSH algebra with set of irreducible elements Ω(ρ), whose
unique irreducible primitive is ρ and

R = ⊗ρ∈C R(ρ).

3. The PSH algebra of {GLmFq, m ≥ 0}

3.1. Let R(G) denote the complex representation ring of a finite group
G. Set R = ⊕m≥0 R(GLmFq) with the interpretation that R0

∼= Z, an
isomorphism which gives both a choice of unit and counit for R.

Let Uk,m−k ⊂ GLmFq denote the subgroup of matrices of the form

X =

 Ik W

0 Im−k


whereW is an k×(m−k) matrix. Let Pk,m−k denote the parabolic subgroup
of GLmFq given by matrices obtained by replacing the identity matrices Ik
and Im−k in the condition for membership of Uk,m−k by matrices from
GLkFq and GLm−kFq respectively. Hence there is a group extension of the
form

Uk,m−k −→ Pk,m−k −→ GLkFq ×GLm−kFq.
If V is a complex representation of GLmFq then the fixed points V Uk,m−k is
a representation of GLkFq×GLm−kFq which gives the (k,m−k) component
of

m∗ : R −→ R⊗R.
Given a representation W of GLkFq ×GLm−kFq so that W ∈ Rk ⊗Rm−k
we may form

IndGLmFq
Pk,m−k

(InfPk,m−kGLkFq×GLm−kFq (W ))

which gives the (k,m− k) component of

m : R⊗R −→ R.

We choose a basis for Rm to be the irreducible representations of
GLmFq so that R+ consists of the classes of representations (rather than
virtual ones). Therefore it is clear that m,m∗, ε, ε∗ satisfy positivity. The
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inner product on R is given by the Schur inner product so that for two
representations V,W of GLmFq we have

〈V,W 〉 = dimC(HomGLmFq (V,W ))

and for m 6= n Rn is orthogonal to Rm. As is well-known, with these
choice of inner product, the basis of irreducible representations for R is an
orthonormal basis.

The irreducible primitive elements are represented by irreducible com-
plex representations of GLmFq which have no non-zero fixed vector for any
of the subgroups Uk,m−k. These representations are usually called cuspidal.

In the remainder of this section we shall verify that R is a PSH algebra,
as is shown in ([146] Chapter III). I believe, in different terminology, this
structural result was known to Sandy Green at the time of writing [69] and
to his research supervisor Phillip Hall.

Theorem 3.2. (Self-adjoint)
If X,Y, Z are complex representations of GLmFq, GLnFq, GLm+nFq

respectively then

〈m(X ⊗ Y ), Z〉 = 〈X ⊗ Y,m∗(Z)〉.
Also ε and ε∗ are mutually adjoint.

Proof:
This follows from Frobenius reciprocity ([126] Theorem 1.2.39) because

the Schur inner product is given by

〈m(X ⊗ Y ), Z〉 = dimC(HomGLm+nFq (m(X ⊗ Y ), Z))

= dimC(HomPm,nInfPm,nGLmFq×GLnFq (X ⊗ Y ), Z))

= dimC(HomPm,nInfPm,nGLmFq×GLnFq (X ⊗ Y ), ZUm,n)).

The adjointness of ε and ε∗ is obvious. 2

Proposition 3.3. (Associativity and coassociativity)
The coproduct m∗ is coassociative and the product m is associative.

Proof:
Clearlym∗ is coassociative because taking fixed-pointsGLaFq×GLbFq×

GLcFq of a GLa+b+cFq representation is clearly associative. It follows from
Theorem 3.2 that m is associative, since the Schur inner product is non-
singular. 2

Theorem 3.4. (Hopf condition)
The homomorphism m∗ is an algebra homomorphism with respect to

m. The homomorphism m is a coalgebra homomorphism with respect to
m∗.
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Obviously the coalgebra homomorphism assertion follows from the al-
gebra homomorphism assertion by the adjointness property of Theorem
3.2.

The discussion which follows will establish Theorem 3.4. It is rather
delicate and involved so I am going to give it in full detail (following ([146]
p.167 and p.173 with minor changes). For notational convenience I shall
write Gn = GLnFq for the duration of this discussion.

Recall that we are attempting to show that for each (α,m − α) and
(a,m− a) that the R(Ga)⊗R(Gm−a)-component of m∗ ·m

R(Gα)⊗R(Gm−α) m−→ R(Gm) m∗−→ R(Ga)⊗R(Gm−a)

is equal to the R(Ga)⊗R(Gm−a)-component

R(Gα)⊗R(Gm−α) m
∗⊗m∗−→ R⊗R⊗R⊗R 1⊗T⊗1−→ R⊗R⊗R⊗R m⊗m−→ R⊗R.

Let Z be a complex representation of Gm then the (a,m−a)-component
of m∗(Z) is given by

ZUa,m−a ∈ R(Ga ×Gm−a) ∼= R(Ga)⊗R(Gm−a)

with the group action given by the induced Pa,m−a/Ua,m−a-action.
If Z = m(X ⊗ Y ) with X,Y representations of Gα, Gm−α respectively

then
Z = m(X ⊗ Y ) = IndGmPα,m−α(InfPα,m−αGα×Gm−α(X ⊗ Y )).

Therefore we must study the restriction

ResGmPa,m−a(IndGmPα,m−α(InfPα,m−αGα×Gm−α(X ⊗ Y )))

by means of the Double Coset Formula ([126] Theorem 1.2.40; see also
Chapter 7, §1). Explicitly the Double Coset Formula in this case gives∑
g∈Pa,m−a\Gm/Pα,m−α

IndPa,m−aPa,m−a∩gPα,m−αg−1((g−1)∗InfPα,m−αGα×Gm−α(X ⊗ Y ))

where the (g−1)∗-action is given by (ghg−1)(w) = hw.
The Double Coset Formula isomorphism (downwards) is given by

z ⊗Pα,m−α w 7→ j ⊗Pa,m−a∩gPα,m−αg−1 hw

where z = jgh with j ∈ Pa,m−a, h ∈ Pα,m−α with inverse (upwards) given
by

j ⊗Pa,m−a∩gPα,m−αg−1 w 7→ jg ⊗Pα,m−α w.
Next let Σm ⊂ GLmFq denote the symmetric group on m letters em-

bedded as the subgroup of permutation matrices (i.e. precisely one non-zero
entry on each row and column which is equal to 1).

The following result is proved in ([146] p.173; see also [30] Chapter IV,
§2)
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Theorem 3.5. (Bruhat Decomposition)
The inclusion of Σm into GLmFq induces a bijection

Σa × Σm−a\Σm/Σα × Σm−α
∼=−→ Pa,m−a\Gm/Pα,m−α

Now we shall construct a convenient set of double coset representations
for the left-hand side of Theorem 3.5.

Consider the double cosets

Σa × Σm−a\Σm/Σα × Σm−α.

On page 171 of [146] one finds the assertion that the double cosets in
the title of this section are in bijection with the matrices of non-negative
integers  k1,1 k1,2

k2,1 k2,2


which satisfy

k1,1 + k1,2 = α, k2,1 + k2,2 = m− α, k1,1 + k2,1 = a, k1,2 + k2,2 = m− a.

Let w ∈ Σm be a permutation of {1, . . . ,m}. Set I1 = {1, 2, . . . , a},
I2 = {a+1, a+2, . . . ,m}, J1 = {1, 2, . . . , α} and J2 = {α+1, α+2, . . . ,m}.
Therefore if g ∈ Σa ×Σm−a and g′ ∈ Σα ×Σm−α we have, for t = 1, 2 and
v = 1, 2,

gwg′(Jt)
⋂
Iv = gw(Jt)

⋂
Iv = g(w(Jt)

⋂
g−1(Iv)) = g(w(Jt)

⋂
Iv).

Therefore if we set
kt,v = #(w(Jt)

⋂
Iv)

we have a well-defined map of sets from the double cosets to the 2 × 2
matrices of the form described above because

k1,v + k2,v = #(Iv) =

 a if v = 1,

m− a if v = 2

and

kt,1 + kt,2, = #(Jt) =

 α if t = 1,

m− α if t = 2.
Next we consider the passage from the matrix of ki,j ’s to a double coset.
Write

J1 = J(k1,1)
⋃
J(k1,2), J2 = J(k2,1)

⋃
J(k2,2)

where J(k1,1) = {1, . . . , k1,1} and J(k2,1) = {α+1, . . . , α+k2,1}. Similarly
write

I1 = I(k1,1)
⋃
I(k2,1), I2 = I(k1,2)

⋃
I(k2,2)
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where I(k1,1) = {1, . . . , k1,1} and I(k1,2) = {a + 1, . . . , a + k1,2}. Since
the orders of I(ki,j) and J(ki,j) are both equal to ki,j there is a permu-
tation, denoted by w(k∗,∗) which sends J1

⋃
J2 to I1

⋃
I2 by the identity

on J(k1,1) = I(k1,1) and J(k2,2) = I(k2,2) and interchanges J(k1,2), J(k2,1)
with I(k1,2), I(k2,1) in an order-preserving manner.

Given the permutation w(k∗,∗) we have

#(w(k∗,∗)(J1)
⋂
I1) = #(J(k1,1)

⋂
I(k1,1)) = k1,1,

#(w(k∗,∗)(J1)
⋂
I2) = #(w(k∗,∗)(J(k2,1))

⋂
I(k1,2)) = k1,2,

#(w(k∗,∗)(J2)
⋂
I1) = #(w(k∗,∗)(J(k1,2))

⋂
I(k2,1)) = k2,1,

#(w(k∗,∗)(J2)
⋂
I2) = #(J(k2,2)

⋂
I(k2,2)) = k2,2

so that the map k∗,∗ 7→ Σa × Σm−aw(k∗,∗)Σα × Σm−α is a split injection.
In addition it is straightforward to verify that any permutation whose k∗,∗-
matrix equals that of w(k∗,∗) belongs to the same double coset as w(k∗,∗).
Hence the map is a bijection.

For example when a = 3, α = 4, k11 = 1 = k22, k21 = 2, k12 = 3

w(k∗,∗)−1 =



1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1



w(k∗,∗) =



1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1


.

This permutation arises in another way as a permutation of the basis
elements of tensor products of four vector spaces. Let

V1 = Fk11q ⊕ Fk12q ⊕ Fk21q ⊕ Fk22q and V2 = Fk11q ⊕ Fk21q ⊕ Fk12q ⊕ Fk22q .

We have the linear map

1⊕ T (k∗,∗)⊕ 1 : V1 −→ V2

which interchanges the order of the two central direct sum factors. The
basis for V1 is made in the usual manner from ordered bases {e1, . . . ek11},
{ek11+1, . . . ek11+k12}, {ek11+k12+1, . . . ek11+k12+k21}
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and {ek11+k12+k21+1, . . . em} of Fk11q , Fk12q , Fk21q and Fk22q respectively. Sim-
ilarly the basis for V2 is made in the usual manner from ordered bases
{v1, . . . vk11}, {vk11+1, . . . vk11+k21}, {vk11+k21+1, . . . vk11+k21+k12}
and {vk11+k21+k12+1, . . . vm} of Fk11q , Fk21q , Fk12q and Fk22q respectively.

The linear map 1 ⊕ T (k∗,∗) ⊕ 1 sends the ordered set {e1, . . . , em} to
the order set {v1, . . . , vm} by ej 7→ vw(k∗,∗)(j).

Clearly

w(k∗,∗)Gk11 ×Gk12 ×Gk21 ×Gk22w(k∗,∗)−1 = Gk11 ×Gk21 ×Gk12 ×Gk22
from which is it easy to see that

w(k∗,∗)Gα ×Gm−αw(k∗,∗)−1
⋂
Ga ×Gm−a = Gk11 ×Gk21 ×Gk12 ×Gk22 .

So far we have shown that the (a,m−a)-component of m∗(m(X ⊗Y ))
is the sum of terms, one for each w(k∗,∗), given by the induced Ga×Gm−a-
action on

IndPa,m−aPa,m−a∩w(k∗,∗Pα,m−αw(k∗,∗)−1((w(k∗,∗)−1)∗InfPα,m−αGα×Gm−α(X ⊗ Y )).

On the other hand, for each w(k∗,∗) there is a (a,m− a)-component of
the other composition we are studying given by

R(Gα ×Gm−α)
(−)

Uk11,k12
×Uk21,k22

−→ R(Gk11 ×Gk12 ×Gk21 ×Gk22)

1⊗T (k∗,∗)⊗1−→ R(Gk11 ×Gk21 ×Gk12 ×Gk22)

IndInf×IndInf−→ R(Ga ×Gm−a).

Composing this second route with the split surjection

R(Ga ×Gm−a)
Inf−→ R(Pa,m−a)

is equal to the composition

R(Gα ×Gm−α)
(−)

Uk11,k12
×Uk21,k22

−→ R(Gk11 ×Gk12 ×Gk21 ×Gk22)

1⊗T (k∗,∗)⊗1−→ R(Gk11 ×Gk21 ×Gk12 ×Gk22)
Inf−→

R(Pk11,k21,k12,k22)
Ind−→ R(Pa,m−a)

because the kernels of the quotient maps Pk11,k21,k12,k22 −→ Pk11,k21 and
Pa,m−a −→ Ga ×Gm−a are both equal to Ua,m−a.

This composition takes the Uk11,k12×Uk21,k22-fixed points of X⊗Y with
the Gk11 × Gk12 × Gk21 × Gk22-action and then conjugates it by w(k∗,∗).
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Alternatively it takes the w(k∗,∗)Uk11,k12×Uk21,k22w(k∗,∗)−1-fixed points of
(w(k∗,∗)−1)∗(X ⊗ Y ) with the Gk11 ×Gk21 ×Gk12 ×Gk22-action. Now

w(k∗,∗)Uk11,k12 × Uk21,k22w(k∗,∗)−1 ⊂ Ua,m−a.
For example, in the small example given in the last section of this chapter,
Uk11,k12 × Uk21,k22 consists of matrices of the form

D =



1 a12 a13 a14 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 a57

0 0 0 0 0 1 a67

0 0 0 0 0 0 1


so that w(k∗,∗)Uk11,k12 × Uk21,k22w(k∗,∗)−1 consists of matrices

w(k∗,∗)Dw(k∗,∗)−1 =



1 0 0 a12 a13 a14 0
0 1 0 0 0 0 a57

0 0 1 0 0 0 a67

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

Since w(k∗,∗)Dw(k∗,∗)−1’s act trivially we may inflate the representation
to
Pk11,k21,k12,k22 (i.e. extending the action trivially on Uk11,k21,k12,k22) and
then induce up to a representation of Pa,m−a.

Now let us describe the isomorphism between the result of sending
X ⊗ Y via the second route and the Ua,m−a-fixed subspace of

IndPa,m−aPa,m−a∩w(k∗,∗Pα,m−αw(k∗,∗)−1((w(k∗,∗)−1)∗InfPα,m−αGα×Gm−α(X ⊗ Y )).

There are inclusions

w(k∗,∗)Pα,m−αw(k∗,∗)−1
⋂
Pa,m−a ⊂ Pk11,k21,k12,k22 ⊂ Pa,m−a.

For example, w(k∗,∗)Pα,m−αw(k∗,∗)−1
⋂
P3,4, in the small example of the

Appendix, consists of the matrices of the form

E′ =



a11 a15 a16 a12 a13 a14 a17

0 a55 a56 0 0 0 a57

0 a65 a66 0 0 0 a67

0 0 0 a22 a23 a24 a27

0 0 0 a32 a33 a34 a37

0 0 0 a42 a43 a44 a47

0 0 0 0 0 0 a77


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and, as we noted above, w(k∗,∗)Dw(k∗,∗)−1 consists of the matrices

{(bij) ∈ w(k∗,∗)Pα,m−αw(k∗,∗)−1
⋂
U3,4 | b17 = 0}.

There is a bijection of cosets

Pk11,k21,k12,k22/w(k∗,∗)Pα,m−α)w(k∗,∗)−1
⋂
Pa,m−a

∼= Ua,m−a/w(k∗,∗)Pα,m−α)w(k∗,∗)−1
⋂
U3,4.

Therefore we may take the coset representations Xα to lie in the abelian
group Ua,m−a. In the small example the Xα’s may be taken to be of the
form

Xα =



1 0 0 0 0 0 a
0 1 0 b c d 0
0 0 1 e f g 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

The isomorphism from the image of X ⊗ Y via the second route to the
Ua,m−a-fixed subspace of

IndPa,m−aPa,m−a∩w(k∗,∗Pα,m−αw(k∗,∗)−1((w(k∗,∗)−1)∗InfPα,m−αGα×Gm−α(X ⊗ Y ))

is given by

g ⊗Pk11,k21,k12,k22 v 7→
∑
Xα

gXα ⊗w(k∗,∗)Pα,m−α)w(k∗,∗)−1
⋂
Pa,m−a

v.

This concludes the proof of Theorem 3.4. The remainder of the Hopf
condition is given by the following result, which is proved in a similar
manner to Theorem 3.4 (see [146] p.175).

Theorem 3.6.
In the notation of §1, ε∗ is a ring homomorphism restricting to an

isomorphism on R0.

4. Semi-direct products Gal(Fqn/Fq) ∝ GLtFqn

4.1. Let V be an irreducible representation of GLtFqn and let Σ ∈
Gal(Fqn/Fq) denote the Frobenius substitution. Hence the representation
Σi(V ) given by transporting the GLtFqn-action by the i-th power of Σ is
another irreducible representation. Suppose that n = sd and that

V,Σ(V ),Σ2(V ), . . . ,Σs−1(V )

are inequivalent GLtFqn -irreducibles but that V and Σs(V ) are equivalent
GLtFqn -irreducibles.
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Therefore V (c.f. Chapter Two, §6; see also Chapter 8 and Chapter 10,
§3) extends to an irreducible representation Ṽ of the semi-direct product
Gal(Fqbn/Fqs) ∝ GLtFqn for some b ≥ 1, where Gal(Fqbn/Fqs) acts via first
projecting onto
Gal(Fqn/Fqs).

In discussions of the semi-direct product I shall attempt to follow the
notational conventions of ([125] p.36) and Chapter 10, §3.1 as opposed to
those of [117]. Explicitly, if C acts on G via λ : C −→ Aut(G) then the
semi-direct product C ∝ G is the group whose underlying set is C×G with
multiplication given by

(c1, g1) · (c2, g2) = (c1c2, g1λ(c1)(g2)), ci ∈ C, gi ∈ G.

We may form the induced representation

V̂ = Ind
Gal(F

qbn
/Fq)∝GLtFqn

Gal(F
qbn

/Fqs )∝GLtFqn (Ṽ )

which restricts to give

⊕s−1
i=0 Σi(V ) ∈ R(GLtFqn).

Also

HomGal(F
qbn

/Fq)∝GLtFqn (V̂ , V̂ )

∼= HomGal(F
qbn

/Fqs )∝GLtFqn (Ṽ , Ind
Gal(F

qbn
/Fq)∝GLtFqn

Gal(F
qbn

/Fqs )∝GLtFqn (Ṽ ))

∼= ⊕s−1
i=0 HomGal(F

qbn
/Fqs )∝GLtFqn (Ṽ ,Σi(Ṽ ))

= HomGal(F
qbn

/Fqs )∝GLtFqn (Ṽ , Ṽ )

as is seen by restricting representations to GLtFqn . Since Ṽ is irreducible
its endomorphism ring is 1-dimensional and so therefore is that of V̂ .

In the terminology of [117] when s > 1 V̂ is called an irreducible
representation of the second kind and when s = 1 it is called an irreducible
representation of the first kind..

Let θ : Gal(Fqbn/Fq) −→ C∗ be a character which is trivial on
Gal(Fqbn/Fqs). Then

θ · V̂ = Ind
Gal(F

qbn
/Fq)∝GLtFqn

Gal(F
qbn

/Fqs )∝GLtFqn (θ · Ṽ ) = V̂ .

All the irreducibles of Gal(Fqbn/Fq) ∝ GLtFqn are of the form V̂ for
some s dividing n. For if W is an irreducible of Gal(Fqbn/Fq) ∝ GLtFqn
then its restriction to GLtFqn must have the form

mV1 ⊕mΣ(V1)⊕ . . .⊕mΣs−1(V1)
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with V1 irreducible and Σs(V1) = V1. Therefore V1 extends to an irreducible
Ṽ1 and there is a non-zero map of representations V̂1 −→ W which must
be an isomorphism (and so m = 1).

Twisting V̂ by a character θ which is non-trivial on Gal(Fqbn/Fqs) gives
a distinct irreducible. There are bn/s cosets of such θ’s so we have bn/s
distinct irreducibles

θ1V̂ , θ2V̂ , . . . , θbn/sV̂

each restricting to

⊕s−1
i=0 Σi(V ) ∈ R(GLtFqn).

By Shintani base change for finite general linear groups ([117]; see
also Chapter 8 and Chapter 10, §3) there is a bijection between GLtFqn-
irreducibles V such that Σs(V ) = V and the irreducibles of GLtFqs . The
V ’s in the construction of V̂ are those which are fixed by Σs but by no Σu

with u a proper divisor of s.
En route to the base change result one finds ([117] Theorem 1) that

b = 1 or b = 2 suffices for the extension to the semi-direct product which
was discussed in this section. This is explained in §6 just after the statement
of Theorem 6.2.

5. R̃ and R′′

5.1. Let K = R(Gal(Fqn/Fq)) which is the ring of integral linear com-
binations of characters χ : Gal(Fqn/Fq) −→ C∗. Suppose that G is a
subgroup of GLtFqn which is preserved by the Gal(Fqn/Fq)-action. Let
S(G) denote the subset of the irreducibles Irr(Gal(Fqn/Fq) ∝ G) of the
first kind (i.e. representations which are irreducible when restricted to G).
Tensoring with a Galois character χ permutes the set S(G) making Z[S(G)]
into a free K-module.

Define R̃ = ⊕t≥0 R̃t where R̃t = R(Gal(Fqn/Fq) ∝ GLtFqn) for a fixed
choice of n. Define R′′ = ⊕t≥0 S(GLtFqn) ⊂ R̃.

For each Gal(Fqn/Fq)-invariant irreducible V ∈ Irr(GLtFqn)Gal(Fqn/Fq)

choose an irreducible Ṽ ∈ R̃t which restricts to V . The set of irreducibles
which restrict to V are given by {χ⊗ Ṽ } as χ varies through Galois char-
acters. Therefore there is an isomorphism of K-modules, depending on the
choice of Ṽ ’s, of the form

λGLtFqn : K[Irr(GLtFqn)Gal(Fqn/Fq)]
∼=−→ R′′t = S(GLtFqn)

given by sending χ⊗ V to χ⊗ Ṽ . Hence R̃ is a K-module of which R′′ =
⊕t≥0 S(GLtFqn) is a free K-submodule.
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The first objective of this section is to make R̃ into a connected, graded
K-algebra1 of which R′′ is a connected, graded K-subalgebra. Clearly we
have an isomorphism ε : K −→ R̃0 = R′′0 which shows that these are
connected K-algebras.

Multiplication:

Let Pa,b be the usual parabolic subgroup of GLa+bFqn . Then inflation
induces a K-module homomorphism of representation rings

Infa,b : R(Gal(Fqn/Fq) ∝ (GLaFqn×GLbFqn)) −→ R(Gal(Fqn/Fq) ∝ Pa,b).

We also have induction maps

Inda,b : R(Gal(Fqn/Fq) ∝ Pa,b) −→ R(Gal(Fqn/Fq) ∝ GLa+bFqn).

Let V and W be representations of Gal(Fqn/Fq) ∝ GLaFqn) and
GalFqn/Fq) ∝ GLbFqn) respectively. Define a representation V ⊗′ W of
Fqn/Fq) ∝ (GLaFqn × GLbFqn) on the underlying vector space of V ⊗W
by

(g,X, Y )(v ⊗ w) = (g,X)(v)⊗ (g, Y )(w).

The multiplication on R̃ is defined, following the GLFqn-case, by

m(V ⊗W ) = Inda,b(Infa,b(V ⊗′W )) ∈ R̃a+b.

If χ belongs to the character group of Gal(Fqn/Fq) then

m(χV ⊗W ) = m(V ⊗ χW ) = χm(V ⊗W ) ∈ R̃a+b.

If V and W are representations in R′′a and R′′b respectively we shall
show that m(V ⊗W ) ∈ R′′a+b.

By additivity it suffices to assume that V,W are irreducibles (of the
first kind). Then, by the construction of all the irreducibles of the finite
general linear groups which first appears in [69] and is reiterated in ([93] §1)
and Chapter 12, §2, m(V ⊗W ) is irreducible when restricted to GLa+bFqn
unless W = χ⊗V . In that case m(V ⊗(χ⊗W )) = χ⊗m(V ⊗V ). Restricted
to GLa+bFqn the latter is known to be the sum of two irreducibles picked
out by the idempotents of the symmetric group on two letters2. However
these idempotents also decompose m(V ⊗ V ) into two irreducibles of the
first kind, in the same way.

Note that m factorises through

m : R̃⊗K R̃ −→ R̃

which is a K-module homomorphism. Also m is associative.
This discussion established the following result.

1The structure map giving the multiplication in this algebra first appeared in ([117]

Definition 2.4)
2These idempotents will show up again in §6.
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Theorem 5.2.
With the notation introduced above R̃ is a graded K-algebra of which

R′′ is a graded K-subalgebra.

Let V be an irreducible of Gal(Fqn/Fq) ∝ GLa+bFqn . We are not going
to define a comultiplication on R̃. However, we close this section with the
observation that sending V to its Ua,b-fixed points yields a homomorphism

m∗ : R̃a+b −→ R(Gal(Fqn/Fq) ∝ (GLaFqn ×GLbFqn))

which covers (via the restriction to general linear groups) the comultiplica-
tion defined in §3 on the PSH algebra ⊕t≥0 R(GLtFqn).

6. Shintani base change

6.1. Let us recall the main result of [117] which, for our notation for
the semi-direct product, is stated in the following form:

Theorem 6.2. ([117] Theorem 1; see also Lemmas 2.7 and 2.11)
(i) Let ρ be a finite-dimensional complex irreducible representation of

GLnFq. Then there exists an irreducible representation ρ̃ of the semi-direct
product Gal(Fqm/Fq) ∝ GLnFqm which satisfies, for all g ∈ GLnFqm ,

χρ̃(Σ, g) = εχρ([gΣ(g) . . .Σm−1(g)])

where ε = ±1 is independent of g. Here [gΣ(g) . . .Σm−1(g)] denotes the
unique conjugacy class in GLnFq given by the intersection of the conjugacy
class of gΣ(g) . . .Σm−1(g) in GLnFqm with GLnFq.

(ii) The Shintani base change correspondence (see Appendix I, §4)

Sh : Irr(GLnFqm)Gal(Fqm/Fq) ∼=−→ Irr(GLnFq)
is given by, in the case where ε may be chosen to equal 1 in part (i),

Sh(ResGal(Fqm/Fq)∝GLnFqm
GLnFqm (ρ̃)) = ρ.

When ε = −1 is the only possibility there is an extension, denoted by ρ′,
of ρ to Gal(Fq2m/Fq) ∝ GLnFqm and

χρ′(Σ, g) = χρ([gΣ(g) . . .Σm−1(g)])

specifies χ(ρ) in this case.

In this Theorem χρ denotes the character function of ρ. In part (ii)
of the theorem it should be noted that ρ̃ is an irreducible of the first kind
because the χρ̃(Σ, g)’s are not identically zero ([117] Lemma 1.1(i)) and
therefore ResGal(Fqm/Fq)∝GLnFqm

GLnFqm (ρ̃) is an irreducible representation.
Given ρ̃ as in part (i) of the theorem write ρ̃(z, 1) = Xz for z ∈

Gal(Fqm/Fq) and ρ̃(1, g) = ρ̂(g) for g ∈ GLnFqm . Since (1, g)(z, 1) = (z, g)
we have

Xz ρ̂(g) = ρ̂(z(g))Xz
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so that χρ̃(Σ, g) = Trace(ρ̃(1, g)XΣ) (see [117] Theorem 1)3.
For ρ̃ and ρ̂ as in Theorem 6.2 the matrix XΣ will satisfy Xm

Σ = 1.
However, as mentioned in the statement of ([117] Theorem 1), for a general
Galois invariant ρ̂ there exists a choice satisfying Xm

Σ = ±1. When Xm
Σ = 1

the extension ρ̃ of ρ̂ may be constructed as in Theorem 6.2 but when Xm
Σ =

−1 the extension of ρ̂ must be a representation of Gal(Fq2m/Fq) ∝ GLnFqm .
Given a choice of ρ̂ the irreducible extension ρ̃ to the semi-direct prod-

uct, which we may take to be Gal(Fq2m/Fq) ∝ GLnFqm in general, is unique
up to twists by Galois characters.

Next we shall examine the multiplicative property of the Shintani cor-
respondence.

Suppose that ρ1 ∈ Irr(GLaFq) and ρ2 ∈ Irr(GLbFq). By Theorem 6.2
there exist ρ̃1 ∈ Irr(Gal(Fqm/Fq) ∝ GLaFq) and ρ̃2 ∈ Irr(Gal(Fqm/Fq) ∝
GLbFq) such that for i = 1, 2

χρ̃i(Σ, g) = εiχρi([gΣ(g) . . .Σm−1(g)])

where εi = ±1 is independent of g.
Therefore, by ([117] Definition 2.4 and Lemma 2.9),

χm(ρ̃1,ρ̃2)(Σ, g) = ε1ε2χm(ρ1,ρ2)([gΣ(g) . . .Σm−1(g)])

where on the left-hand side m denotes the multiplication in R̃ of §5 and on
the right-hand side the multiplication in R of §3.

If ρ1 6= ρ2 then by the Shintani correspondence the restrictions of ρ̃1

and ρ̃2 to the general linear groups are distinct so that ρ̃1 and ρ̃2 are
distinct irreducible representations. Therefore m(ρ̃1, ρ̃2) and m(ρ1, ρ2) are
both irreducible and

Sh(ResGal(Fqm/Fq)∝GLa+bFqm
GLa+bFqm (m(ρ̃1, ρ̃2))) = m(ρ1, ρ2).

However

ResGal(Fqm/Fq)∝GLa+bFqm
GLa+bFqm (m(ρ̃1, ρ̃2))

= m(ResGal(Fqm/Fq)∝GLaFqm
GLaFqm (ρ̃1),ResGal(Fqm/Fq)∝GLbFqm

GLbFqm (ρ̃2)).

Therefore, if ρ̂1 = ResGal(Fqm/Fq)∝GLaFqm
GLaFqm (ρ̃1) and

ρ̂2 = ResGal(Fqm/Fq)∝GLbFqm
GLbFqm (ρ̃2),

then
Sh(m(ρ̂1, ρ̂2)) = m(Sh(ρ̂1), Sh(ρ̂2)).

3The formula of [117] differs from mine because we have used different formulae for
the multiplication in a semi-direct product.
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If a = b and ρ1 = ρ2 and (see §5 on “multiplication”) m(ρ1, ρ1) is not
irreducible but there is an idempotent e of the symmetric group on two
letters such that

m(ρ1, ρ1) = em(ρ1, ρ1) + (1− e)m(ρ1, ρ1)

and the two summands on the right are irreducible. Similarly

m(ρ̃1, ρ̃1) = em(ρ̃1, ρ̃1) + (1− e)m(ρ̃1, ρ̃1)

where the two summands on the right are irreducible. In addition

χem(ρ̃1,ρ̃1)(Σ, g) = ε1ε1χem(ρ1,ρ1)([gΣ(g) . . .Σm−1(g)])

and

χ(1−e)m(ρ̃1,ρ̃1)(Σ, g) = ε1ε1χ(1−e)m(ρ1,ρ1)([gΣ(g) . . .Σm−1(g)]).

Therefore

Sh(em(ρ̂1, ρ̂1)) = em(Sh(ρ̂1), Sh(ρ̂1))

and

Sh((1− e)m(ρ̂1, ρ̂1)) = (1− e)m(Sh(ρ̂1), Sh(ρ̂1))

and adding these relations yields

Sh(m(ρ̂1, ρ̂1)) = m(Sh(ρ̂1), Sh(ρ̂1)).

Set R′ = ⊕t≥0 R
′
t where R′t = Z[Irr(GLtFqm)Gal(Fqm/Fq)], the subgroup

of R(GLtFqm) spanned by Z-linear combination of irreducible representa-
tions which are invariant under the Galois action. In Theorem 5.2 we saw
that R′′ is a subalgebra of R̃ and a similar argument shows that R′ is a
subalgebra of ⊕t≥0 R(GLtFqm).

Theorem 6.3.
With the notation introduced above R′ is a graded subalgebra of the

algebra ⊕t≥0 R(GLtFqm). Furthermore the restriction map

R̃ = ⊕t≥0 R(Gal(Fqm/Fq) ∝ GLtFqm) −→ ⊕t≥0 R(GLtFqm)

restricts to a surjective algebra homomorphism of the form R′′ −→ R′.

The Shintani correspondence of Theorem 6.2 is a bijection of set of irre-
ducible representations. Extending it by additivity yields an isomorphism
of abelian groups

Sh : R′
∼=−→ R.

The preceding discussion concerning the multiplicativity of the Shintani
correspondence establishes the following result.
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Theorem 6.4.
The Z-linear extension of the Shintani correspondence of Theorem 6.2

yields an algebra isomorphism

Sh : R′
∼=−→ R

between the Hopf algebras R′ introduced above and R of §3.

6.5. The algebra isomorphism Sh−1 of Theorem 6.4 yields an injective
algebra homomorphism

R
∼=−→ R′ ⊂ ⊕t≥0 R(GLtFqm)

between two Hopf algebras is not a Hopf algebra homomorphism. This
is illustrated by the following GL2Fq2p example of ([117] p.412; see also
Chapter Eight, §1.3).

Suppose that m = 2p. Consider the Galois extension Fq2p/Fq and
the irreducible representation of GL2Fq2p given by m(χ1, χ2) (sometimes
denoted by is R(χ1, χ2)) with χi : F∗q2p −→ C∗ and Frobenius action
Σ(χ1) = χ2,Σ(χ2) = χ1 so that

Σ∗R(χ1, χ2) = R(χ1, χ2).

This is decomposable in the Hopf algebra ⊕t≥0 R(GLtFq2p) and there-
fore is not primitive and therefore it is not primitive in R.

Hence Gal(Fq2p/Fq2) = 〈Σ2〉 fixes χ1 and χ2 so that, by Hilbert’s The-
orem 90,

χ1 = Θ ·Norm : F∗q2p −→ F∗q2 −→ C∗

and
χ2 = Σ∗(Θ) ·Norm : F∗q2p −→ F∗q2 −→ C∗.

Therefore Θ 6= Σ∗(Θ).
From ([117]; [126], Chapter Two) Sh(R(χ1, χ2)) = R(Θ), the Weil

representation associated to Θ, which is an irreducible representation of
GL2Fq. However the Weil representation is an example of a irreducible
cuspidal representation of GL2Fq and, as explained in [146], these are the
same as the positive primitive irreducibles in the PSH-algebra for GLFq.

The character Θ is an example of a regular character of the multi-
plicative group of a finite field. In fact, as a consequence of the Shintani
correspondence together with ([133] Theorem 8-6), the character functions
of all the cuspidal representations of the GLtFq’s are calculated in ([117]
Theorem 2) and, in addition, these cuspidals are shown to be in one-one
correspondence with regular characters4.

4There are other ways to prove ([117] Theorem 2). For example, in ([69] Theorem
13 p.439) the cuspidals are classified and denoted by gλ’s. Also the result can be derived

from ([41] Theorem 9.3.2) which asserts that the irreducible Deligne-Lusztig characters
±RGT (θ), for regular θ will be cuspidal if and only if the torus T does not lie in any
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7. Counting cuspidals irreducibles of GLnFq
7.1. This comes from ([117] §3) which culminates in the proof of ([117]

Theorem 2).
Let Bt ⊂ GLtFqn denote the Borel subgroup of upper triangular ma-

trices so that Bt = DtUt, the semi-direct product of the diagonal and the
unitriangular matrices, Dt and Ut, respectively.

Suppose that Fq ⊂ Fqn ⊂ Fqm where m = nd. A character χ : F∗qn −→
C∗ is regular if g ∈ Gal(Fqn/Fq) and g(χ) = χ implies that g = 1 (i.e.
χ 6= Σl(χ) for l = 1, . . . , n− 1).

Define χ̃ to be the composition χ̃ = χ ·NormFqm/Fqn : F∗qm −→ C∗.
Define a character φχ : BnFqm −→ C∗ by the formula

φχ(Xi,j) =
n∏
i=1

Σi−1(χ) ·NormFqm/Fqn (Xi,i).

Therefore, by the regularity of χ, the character φχ is regular in the sense
that φχ 6= w∗(φχ), the conjugate of φχ by a permutation matrix w.

Define a function ψχ on GLnFqm by the formula

ψχ(g) =

 φχ(Xi,j) if g = (Ui,j)w(Xi,j)

0 otherwise

where (Ui,j) ∈ Un, (Xi,j) ∈ B and w is the permutation matrix given by

w−1 =


0 1 0 . . . . . . 0
0 0 1 . . . 0
...

...
...

...
...

...
0 0 0 . . . . . . 1
1 0 0 . . . . . . 0

 .

Theorem 7.2. ([117] Theorem 2)5

(i) If χ is a regular character of F∗qn there exists an m-th root of unity
ξm and an irreducible cuspidal representation ρχ of GLnFq such that

ξmρχ(NFqn/Fq (g)) =
q−m(n−1)/2

|BnFqm |
∑

X∈GLnFqm
ψχ(XgΣ(X)−1).

(ii) For two regular characters χ1, χ2 ρχ1 = ρχ2 if and only if χ1 =
Σl(χ2) for some l. Moreover any cuspidal of GLnFq is equal to ρχ for some
regular character χ of F∗qn .

proper Frobenius-stable Levi subgroup of G. I am grateful to Alexander Stasinski for
explaining the latter argument to me.

5This result is stated in the conventions for semi-direct products, GL-norms etc of
Chapter Ten (Appendix I) rather than those of [117].
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7.3. Sketch proof of Theorem 7.2
By Mackey’s irreducibility criterion (proved by Frobenius reciprocity

and the Double Coset Formula for the restriction of an induced represen-
tation)
IndGLnFqm

BnFqm (φχ) is irreducible. This uses the fact that the permutation ma-
trices are the double coset representatives of BnFqm\GLnFqm/BnFqm .

In the tensor product notation for this induced representation as a
left GLnFqm we have g ⊗BnFqm 1 = gb ⊗BnFqm φχ(b−1) so that we may
think of g ⊗BnFqm 1 as the complex-valued function fg which is defined
by f(x) = 0 unless x ∈ gBnFqm and if x = gb with b ∈ BnFqm then
fg(x) = φχ(x−1g) = φχ(b−1).

This makes sense because

x⊗BnFqm fg(x) = gb⊗BnFqm φχ(b−1) = g ⊗BnFqm 1.

Note that if b′ ∈ BnFqm then fg(xb′) = fg(gbb′) = φχ((b′)−1b−1g−1g) =
φχ(b′)−1fg(x).

In the tensor-product notation for the induced representation the func-
tion fg, transforming as above, corresponds to

g⊗BnFqm 1 =
∑

h∈GLnFqm/BnFqm

h⊗BnFqm fg(h) ∈ C[GLnFqm ]⊗BnFqm Cφχ .

To switch from Shintani’s conventions to mine we need to define a
function fshg−1 by fshg−1(x) = fg(x−1). Then, if b, b′ ∈ BnFqm , fshg−1(bx) =
fg(x−1b−1) is zero unless x−1b−1 = gb′ and in the latter case

fshg−1(bx) = fg(x−1b−1) = φχ(bxg) = φχ(b)fg(x−1) = φχ(b)fshg−1(x).

Following Shintani if w is a permutation matrix write
U−w = U

⋂
w−1U−w where U = UnFqm and U− is the transpose of U (i.e.

the lower unitriangular matrices). For the permutation matrix introduced
above one finds that

U−w−1 = {u =


1 u1,2 u1,3 . . . . . . u1,n

0 1 0 . . . . . . 0
0 0 1 . . . . . . 0
...

...
...

...
...

...
0 0 0 . . . . . . 1

}.

Now consider the product of a matrix in U−w−1 and an unitriangular
matrix(

1 α
0 In−1

)(
1 β
0 B

)
=
(

1 β + αB
0 B

)
=
(

1 0
0 B

)(
1 β + αB
0 In−1

)
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where β, α are row vectors and B is upper unitriangular (n− 1)× (n− 1)
matrix. Also we have the matrix relation

w−1

(
1 0
0 B

)
w =

(
B 0
0 1

)
.

Suppose that b is the upper triangular matrix

b = D

(
1 β
0 B

)
where D is the diagonal matrix D = diag(d1, d2, . . . , dn). Then there exist
matrices u, u′, u′′ ∈ U−w−1 where

u =
(

1 α
0 In−1

)
such that

w−1uΣ(b)

= w−1Σ(D)ww−1u′
(

1 Σ(β)
0 Σ(B)

)

= w−1Σ(D)w
(

Σ(B) 0
0 1

)
w−1u′′.

Notice that

w−1Σ(D)w
(

Σ(B) 0
0 1

)
∈ BnFqm

and that

φχ(w−1Σ(D)w
(

Σ(B) 0
0 1

)
) = φχ(b).

In addition, as u runs through U−w−1 so does u′′.
Then Shintani defines IΣ by the formula

(IΣfshg )(x) = q−m(n−1)/2
∑

u∈U−
w−1

fshg (w−1uΣ(x)).

and the above discussion explains why (IΣfshg )(bx) = φχ(b)(IΣfshg )(x).
Therefore, in my conventions, the right hand side of the above equation

is
(IΣfg−1)(x−1) = q−m(n−1)/2

∑
u∈U−

w−1

fg−1(Σ(x−1)uw).

In the tensor product notation this is equivalent to

IΣ(g ⊗BnFqm 1) =
∑

h∈GLnFqm/BnFqm

∑
u∈U−

w−1

h⊗BnFqm fg(Σ(h)uw).
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Therefore
g′IΣ(g ⊗BnFqm 1)

=
∑
h∈GLnFqm/BnFqm

∑
u∈U−

w−1
g′h⊗BnFqm fg(Σ(h)uw)

=
∑
h′∈GLnFqm/BnFqm

∑
u∈U−

w−1
h′ ⊗BnFqm fg(Σ((g′)−1)Σ(h′)uw)

=
∑
h′∈GLnFqm/BnFqm

∑
u∈U−

w−1
h′ ⊗BnFqm fΣ(g′)g(Σ(h′)uw)

= IΣ(Σ(g′)g ⊗BnFqm 1).

Set ρ = IndGLnFqm
BnFqm (φχ). By ([117] Lemma 3.2) ImΣ = 1 and

ρ(Σ(g′)) · I−1
Σ = I−1

Σ · ρ(g′).
The multiplication in my convention for semi-direct products is given by
(c, g)(c′, g′) = (cc′, gc(g′)). With this convention

(Σ, 1)(1, g) = (Σ,Σ(g)) = (1,Σ(g))(Σ, 1)

so the irreducible representation ρ extends to an irreducible ρ̃ on
Gal(Fqm/Fq) ∝ GLnFqm in which (Σ, g) acts via I−1

Σ · ρ(g) = IΣ−1 · ρ(g).
Therefore, by ([117] p.409),

Trace(ρ̃(Σ, g) =
q−m(n−1)/2

|BnFqm |
∑

X∈GLnFqm
ψχ(XgΣ(X)−1).

To show that Sh(ρ) = ρχ is a cuspidal irreducible of GLnFq it suf-
fices to show that for any pair of irreducibles ρ1 ∈ Irr(GLaFq) and ρ2 ∈
Irr(GLn−aFq) that ρχ is not an irreducible constituent of m(ρ1 ⊗ ρ2). By
Theorem 6.4, applying the Shintani correspondence up to Fqm , Sh−1(ρ1)
must be equivalent to the PSH algebra product of Σij (χ)’s as ij ranges over
some a proper subset of 1, 2, . . . , n. However this is impossible because any
such product is not Galois invariant.

Similarly, applying the Shintani correspondence up to Fqm ,
Sh−1(ρχ1) = Sh−1(ρχ2) implies that the Galois orbits of χ1 and χ2 coin-
cide.

Finally, the discussion shows that the number of distinct regular char-
acters of F∗qn is less than or equal to the number of inequivalent irreducible
cuspidal representations of GLnFq. The fact that these numbers are in fact
equal follows from a counting argument given in ([133] Theorem 8.6). 2

8. An example of w(k∗,∗)Pα,m−αw(k∗,∗)−1
⋂
Pa,m−a

8.1. In the notation of the discussion of Double Cosets in §3 let

m = 7, a = 3, α = 4, k11 = 1 = k22, k21 = 2, k12 = 3
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and consider the double coset representative

w(k∗,∗) =



1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1


.

If (aij) ∈ G7 then the conjugate by w = w(k∗,∗) takes the form

w(aij) =



a11 a15 a16 a12 a13 a14 a17

a51 a55 a56 a52 a53 a54 a57

a61 a65 a66 a62 a63 a64 a67

a21 a25 a26 a22 a23 a24 a27

a31 a35 a36 a32 a33 a34 a37

a41 a45 a46 a42 a43 a44 a47

a71 a75 a76 a72 a73 a74 a77


.

In order that w(aij) = w(aij)w−1 lies in wG4 × G3w
−1 it must have

the form

w(aij) =



a11 0 0 a12 a13 a14 0
0 a55 a56 0 0 0 a57

0 a65 a66 0 0 0 a67

a21 0 0 a22 a23 a24 0
a31 0 0 a32 a33 a34 0
a41 0 0 a42 a43 a44 0
0 a75 a76 0 0 0 a77


and so to lie in the intersection w(G4 × G3)

⋂
G3 × G4 it must have the

form

w(aij) =



a11 0 0 0 0 0 0
0 a55 a56 0 0 0 0
0 a65 a66 0 0 0 0
0 0 0 a22 a23 a24 0
0 0 0 a32 a33 a34 0
0 0 0 a42 a43 a44 0
0 0 0 0 0 0 a77


= A′′.

Therefore in this example

wG4 ×G3w
−1
⋂
G3 ×G4 = Gk11 ×Gk21 ×Gk12 ×Gk22 .
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In order that w(aij) = w(aij)w−1 lies in wP4,3w
−1 it must have the

form

w(aij) =



a11 a15 a16 a12 a13 a14 a17

0 a55 a56 0 0 0 a57

0 a65 a66 0 0 0 a67

a21 a25 a26 a22 a23 a24 a27

a31 a35 a36 a32 a33 a34 a37

a41 a45 a46 a42 a43 a44 a47

0 a75 a76 0 0 0 a77


and so to lie in the intersection wP4,3w

−1
⋂
P3,4 it must have the form

w(aij) =



a11 a15 a16 a12 a13 a14 a17

0 a55 a56 0 0 0 a57

0 a65 a66 0 0 0 a67

0 0 0 a22 a23 a24 a27

0 0 0 a32 a33 a34 a37

0 0 0 a42 a43 a44 a47

0 0 0 0 0 0 a77


= C.

A matrix in wP4,3w
−1
⋂
G3 ×G4 has the form

w(aij) =



a11 a15 a16 0 0 0 0
0 a55 a56 0 0 0 0
0 a65 a66 0 0 0 0
0 0 0 a22 a23 a24 a27

0 0 0 a32 a33 a34 a37

0 0 0 a42 a43 a44 a47

0 0 0 0 0 0 a77


= A

and a matrix in wP4,3w
−1
⋂
U3,4 has the form

w(aij) =



1 0 0 b12 b13 b14 b17
0 1 0 0 0 0 b57
0 0 1 0 0 0 b67
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


= B.

Choosing

b12 =
a12

a11
, b13 =

a13

a11
, b14 =

a14

a11

X =

 a11 a15 a16

0 a55 a56

0 a65 a66

 , X

 b17
b57
b67

 =

 a17

a57

a67


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shows that AB = C and therefore

P3,4

⋂
wP4,3w

−1 = ((G3 ×G4)
⋂
wP4,3w

−1 · (U3,4

⋂
wP4,3w

−1).

In order that w(aij) = w(aij)w−1 lies in wU4,3w
−1 it must have the

form

w(aij) =



1 a15 a16 0 0 0 a17

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 a25 a26 1 0 0 a27

0 a35 a36 0 1 0 a37

0 a45 a46 0 0 1 a47

0 0 0 0 0 0 1


and to lie in wU4,3w

−1
⋂
G3 ×G4 it must have the form

w(aij) =



1 a15 a16 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 a27

0 0 0 0 1 0 a37

0 0 0 0 0 1 a47

0 0 0 0 0 0 1


= A′.

To lie in wU4,3w
−1
⋂
U3,4 a matrix must have the form

w(bij) =



1 0 0 0 0 0 b17
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


= B′

and to lie in wU4,3w
−1
⋂
P3,4 it must have the form

w(aij) =



1 a15 a16 0 0 0 a17

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 a27

0 0 0 0 1 0 a37

0 0 0 0 0 1 a47

0 0 0 0 0 0 1


= C ′.

Therefore, choosing A′, B′, C ′ in a similar manner to the case of A,B,C
shows that

P3,4

⋂
wU4,3w

−1 = ((G3 ×G4)
⋂
wU4,3w

−1) · (U3,4

⋂
wU4,3w

−1).
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From the matrix immediately preceding A′′ in order that a matrix lies
in
wG4 ×G3w

−1
⋂
U3,4 it must have the form

w(bij) =



1 0 0 b12 b13 b14 0
0 1 0 0 0 0 b57
0 0 1 0 0 0 b67
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


= B′′

and to lie in to lie in wG4 ×G3w
−1
⋂
P3,4 it must have the form the form

w(aij) =



a11 0 0 a12 a13 a14 0
0 a55 a56 0 0 0 a57

0 a65 a66 0 0 0 a67

0 0 0 a22 a23 a24 0
0 0 0 a32 a33 a34 0
0 0 0 a42 a43 a44 0
0 0 0 0 0 0 a77


= C ′′.

Therefore, choosing A′′, B′′, C ′′ in a similar manner to the case of
A,B,C shows that

P3,4

⋂
wG4 ×G3w

−1

= ((G3 ×G4)
⋂
wG4 ×G3w

−1) · (U3,4

⋂
wG4 ×G3w

−1).
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Appendix I: Galois descent of representations

This Appendix contains more detail than any reader might conceiv-
able want concerning Shintani descent from Galois invariant complex irre-
ducible representations of GL2F4 to GL2F2. In §1 and §2 explicit matrix
formulae are given for the 4-dimensional and 5-dimensional Galois invari-
ant irreducibles. In §3 matrix formulae are given for extensions of these
representations to the semi-direct product of GL2F4 with the Galois group
Gal(F4/F2). §4 describes the characterisation of the Shintani correspon-
dence for finite general linear groups [117]. §5 recalls the explicit Brauer
induction formula which gives the Euler characteristic of the monomial res-
olution of the representations under consideration without my having to
write down the entire bar-monomial resolution. §6 gives the data needed
for the explicit Brauer induction formula of the semi-direct product rep-
resentations. §7 and §8 give a “descent algorithm” which one applies to
the monomial resolution of the semi-direct product extensions in order to
obtain a monomial complex all of whose Line-stabilisers lie in the product
of the Galois group with the subgroup of Galois-fixed points. In this simple
example it is shown how the Euler characteristic of the monomial complex
resulting from the “descent algorithm” is related to the outcome of Shintani
descent. In §9 are explained the necessary and sufficient conditions on the
integers dimC(V (H,φ)) which ensure that a representation exists which is
the Shintani correspondent of a Galois invariant irreducible V .

Note that knowing all the subspaces V (H,φ) is sufficient to write down
the bar-monomial resolution for the Shintani correspondent of V .

1. Subgroups and elements of A5 via PGL2F4

1.1. Let A5 denote the alternating group consisting of even permuta-
tions of the set with five elements and let GL2F4 denote the group of 2× 2
invertible matrices with entries in the field with four elements.

243
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In GL2F4, if ξ is a cube root of unity in F4, then we have matrices

Xξ =

 0 1

1 ξ

 , X2
ξ =

 0 1

1 ξ

 0 1

1 ξ

 =

 1 ξ

ξ ξ



X3
ξ =

 0 1

1 ξ

 1 ξ

ξ ξ

 =

 ξ ξ

ξ 1



X4
ξ =

 0 1

1 ξ

 ξ ξ

ξ 1

 =

 ξ 1

1 0



X5
ξ =

 0 1

1 ξ

 ξ 1

1 0

 =

 1 0

0 1

 .

This matrix gives a cyclic permutation of the projective line over F4.
In fact, as we shall see from the elements described below, the projective
general linear group PGL2F4 = GL2F4/F∗4 is isomorphic to A5. Acting via
right multiplication on row vectors, PGL2F4 permutes via the points of the
projective line

P1(F4) = {(0, 1), (1, 0), (1, ξ), (ξ, 1), (1, 1)}.
For example, Xξ yields the 5-cycle ((0, 1), (1, ξ), (1, 1), (ξ, 1), (1, 0)).

The 2-Sylow subgroup of A5 is the Klein 4-group V4 generated by the
images in PGL2F4 of the matrices A and B given by

A =

 0 1

1 0

 , B =

 1 ξ

ξ 1


since A2 = I,B2 = ξ · I and

AB =

 0 1

1 0

 1 ξ

ξ 1

 =

 ξ 1

1 ξ

 =

 1 ξ

ξ 1

 0 1

1 0

 = BA.

As even permutations of the projective line both A and B fix (1, 1) since

(1, 1)A = (1, 1)

 0 1

1 0

 = (1, 1),

(1, 1)B = (1, 1)

 1 ξ

ξ 1

 = (ξ2, ξ2) = (1, 1).
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The 3-Sylow subgroup consists of the images of I, C,C2 where

C =

 0 1

1 1

 , C2 =

 1 1

1 0

 , C3 = I.

Since the order of PGL2F4 equals (42−1)(42−4)
3 = 60 which is the order

of A5 and PGL2F4 sits inside Σ5 the above calculations with matrices show
that PGL2F4 = A5 ⊂ Σ5.

The subgroup A4 has index five in A5 and can be realised as the images
of the matrices which fix (1, 1) in the projective line. Also setting

Y =

 1 ξ

ξ2 0


which satisfies

(1, 1)Y = (1, 1)

 1 ξ

ξ2 0

 = (ξ, ξ) = (1, 1)

and furthermore Y 3 = I. Finally Y normalises V4 = 〈A,B〉 since we have

Y AY 2 =

 1 ξ

ξ2 0

 0 1

1 0

 0 ξ

ξ2 1



=

 ξ 1

0 ξ2

 0 ξ

ξ2 1


= ξAB,

Y BY 2 =

 1 ξ

ξ2 0

 1 ξ

ξ 1

 0 ξ

ξ2 1



=

 ξ 0

ξ2 1

 0 ξ

ξ2 1


= ξ2A.

Hence

A4 = 〈Y,A,B〉 ⊆ A5.
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By Sylow’s theorem 〈Y 〉 and 〈C〉 are conjugate in A5. Explicitly we have 1 0

ξ2 ξ2

C =

 0 1

ξ2 0

 = Y

 1 0

ξ2 ξ2

 .

One easily verifies that

Y = X2
ξBCBX

3
ξ and Xξ = C2BC2.

Since A5 has order 60 its proper subgroups must have orders in the set
{2, 3, 4, 5, 6, 10, 12, 20}. In fact there is no subgroup of order 20. For suppose
that a subgroup contains V4 = 〈A,B〉 and a 5-cycle. Then conjugating the
elements of V4 by the 5-cycle and multiplying the results by A,B,AB one
finds that the subgroup must also contain a 3-cycle and hence equals A5.
Similarly, there is no subgroup of order 30.

The following table shows all the conjugacy class representatives of
subgroups of A5.

1.2. Conjugacy classes of subgroups H of A5

H Order Generators Number in conjugacy class
A5 60 A,B, Y,Xξ 1
A4 12 A,B, Y 5
D10 10 Xξ, A 6
D6 6 A,C 10
C5 5 Xξ 6
V4 4 A,B 5
C3 3 C 10
C2 2 A 15
{1} 1 I 1

A simple argument using Sylow’s theorems shows that each subgroup of A5

is determined up to conjugacy by its order.
The classification of irreducible, finite-dimensional complex represen-

tations of GL2F4 given in ([126] §3.2 p.89) shows that there are five ir-
reducible representations of the quotient group PGL2F4

∼= A5. Therefore
there are five conjugacy classes of elements of A5 of orders 1, 2, 3, 5 and 5.
To see that there are two distinct conjugacy classes of order 5 observe that
only one conjugacy class implies either that C5 is normal in A5 or there is
a subgroup of order 20 or 30.

In the character table of A5 given below the conjugacy classes of ele-
ments are labelled 1, 2, 3, 51 and 52 and are represented by elements hav-
ing orders 1, 2, 3, 5 and 5, respectively. The αi are real numbers given by
α1 = (1 +

√
5)/2 and α2 = (1−

√
5)/2.
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1.3. Character Table for A5

1 2 3 51 52

1 1 1 1 1 1
ν3,1 3 −1 0 α1 α2

ν3,2 3 −1 0 α2 α1

ν4 4 0 1 −1 −1
ν5 5 1 −1 0 0

2. Complex irreducible representations of A5

2.1. The action of Gal(F4/F2)
Let σ denote the Frobenius automorphism of F4 given by σ(z) = z2.

Applying σ to the matrix entries given an involution on GL2F4 and its
quotient PGL2F4

∼= A5. Therefore, if ρ is a finite-dimensional complex
irreducible representation of A5 then so is σ∗(ρ), the composition of ρ with
the σ.

It is straightforward to verify that σ applied to the conjugacy class 51

gives 52 so that σ∗(ν3,1) = ν3,2. On the other hand, since σ∗ preserves
dimension, we must have

σ∗(1) = 1, σ∗(ν4) = ν4 and σ∗(ν5) = ν5.

2.2. Explicit models for ν4 and ν5
The Borel subgroup of upper triangular matrices in GL2F4 has order

36 so its image in PGL2F4 has order 12 so is conjugate to A4. Denote by
B the image of the Borel subgroup in PGL2F4 and also, when there is no
confusion, the Borel subgroup of GL2F4. This enables us to describe the
irreducible representation ν4 and ν5 explicitly, following the description of
irreducibles given in ([126] §3.2 p.89).

There is a short exact sequence representations of GL2F4 of the form

0 −→ ν4 = S(1) −→ IndGL2F4
B (1) −→ L(1) −→ 0

where L(1) = 1, the one-dimensional trivial representation, and S(1) is irre-
ducible. Each representation in the short exact sequence factorises through
A5 = PGL2F4 and S(1) factorises through the irreducible representation
ν4.

If λ is a non-trivial character of F∗4 we know from ([126] §3.2p.89) that
IndGL2F4

B (InfBT (λ ⊗ λ2)) is irreducible. Also λ ⊗ λ2 is trivial on the scalar
matrices since λ3 = 1 so that λ⊗λ2 factorises to give a non-trivial character
which is conjugate to φ : B ∼= A4 → A4/V4 → C∗. This irreducible
factorises through

ν5 = IndPGL2F4
B (φ).
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2.3. Bases for ν4 and ν5
If µ : B → C∗ be a character. The standard basis for IndPGL2F4

B (µ) is

I ⊗B 1, Xξ ⊗B 1, X2
ξ ⊗B 1, X3

ξ ⊗B 1, X4
ξ ⊗B 1.

Define a basis V1,W1,W2,W3 for ν4 by

V1 = (I ⊗B 1−X2
ξ ⊗B 1)− (I ⊗B 1−X4

ξ ⊗B 1),

W1 = I ⊗B 1−Xξ ⊗B 1,

W2 = I ⊗B 1−X3
ξ ⊗B 1,

W3 = (I ⊗B 1−X2
ξ ⊗B 1) + (I ⊗B 1−X4

ξ ⊗B 1).

If ξ3 = e2π
√
−1/3 define a basis v, w1, w2, w3, w4 for ν5 by

v = I ⊗B 1 +Xξ ⊗B 1 + ξ3X
3
ξ ⊗B 1

w1 = −ξ3I ⊗B 1− ξ3Xξ ⊗B 1 + 2ξ23X
3
ξ ⊗B 1−X4

ξ ⊗B 1−X2
ξ ⊗B 1

w2 = (1− ξ23)I ⊗B 1 + (ξ23 − 1)Xξ ⊗B 1−X4
ξ ⊗B 1 +X2

ξ ⊗B 1

w3 = −ξ3I ⊗B 1− ξ3Xξ ⊗B 1 + 2ξ23X
3
ξ ⊗B 1 + 3X4

ξ ⊗B 1 + 3X2
ξ ⊗B 1

w4 = (1− ξ23)I ⊗B 1 + (ξ23 − 1)Xξ ⊗B 1 + 3X4
ξ ⊗B 1− 3X2

ξ ⊗B 1.

2.4. The A5-action on ν4
In terms of the ordered basis {V1,W1,W2,W3} the matrices for the

action of A,B,C,Xξ on ν4 are given by

A =


−1 0 0 0
0 −1 −1 −2
0 0 1 0
0 0 0 1



B =


0 −1 − 1

2 −1
−1 0 0 1
0 0 1 0
0 0 − 1

2 −1



C =


1 0 0 0
0 −1 −1 −2
0 1 0 0
0 0 0 1


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Xξ =


0 1

2 − 1
2 0

0 −1 −1 −2
1 0 0 1
0 1

2
1
2 0

 .

2.5. The A5-action on ν5
In terms of the ordered basis {v, w1, w2, w3, w4} the matrices for the

action of A,B,C,Xξ on ν5 are given by

A =


1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1



B =


1
3 0 0 8

3ξ3 0
0 1 0 0 0
0 0 0 0 ξ3−ξ23

3
ξ23
3 0 0 − 1

3 0
0 0 ξ23 − ξ3 0 0



C =


1 0 0 0 0
0 − 1

2
1
2 + ξ3 0 0

0 ξ3
2 −

ξ23
2 − 1

2 0 0
0 0 0 − 1

2
ξ3
2 −

ξ23
2

0 0 0 1
2 + ξ3 − 1

2



Xξ =


1
3 0 0 − 4ξ3

3
8
3 + 4ξ3

3

0 1
4

1
4 + ξ3

2 − 1
4 −

ξ3
2 − 1

4

0 1
4 + ξ3

2 − 3
4 − 1

4
ξ3
12 −

ξ23
12

− ξ
2
3
6

3ξ3
4 −

3ξ23
4

3
4 − 1

12
ξ23
12 −

ξ3
12

ξ3
6 −

1
6

3
4

ξ23
4 −

ξ3
4 − 1

12 −
ξ3
6

1
4

 .

3. Semi-direct products

3.1. Following the notational conventions of ([125] p.36), if C acts on
G via λ : C −→ Aut(G) then the semi-direct product C ∝ G is the group
whose underlying set is C ×G with multiplication given by

(c1, g1) · (c2, g2) = (c1c2, g1λ(c1)(g2)), ci ∈ C, gi ∈ G.

Let H denote a complex vector space and let ρ : G −→ AutC(H) denote
a representation of G on H. For c ∈ C denote by c∗(ρ) : G −→ AutC(H)
the representation of G given by the formula c∗(ρ)(g)(h) = λ(c)(g)(h) for
c ∈ C, g ∈ G, h ∈ H.
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Suppose that ρ is a representation for which Schur’s Lemma holds; that
is, EndC[G](H) = C, the ring of scalar endomorphisms. Assume in addition
that c∗(ρ) and ρ are equivalent representations for each c ∈ C. Therefore
for each c ∈ C there exists

Uc ∈ AutC(H)

such that, for all c ∈ C, g ∈ G,

c∗(ρ)(g) = ρ(λ(c)(g)) = Uc · ρ(g) · U−1
c ∈ AutC(H)

If Vc ∈ AutC(H) satisfies Uc · ρ(g) ·U−1
c = Vc · ρ(g) ·V −1

c then, by the Schur
Lemma condition, Uc = Vc ∈ AutC(H)/C∗ = ProjAutC(H), the group of
projective automorphisms of H.

Proposition 3.2.
Let G and C be as in §3.1. Let ρ be a representation of G for which

Schur’s Lemma holds. Assume in addition that c∗(ρ) and ρ are equivalent
representations for each c ∈ C. Then, in the notation of §3.1, there is a
homomorphism of the form

ρ̃ : C ∝ G −→ ProjAutC(H)

given by the formula ρ̃(c, g) = ρ(g)Uc.

Proof
Since Ug is unique in the group of projective automorphisms we have

UgUg1 = Ugg1 in this group and therefore

ρ̃(cc1, gλ(c)(g1)) = ρ(gλ(c)(g1))Ucc1

= ρ(g)ρ(λ(c)(g1))UcUc1

= ρ(g)Ucρ(g1)U−1
c UcUc1

= ρ(c)Ucρ(g1)Uc1

= ρ̃(c, g)ρ̃(c1, g1).

2

Example 3.3. Let G = PGL2F4 and let C = Gal(F4/F2) generated
by the involution given by σ, the Frobenius automorphism. From §2.1 we
know that

σ∗(1) = 1, σ∗(ν4) = ν4 and σ∗(ν5) = ν5.

(i) When ρ = 1, the trivial one-dimensional representation, then
Uσ = 1 and the homomorphism of Proposition 3.2 is trivial. The trivial
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projective representation factors through each of the two one-dimensional
representations C ∝ GL2F4 −→ C∗ of the form

C ∝ GL2F4 −→ C −→ C∗.

(ii) When ρ = ν4 we have H = 〈V1,W1,W2,W3〉. Let Uσ be the linear
involution on H given by

Uσ(V1) = V1, Uσ(W1) = −W1, Uσ(W2) = −W2, Uσ(W3) = −W3.

With this choice of Uσ and U1 = 1 the projective homomorphism ρ̃ of
Proposition 3.2 lifts to a representation

ν̃4 : Gal(F4/F2) ∝ GL2F4 −→ AutC(H)

given by (c, g) 7→ ν4(g)Uc. This is easily verified using the relations σ(A) =
A, σ(C) = C, σ(Xξ) = XξAC, σ(B) = BA in PGL2F4.

In terms of matrices σ acts on ν̃4 as

σ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

The other lift of ρ̃ to a linear representation is the tensor product of ν̃4
with the non-trivial one-dimensional representation of the form

Gal(F4/F2) ∝ GL2F4 −→ Gal(F4/F2) −→ C∗.

(iii) When ρ = ν5 we have H = 〈v, w1, w2, w3, w4〉. Let Uσ be the
linear involution on H given by

Uσ(v) = v, Uσ(w1) = −w1, Uσ(w2) = −w2, Uσ(w3) = w3, Uσ(w4) = w4.

With this choice of Uσ and U1 = 1 the projective homomorphism ρ̃ of
Proposition 3.2 lifts to a representation1

ν̃5 : Gal(F4/F2) ∝ GL2F4 −→ AutC(H)

given by (c, g) 7→ ν5(g)Uc.
In terms of matrices σ acts on ν̃5 as

σ =


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1

 .

The other linear lift of ρ̃ is constructed by tensoring with a non-trivial
quadratic character, as in (ii).

1In this case we are fortunate to be able to construct ρ̃ = ν̃4, ν̃5 with E = K = F4

in the notation of Chapter Two, §6.1 and its attendant footnote.
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3.4. Conjugacy classes of subgroups H of Gal(F4/F2) ∝ PGL2F4

The following table shows the conjugacy classes of subgroups H which
are not conjugate to a subgroup of PGL2F4

∼= A5.

H Order Generators Number in conjugacy class
〈(σ, 1), A5〉 120 (σ, 1), A,B, Y,Xξ 1
〈(σ, 1), A4〉 24 (σ, 1), A,B, Y 5
C4 ∝ C5 20 (σ,B), Xξ 6
C2 ×D6 12 (σ, 1), A, C 10
〈(σ, 1), V4〉 8 (σ, 1), A,B 15

D6 6 (σ,A), C 10
C2 × C3 6 (σ, 1), C 10
C4 4 (σ,B) 15

C2 × C2 4 (σ, 1), A 15
C2 2 (σ, 1) 10

To determine the subgroups J ⊆ C2 ∝ PGL2F4 up to conjugacy whose
projection J ⊆ C2 ∝ PGL2F4 −→ C2 is non-trivial we consider the kernel
of the projection. This a subgroup J ′ of index two in J which we may
assume is one appearing in the table of §1.2. A laborious analysis of the
possibilities yields the results of the above table.

In addition, let us record the action of the Frobenius on Y ∈ PGL2F4

σ(Y ) = AY 2A.

4. The Shintani correspondence for GLnFqd

4.1. Let C denote the cyclic group of order d given by the Galois group
of Fqd/Fq generated by the Frobenius automorphism, σ. Let Irr(GLnFqd)C
denote the set of finite-dimensional, irreducible complex representations ρ
of GLnFqd such that σ∗(ρ) is equivalent to ρ. Let Irr(GLnFq) denote the
set of finite-dimensional, irreducible complex representations of GLnFq.

The Shintani correspondence [117] is a bijection of the form

Sh : Irr(GLnFqd)C
∼=−→ Irr(GLnFq).

This correspondence is characterised in the following manner. Let χSh(ρ)

denote the trace function of the irreducible representation Sh(ρ). Then
there exists an irreducible linear representation ρ̃ of the semi-direct product
C ∝ GLnFqd which is a lift of the projective homomorphism of Proposition
3.2. Let χρ̃ denote the trace function of ρ̃. This linear lift may be chosen
in such a way that, for all g ∈ GLnFqd ,

εχSh(ρ)((σ, g)d) = χρ̃(σ, g)

where ε = ±1 is a sign which is independent of g. The left side of this
relation is interpreted in the following manner. The C ∝ GLnFqd-conjugacy
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class of the element

(σ, g)d = (1, gσ(g) . . . σd−1(g))

intersects GLnFq in a unique GLnFq-conjugacy class. The left side of the
characterising relation denotes χSh(ρ) applied to any element of this GLnFq-
conjugacy class.

Example 4.2. GL2F4

The group GL2F2 is the dihedral group of order six whose irreducible
representation consist of two one-dimensions, 1 and χ and a two-dimensional
irreducible ν. Therefore the Shintani correspondence takes the form (see
§9.6)

Irr(GL2F4)C = {1, ν4, ν5} ↔ Irr(GL2F2) = {1, ν, χ}.
Setting g = 1 in the characterising relation we find from Example 3.3(iii)
that

dim(Sh(ν5)) = χSh(ν5)((1, 1)) = χν̃5(σ, 1) = 1.
Since Sh(1) = 1 we must have Sh(ν5) = χ and Sh(ν4) = ν. This agrees
with Example 3.3(ii) since χν̃4(σ, 1) = ±2 for the two choices of Uσ.

5. Explicit Brauer Induction aG

The homomorphism aG is an explicit formula for Brauer’s Induction
Theorem, discovered by Robert Boltje [17]. The first such explicit for-
mula (a derivation rather than a homomorphism) appeared in [122] and a
topological formula for aG, analogous to that of [122], was given by Peter
Symonds [134]. The material of this section and its notation is taken from
[126].

Definition 5.1. Let G be a finite group and let R+(G) denote the free
abelian group on G-conjugacy classes of characters, φ : H −→ C∗, where
H ⊆ G. We shall denote this character by (H,φ) and its G-conjugacy class
by (H,φ)G ∈ R+(G).

If J ⊆ G we define a restriction homomorphism ResGJ : R+(G) −→
R+(J) by the double coset formula ([126] p.32)

ResGJ ((H,φ)G) =
∑

z∈J\G/H

(J ∩ zHz−1, (z−1)∗(φ))J

where (z−1)∗(φ)(u) = φ(z−1uz) ∈ C∗ . If π : J −→ G is a surjection we
define an inflation homomorphism π∗ : R+(G) −→ R+(J) by π∗((H,φ)G) =
(π−1(H), φπ)J . These maps make R+(−) into a contravariant functor from
finite groups to abelian groups.

Define a homomorphism bG : R+(G) −→ R(G) by bG((H,φ)G) =
IndGH(φ), the representation of G obtained from φ by induction. Then
bG is surjective because bG · aG = 1.
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5.2. Axioms for aG The homomorphism aG is uniquely characterised
by functoriality and a normalisation property on one-dimensional characters
of G.

(i) For H ≤ G the following diagram commutes.

ResGH

R(G)

?

R(H) -
aH

-aG R+(G)

?

R+(H)

ResGH

(ii) Let ρ : G −→ GLn(C) be a representation and suppose that

aG(ρ) =
∑

α(H,φ)G(H,φ)G ∈ R+(G)

then α(G,φ)G =< ρ, φ > for each (H,φ)G such that H = G. In particular,
if ρ is one-dimensional then aG(ρ) = (G, ρ)G.

5.3. The formula for aG(ρ)
The formula for aG(ρ) is given by ([126] Theorem 2.3.15 p. 48)

aG(ρ)

= 1
|G|
∑

(H,φ)≤(H′,φ′) in MG
|H|µMG

(H,φ),(H′,φ′)· < φ′,ResGH′(ρ) >H′ ·(H,φ)G.

Here < φ′,ResGH′(ρ) >H′ is the Schur inner product of φ′ and the re-
striction of ρ as representations of H ′ and MG denotes the poset of pairs
(not G-conjugacy classes of pairs) (H,φ). The Möbius function of the or-
dered pair ((H,φ), (H ′, φ′)) inMG is the integer defined by the alternating
sum of the number chains inMG from (H,φ) to (H ′, φ′)

µMG

(H,φ),(H′,φ′)

=
∑
i(−1)i#{chains of length i with (H0, φ0)

= (H,φ), (Hi, φi) = (H ′, φ′)}.
A chain of length i is a totally ordered subset ofMG of the form

(H0, φ0)
<

6= (H1, φ1)
<

6= . . .
<

6= (Hi, φi).
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6. Explicit Brauer Induction data for C2 ∝ PGL2F4

6.1. MC2∝PGL2F4

In order to compute the coefficients in the formula of §5.3 for

aPGL2F4(ν4) aPGL2F4(ν5) aGal(F4/F2)∝PGL2F4(ν̃4)

and aGal(F4/F2)∝PGL2F4(ν̃5)

we need to tabulate all the Gal(F4/F2) ∝ PGL2F4-conjugacy classes of
pairs (H,λ) ∈ MGal(F4/F2)∝PGL2F4 . This are given in the following table
where λ ∼ λ′ indicates conjugacy, ξn = e2π

√
−1/n and Ĥ = Hom(H,C∗),

the group of characters of H.

H Ĥ formulae
A5 1 −
A4 1, φ ∼ φ2 φ(Y ) = ξ3,

φ(AiBj) = 1
D10 1, φ φ(A) = −1,

φ(Xξ) = 1
D6 1, φ φ(A) = −1,

φ(C) = 1
C5 1, φ ∼ φ4 ∼ φ2 ∼ φ3 φ(Xξ) = ξ5
V4 1, µ1 ∼ µ2 ∼ µ3 µ1(A) = −1,

µ1(B) = 1
C3 1, φ ∼ φ2 φ(C) = ξ3
C2 1, φ φ(A) = −1
{1} 1 −

〈(σ, 1)〉 ∼= C2 1, τ τ((σ, 1)) = −1
〈(σ, 1), A〉 ∼= C2 × C2 1, τ, φ ∼ τφ τ((σ, 1)) = −1

−1 = φ(A)

The table is continued on the next page.
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H Ĥ formulae
C4 1, φ ∼ φ3, φ2 φ((σ,B)) = ξ4

〈(σ, 1), C〉 ∼= C2 × C3 1, τ, φ ∼ φ2, τφ ∼ τφ2 τ((σ, 1)) = −1,
φ(C) = ξ3

〈(σ,A), C〉 ∼= D6 1, τ τ((σ,A)) = −1,
τ(C) = 1

〈(σ, 1), V4〉 1, τ, µ, τµ τ((σ, 1)) = −1
−1 = µ(AiB)

〈(σ, 1), A, C〉 ∼= C2 ×D6 1, τ, φ, τφ τ((σ, 1)Ai) = −1
φ((σ, 1)iA) = −1

〈(σ,B), Xξ〉 ∼= C4 ∝ C5 1, τ, τ2, τ3 τ((σ,B)) =
√
−1,

τ(Xξ) = 1
〈(σ, 1), A4〉 1, τ, φ ∼ φ2, τφ ∼ τφ2 τ((σ, 1)) = −1,

φ(Y ) = ξ3,
φ(AiBj) = 1

〈(σ, 1), A5〉 1, τ τ((σ, 1)) = −1

Note: (A4, φ) and (A4, φ
2) are conjugate in C2 ∝ PGL2F4 (as is seen

from the relation at the end of §3.4) but not in PGL2F4. Similarly (C5, φ
i)

for i = 1, 2, 3, 4 are all conjugate in C2 ∝ PGL2F4 (via (σ,B)) but only
(C5, φ

i) ∼ (C5, φ
4i) in PGL2F4.

6.2. ResC2∝PGL2F4
H (ν̃4)ab and ResC2∝PGL2F4

H (ν̃5)ab
In order to compute the Schur inner products which appear in the for-

mula of §5.3 for ρ = ν̃4 and ρ = ν̃5 we need to know the multiplicities of
each of characters of Ĥ which appear in the restriction of ν̃4 and ν̃5 to H.
We denote the sum of these one-dimensional representations (with multi-
plicities) by ResC2∝PGL2F4

H (ν̃4)ab and ResC2∝PGL2F4
H (ν̃5)ab. These “abelian

parts” of the restrictions to H are given in the table below.
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H ν̃4 ν̃5
A5 0 0
A4 1 φ+ φ2

D10 0 1
D6 1 + φ 1
C5 φ+ φ2 + φ3 + φ4 1 + φ+ φ2 + φ3 + φ4

V4 1 + µ1 + µ2 + µ3 2 · 1 + µ1 + µ2 + µ3

C3 2 · 1 + φ+ φ2 1 + 2φ+ 2φ2

C2 2 · 1 + 2 · φ 3 · 1 + 2φ
{1} 4 · 1 5 · 1

〈(σ, 1)〉 ∼= C2 1 · 1 + 3 · τ 3 · 1 + 2τ
〈(σ, 1), A〉 ∼= C2 × C2 2 · τ + φ+ τφ 2 · 1 + τ + φ+ τφ

C4 φ+ φ3 + φ2 + 1 1 + 2φ2 + φ+ φ3

〈(σ, 1), C〉 ∼= C2 × C3 1 + τ + τφ+ τφ2 1 + φ+ τφ+ φ2 + τφ2

〈(σ,A), C〉 ∼= D6 2 · τ 1
〈(σ, 1), V4〉 τ + τµ 1 + µ+ τ

〈(σ, 1), A, C〉 ∼= C2 ×D6 τ + φ 1
〈(σ,B), Xξ〉 ∼= C4 ∝ C5 0 τ2

〈(σ, 1), A4〉 τ 0
〈(σ, 1), A5〉 0 0

6.3. aPGL2F4(ν4) and aPGL2F4(ν5)
Recalling thatA5

∼= PGL2F4, a calculation of the formulae for aPGL2F4(ν3,1)
may be found in ([126] p.50). Similar calculations using the data from the
tables of §6.1 and §6.2 yield the following formulae:

aPGL2F4(ν4) = (A4, 1)PGL2F4 + (D6, 1)PGL2F4 + (D6, φ)PGL2F4

+(C5, φ)PGL2F4

+(C5, φ
2)PGL2F4 − (C3, 1)PGL2F4 + (C3, φ)PGL2F4

+(V4, µ1)PGL2F4 − (C2, 1)PGL2F4 − (C2, φ)PGL2F4

and
aPGL2F4(ν5) = (A4, φ)PGL2F4 + (A4, φ

2)PGL2F4 + (D10, 1)PGL2F4

+(D6, 1)PGL2F4

+(C5, φ)PGL2F4 + (C5, φ
2)PGL2F4

+(V4, µ1)PGL2F4 − 2(C2, 1)PGL2F4
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6.4. aC2∝PGL2F4(ν̃4) and aC2∝PGL2F4(ν̃5)
Setting G = C2 ∝ PGL2F4, the formula of §5.3 together with the

tabulated data of §6.1 and §6.2 yield the following form for aG(ν̃5), which
follows from the detailed calculations of the Appendix of [130]:

aG(ν̃5)

= (A4, φ)G + (〈(σ,B), Xξ〉, τ2)G + (〈(σ, 1), A, C〉, 1)G

+(〈(σ, 1), V4〉, 1)G + (〈(σ, 1), V4〉, τ)G + (〈(σ, 1), V4〉, µ)G

+(〈(σ, 1), C〉, φ)G + (〈(σ, 1), C〉, τφ)G + (C5, φ)G

−(V4, 1)G − (C3, φ)G − (C2, φ)G

+({1}, 1)G − (〈(σ, 1)〉, 1)G − (〈(σ, 1)〉, τ)G − (〈(σ, 1), A〉, 1)G

+(〈(σ, 1), A〉, φ)G + (C4, φ)G − (C4, φ
2)G.

Similarly for ν̃4 we obtain

aG(ν̃4)

= (〈(σ, 1), A4〉, τ)G + (C2 ×D6, τ)G + (C2 ×D6, φ)G

+(C5, φ)G + (〈(σ, 1), V4〉, τµ)G + (〈(σ, 1), C〉, τφ)G

−(C2, φ)G − (〈(σ, 1), A〉, τ)G

+(C4, φ)G − (〈(σ, 1), C〉, τ)G.

7. The weak descent algorithm

7.1. Descent of representations
In this section we are interested in the following construction. Suppose

given a finite-dimensional irreducible, complex representation ρ of a group
G which is invariant under under the action of a subgroup C ⊆ Aut(G).
This gives rise to a projective representation

ρ̃ : C ∝ G −→ ProjAutC(H)

where H is the underlying vector space of ρ.
Suppose that there is a linear lift of ρ̃ (which we shall also denote by

ρ̃)
ρ̃ : C ∝ G −→ GL(H).

There are several choices of this linear lift but any two will differ by a twist
by a one-dimensional representation of the form τ : C ∝ G −→ C −→ C∗.
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The same is true for aC∝G(ρ̃) ∈ R+(C ∝ G) since aC∝G commutes
with twisting by one-dimensional representations.

Let GC denote the subgroup of C-fixed points of G. Consider the
endomorphism E of R+(C ∝ G) which is given on the free generators by

E(H,φ)C∝G =

 (H,φ)C∝G if H is conjugate to H′ ⊆ C×GC

0 otherwise.

Therefore we may write

E(aC∝G(ρ̃)) =
∑

H⊆C×GC
α(H,φ)C∝G · (H,φ)C∝G,

which is well-defined up to twists by a one-dimensional representations τ .
Therefore

E(aC∝G(ρ̃)) ∈ Im(IndC∝GC×GC : R+(C ×GC) −→ R+(C ∝ G)),

well-defined up to one-dimensional twists.
Similarly in terms of representations

bC∝G(E(aC∝G(ρ̃))) ∈ Im(IndC∝GC×GC : R(C ×GC) −→ R(C ∝ G)),

well-defined up to one-dimensional twists.
We have a commutative diagram

- R(G)R(GC)

??

- R(C ∝ G)R(C ×GC)

ResC∝GGResC×G
C

GC

IndC∝GC×GC

IndGGC

so that

ResC∝GG (bC∝G(E(aC∝G(ρ̃)))) ∈ Im(IndGGC : R(GC) −→ R(G))

is a well-defined element depending only on ρ.
For example, if C is cyclic then the linear lift always exists.
Finally, if IndGGC is injective, we have a construction of the form

Irr(G)C −→ R(GC).
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The following result, proved in Appendix I §11, will be required in
Example 7.3.

Lemma 7.2. (i) The induction homomorphism

IndPGL2F4
D6

: R(D6) −→ R(PGL2F4)

is injective.
(ii) The kernel of the induction homomorphism

IndC2∝PGL2F4
C2×D6

: R(C2 ×D6) −→ R(C2 ∝ PGL2F4)

is equal to 〈(1− τ)⊗ (1+2χ+3ν)〉 where ν is the 2-dimensional irreducible
representation of D6 and τ, χ are the non-trivial quadratic characters of
C2, D6, respectively.

Example 7.3. G = GL2F4 and C = Gal(F4/F2)
In this example GC = GL2F2 = PGL2F2

∼= D6. By Lemma 7.2

IndPGL2F4
PGL2F2

: R(PGL2F2) −→ R(PGL2F4)

is injective and so is the analogous homomorphism for GL2.
From the formulae of §6.4 one finds that

bC∝G(E(aC2∝G(ν̃5))) = IndC2∝G
C2×CC (−τ ⊗ χ− (1 + τ)⊗ ν)

and

bC∝G(E(aC2∝G(ν̃4))) = IndC2∝G
C2×CC (−(1 + τ)⊗ ν − τ ⊗ (1 + 2χ)).

These elements are only determined by ν4 and ν5 up to tensoring with τ so
to obtain elements determined which are uniquely by ν4 and ν5 we should
form

(1 + τ) · bC∝G(E(aC2∝G(ν̃5))) = IndC2∝G
C2×CC (−(1 + τ)⊗ (χ+ 2⊗ ν)

and

(1 + τ) · bC∝G(E(aC2∝G(ν̃4))) = IndC2∝G
C2×CC (−(1 + τ)⊗ (2ν + 1 + 2χ)).

Note that, by Lemma 7.2(ii), the homomorphism

(1 + τ) · IndC2∝PGL2F4
C2×D6

: R(C2 ×D6) −→ R(C2 ∝ PGL2F4)

is injective.

Remark 7.4. If we were to apply a similar algorithm - deleting terms
which are not subconjugate to PGL2F2 - to aPGL2F4(ν4) and aPGL2F4(ν5)
we would obtain the following results. The irreducible ν5 would yield −1−
2ν and for ν4 we would obtain −1−χ−ν . Applying (1+τ) · IndC2∝PGL2F4

C2×D6

to these elements yields

(1 + τ)⊗ (−1− 2ν) and (1 + τ)⊗ (−1− χ− ν),
respectively.
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Subtracting these elements from the elements of §7.3 yields

ν5 7→ −(1 + τ)⊗ (χ− 1) and ν4 7→ −(1 + τ)⊗ (ν + χ).

It is interesting to compare these values with the Shintani correspon-
dence of §4.2.

8. The strong descent algorithm

8.1. Monomial complexes
This section is merely a sketch and is suitable only for those familiar

with the monomial complexes and monomal resolutions of [19] (see also
[128]). In the derived category of monomial complexes there exists a unique
monomial resolution for ρ̃ which possesses an Euler characteristic equal to
aC∝G(ρ̃) ∈ R+(C ∝ G). The Lines of the form IndC∝GH (φ) with H not
subconjugate to C × GC form a sub-monomial complex. The quotient
monomial complex has an Euler characteristic in

Im(IndC∝GC×GC : R+(C ×GC) −→ R+(C ∝ G))

which is the one featured in §7.1 and Example 7.2.
Since I have not computed the monomial resolution in this paper I

cannot give here the monomial complex computation which is analogous to
§7.

Remark 8.2. The induction map

IndGH : R+(H) −→ R+(G)

is not injective in general for finite groups since (J, φ) − (xJx−1, x∗(φ))
maps to zero but could be non-zero if x ∈ G−H and xJx−1 ⊆ H.

8.3. Historical note
Most of this Appendix (§§1-10) was written several years ago. I still

have not written down the monomial resolutions M∗ for the complex rep-
resentations ν̃4 and ν̃5 of Gal(F4/F2) ∝ PGL2F4. However, from the calcu-
lation of aG(ν̃i) in §7, one may calculate the invariants given by the Euler
characteristic of M ((H,λ))

∗ for each (H,λ).
For use in that calculation, which appears in Chapter Two §§7-8, I have

added an extra section (§11) to this Appendix. It contains several tables
of (−)((H,λ)) data and their derivation.

9. The role of the integers dimC(V (H,φ)) in Shintani descent

9.1. In the context of finite groups and complex representations we
have

dimC(V (H,φ)) = dimC(HomG(IndGH(φ), V )) =
1
|H|

∑
h∈H

φ(h)−1χV (h).
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The left-hand factor in the tensor product which features in the
bar-monomial resolution is the direct sum of vector spaces of the form
V (H,φ). In the Shintani base change situation the formula for the base-
change character values gives the dimC(V (H,φ))’s for the base-change cor-
respondent representation.

If we knew that these values come from an actual representation (or
even a virtual one) we could form the bar-monomial resolution for it. There-
fore the existence of the Shintani correspondents, as described in this Ap-
pendix §4.1, is equivalent to an affirmative answer to the following question:

Question 9.2. Suppose that ρ is a complex irreducible representation
lying in the Galois invariants

ρ ∈ Irr(GLnFqd)Gal(F
qd
/Fq).

Does there exist a representation V of GLnFq such that each integer
dimC(V (H,φ)) is as predicted by the character formula of [117]?

If such a V exists it will automatically be irreducible.

9.3. The necessary and sufficient condition for a set of candidate inte-
gers dimC(V (H,φ)), as (H,φ) varies throughMGLnFq to come from a virtual
representation (i.e. a difference of two representations in the complex rep-
resentation ring R(GLnFq) = K0(C[GLnFq])) is equivalent to the condition
that of the rational numbers∑

(H0,φ0)<(H1,φ1)<...<(Hr,φr)

(−1)r
|H0|
|GLnFq|

dimC(V (Hr,φr))

is an integer. Here (H0, φ0) < (H1, φ1) < . . . < (Hr, φr) runs through all
strictly ascending chains in MGLnFq . This is because these are the coef-
ficients in the Explicit Brauer Induction formula of ([126] §2.3; see also
[122], [17], [20], [102]) for V . The Explicit Brauer Induction formula gives
an expression for V as an integer linear combination of induced represen-
tations of the form IndGLnFq

Hr
(kφr ). It is clearly the formula for a virtual

representation.
The i-th exterior power of a representation λi satisfies the relation in

R(G)

λi(V1 ⊕ V2) =
i∑

j=0

λj(V1)λi−j(V2).

This allows one to define a formal power series [9]

λt(V ) =
∑

λi(V )ti

with coefficients in R(G) for any V ∈ R(G). Also

λt(v1 + v2) = λt(v1)λt(v2)
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for all v1, v2 ∈ R(G).
I learnt the following result from the late Frank Adams.

Theorem 9.4.
Let G be a finite group and let V ∈ R(G). The necessary and sufficient

condition that V is a representation (rather than a virtual representation)
is that the power series λt(V ) is a polynomial.

Remark 9.5. The remarks of this section constitute a potential alter-
native method for proving the Shintani correspondence of [117]. To my
knowledge no one has attempted this method of proof, although the entry
of λt(V ) might appeal to algebraic topologists!

Example 9.6. Galois descent for GL2F4 revisited
For GL2F4 the Galois fixed subgroup is GL2F2

∼= D6, the dihedral
group of order six. Its subgroups are given by the following table

H Ĥ formulae
D6 = 〈A,C〉 1, τ τ(A) = −1, τ(C) = 1
C3 = 〈C〉 1, φ ∼ φ2 φ(C) = ξ3
C2 = 〈A〉 1, τ τ(A) = −1
{1} 1 −

The “abelian parts” of ν = IndD6
C3

(φ) are given by

H ν
D6 0
C3 φ+ φ2

C2 1 + τ
{1} 2 · 1

This yields the formula (see Appendix One §5.3)

aD6(ν) = (C3, φ)D6 + (C2, 1)D6 + (C2, τ)D6 − ({1}, 1)D6 ∈ R+(D6).

We shall now show how the characterisation of the Shintani correspon-
dence (see §4) determines the dimk(Sh(ν4)(H,φ))’s and dimk(Sh(ν4)(H,φ))’s.

Since, in the bar-monomial resolution for D6 we have

SD6 = 1⊕ τ ⊕ IndD6
C3

(1)⊕ IndD6
C3

(φ)⊕ IndD6
C2

(1)⊕ IndD6
C2

(τ)⊕ IndD6
{1}(1)

we are interested in the following seven dimensions for i = 4, 5:

dimk(Sh(νi)(D6,1)),dimk(Sh(νi)(D6,τ)),dimk(Sh(νi)(C3,1)),

dimk(Sh(νi)(C3,φ)),dimk(Sh(νi)(C2,1)),

dimk(Sh(νi)(C2,τ)),dimk(Sh(νi)({1},1)).
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We have a formula:

±dimk(Sh(ν4)(H,λ))

= 1
|H|

∑
h∈H λ(h)−1TraceSh(ν4)(h)

= 1
|H|

∑
h∈H,h=Xσ(X) λ(h)−1Traceν̃4(σ,X)

When H = D6 and λ = 1 we have 1 = 1.σ(1), A = Bσ(B) and
C = C2σ(C2) we obtain

±dimk(Sh(ν4)(D6,1))

= 1
6 (Traceν̃4(σ, 1) + 3Traceν̃4(σ,B) + 2Traceν̃4(σ,C

2))

= 6−1((1− 3) + 3× (1 + i+ i2 + i3)

+2× (1− 1− ξ3 − ξ23))

= 6−1(−2 + 2)

= 0.

When H = D6 and λ = τ we obtain

±dimk(Sh(ν4)(D6,τ))

= 1
6 (Traceν̃4(σ, 1) + 3(−1)Traceν̃4(σ,B) + 2Traceν̃4(σ,C

2))

= 6−1((1− 3)− 3× (1 + i+ i2 + i3)

+2× (1− 1− ξ3 − ξ23))

= 0.

When H = C3 and λ = 1 we obtain

±dimk(Sh(ν4)(C3,1))

= 1
3 (Traceν̃4(σ, 1) + 2Traceν̃4(σ,C

2))

= 3−1((1− 3) + 2× (1− 1− ξ3 − ξ23))

= 0.
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When H = C3 and λ = φ we obtain

±dimk(Sh(ν4)(C3,φ))

= 1
3 (Traceν̃4(σ, 1) + (ξ3 + ξ23)Traceν̃4(σ,C

2))

= 3−1((1− 3) + ξ3(1− 1− ξ3 − ξ23))

+ξ23(1− 1− ξ3 − ξ23))

= −1

When H = C2 and λ = 1 we obtain

±dimk(Sh(ν4)(C2,1))

= 1
2 (Traceν̃4(σ, 1) + Traceν̃4(σ,B))

= −1.

When H = C2 and λ = τ we obtain

±dimk(Sh(ν4)(C2,τ))

= 1
2 (Traceν̃4(σ, 1)− Traceν̃4(σ,B))

= −1.

When H = {1} and λ = 1 we obtain

±dimk(Sh(ν4)({1},1))

= (Traceν̃4(σ, 1)

= −2.

Next I shall do the same for ν5.

±dimk(Sh(ν5)(H,λ))

= 1
|H|

∑
h∈H λ(h)−1TraceSh(ν5)(h)

= 1
|H|

∑
h∈H,h=Xσ(X) λ(h)−1Traceν̃5(σ,X)
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When H = D6 and λ = 1 we have 1 = 1.σ(1), A = Bσ(B) and
C = C2σ(C2) we obtain

±dimk(Sh(ν5)(D6,1))

= 1
6 (Traceν̃5(σ, 1) + 3Traceν̃5(σ,B) + 2Traceν̃5(σ,C

2))

= 6−1((3− 2) + 3× (1− 2 + i+ i3)

+2(1 + ξ3 − ξ3 + ξ23 − ξ23))

= 6−1(1− 3 + 2)

= 0.

When H = D6 and λ = τ we obtain

±dimk(Sh(ν5)(D6,τ))

= 1
6 (Traceν̃5(σ, 1)− 3Traceν̃5(σ,B) + 2Traceν̃5(σ,C

2))

= 6−1((3− 2)− 3× (1− 2 + i+ i3)

+2(1 + ξ3 − ξ3 + ξ23 − ξ23))

= 6−1(1 + 3 + 2)

= 1.

When H = C3 and λ = 1 we obtain

±dimk(Sh(ν5)(C3,1))

= 1
3 (Traceν̃5(σ, 1) + 2Traceν̃5(σ,C

2))

= 3−1((3− 2) + 2× (1 + ξ3 − ξ3 + ξ23 − ξ23))

= 1.
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When H = C3 and λ = φ we obtain

±dimk(Sh(ν5)(C3,φ))

= 1
3 (Traceν̃5(σ, 1) + (ξ3 + ξ23)Traceν̃5(σ,C

2))

= 3−1((3− 2) + ξ3(1 + ξ3 − ξ3 + ξ23 − ξ23)

+ξ23(1 + ξ3 − ξ3 + ξ23 − ξ23))

= 3−1(1− 1)

= 0.

When H = C2 and λ = 1 we obtain

±dimk(Sh(ν5)(C2,1))

= 1
2 (Traceν̃5(σ, 1) + Traceν̃5(σ,B))

= 2−1((3− 2)− 1)

= 0.

When H = C2 and λ = τ we obtain

±dimk(Sh(ν5)(C2,τ))

= 1
2 (Traceν̃5(σ, 1)− Traceν̃5(σ,B))

= 2−1((3− 2) + 1)

= 1.

When H = {1} and λ = 1 we obtain

±dimk(Sh(ν5)({1},1))

= Traceν̃5(σ, 1)

= 1.

10. The observation of Digne-Michel [53]

10.1. Let Σ be the Frobenius automorphism topologically generat-
ing the absolute Galois group of Fq, Gal(Fq/Fq), so that Σn generates
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Gal(Fq/Fqn). By Lang’s Theorem for any U ∈ GLsFqn there exists a posi-
tive integer t and a matrix X ∈ GLsFqnt for some t such that
U = X−1Σ(X).

Observe that
X−1Σ(X) ∈ GLsFqn

⇐⇒ Σn(X−1)Σn+1(X) = X−1Σ(X)

⇐⇒ XΣn(X−1) = Σ(XΣn(X−1))

⇐⇒ XΣn(X−1) ∈ GLsFq.
Let Y ∈ GLsFqnt be another matrix and suppose that

(Σ, X−1Σ(X)), (Σ, Y −1Σ(Y )) ∈ G(Fqn/Fq) ∝ GLsFqn

are conjugate by (1, V ) ∈ GLsFqn . Hence, say,

(1, V )(Σ, X−1Σ(X))(1, V −1)

= (Σ, V X−1Σ(X))(1, V −1)

= (Σ, V X−1Σ(XV −1))

= (Σ, Y −1Σ(Y )).

Therefore Y V X−1 = Σ(Y V X−1) ∈ GLsFq and

(1, Y V X−1)(Σn, XΣn(X−1))(1, XV −1Y −1)

= (Σn, Y V X−1XΣn(X−1))(1, XV −1Y −1)

= (Σn, Y V X−1XΣn(X−1XV −1Y −1))

= (Σn, Y V Σn(V −1Y −1))

= (Σn, Y V V −1Σn(Y −1))

= (Σn, Y Σn(Y −1)).

Therefore

(Σn, XΣn(X−1)), (Σn, Y Σn(Y −1)) ∈ G(Fqn/Fq)×GLsFq
are conjugate by an element of GLsFq or, equivalently,

XΣn(X−1), Y Σn(Y −1) ∈ GLsFq
are conjugate in GLsFq.
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Conversely, if there exists W ∈ GLsFq such that

XΣn(X−1) = WY Σn(Y −1)W−1 ∈ GLsFq
then

Y −1W−1X = Σn(Y −1W−1X) ∈ GLsFqn .
Also

(1, Y −1W−1X)(Σ, X−1Σ(X))(1, X−1WY )

= (Σ, Y −1W−1XX−1Σ(X))(1, X−1WY )

= (Σ, Y −1W−1XX−1Σ(XX−1WY ))

= (Σ, Y −1W−1Σ(WY ))

= (Σ, Y −1W−1WΣ(Y ))

= (Σ, Y −1Σ(Y ))
so that

(Σ, X−1Σ(X)), (Σ, Y −1Σ(Y )) ∈ G(Fqn/Fq) ∝ GLsFqn
are conjugate by an element of GLsFqn .

Therefore we have proved the following result.

Theorem 10.2.
There is a one-one correspondence of the form


conjugacy

classes in

GLsFq

↔


GLsFqn − conjugacy

classes of

elements (Σ, A) in

G(Fqn/Fq) ∝ GLsFqn


given by

XΣn(X−1)↔ (Σ, X−1Σ(X))
for X ∈ GLsFqnt for some t.

Proposition 10.3.
In the situation of §10.1 and Theorem 10.2

|GLsFqn | · |GLsFq − conjugacy class of XΣn(X−1)|

= |GLsFq|

×|GLsFqn − conjugacy class of (Σ, X−1Σ(X))|.
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Proof
The size of the conjugacy class

|GLsFqn − conjugacy class of (Σ, X−1Σ(X))|

is equal to |GLsFqn | divided by the number of V ∈ GLsFqn such that (1, V )
commutes with (Σ, X−1Σ(X)). By the calculation of §10.2 this happens if
and only if V X−1Σ(XV −1) = X−1Σ(X) or equivalentlyXVX−1 ∈ GLsFq.
Also in this case (1, XV X−1) commutes with (Σn, XΣn(X−1)).

On the other hand the size of the conjugacy class

|GLsFq − conjugacy class of XΣn(X−1)|

is equal to |GLsFq| divided by the number of W ∈ GLsFq which commute
with XΣn(X−1). This happens in and only if V = X−1WX ∈ GLsFqn
and (1, V ) commutes with (Σ, X−1Σ(X)).

Fixing X this discussion gives a bijection between the V ’s and the W ’s,
which immediately yields the result. 2

Remark 10.4. Also note that

(Σ, X−1Σ(X))n

= (Σ2, X−1Σ(X)Σ(X−1Σ2X)(Σ, X−1Σ(X))n

= (Σ2, X−1Σ2X)(Σ, X−1Σ(X))n−2

= (Σ3, X−1Σ2XΣ2(X−1)Σ3X))Σ(X))n−3

= (Σ3, X−1Σ3X))Σ(X))n−3

...
...

...
...

= (Σn, X−1ΣnX))

Remark 10.5. Another way in which to derive the results of this sec-
tion is to notice that the arguments yield a bijection between double cosets
and special pairs (h′, h′′) of the form

GLsFq\GLsFqnt/GLsFqn ⇐⇒ {special pairs (h′, h′′)}

where a special pair in (h′, h′′) ∈ GLsFq × GLsFqn is a pair of elements
constructed from the same double coset in the manner described above but
where h′ is only defined up to GLsFq-conjugacy and (Σ, h′′) is only defined
up to GLsFqn -conjugacy in the semi-direct product.

In the case of the Glauberman correspondence [5] the analogous double
coset space has only the identity double coset as G-fixed points. However
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generally, in the Shintani case,

(GLsFq\GLsFqnt/GLsFqn)Gal(Fqnt/Fq) 6= {∗}
since the GLsFqn -conjugacy class of (Σ, h′′) may contain an element whose
second coordinate lies in GLsFq.

10.6. Relation between Shintani descent and Theorem 10.2
The Shintani correspondence [117] is a bijection of the form

Sh : Irr(GLnFqd)C
∼=−→ Irr(GLnFq).

As explained in §4 of this Appendix, this correspondence is characterised in
terms of character functions in the following manner. Let χSh(ρ) denote the
trace function of the irreducible representation Sh(ρ). Then there exists an
irreducible linear representation ρ̃ of the semi-direct product C ∝ GLnFqd
which is a lift of the projective homomorphism of Proposition 3.2. Let χρ̃
denote the trace function of ρ̃. This linear lift may be chosen in such a way
that, for all g ∈ GLnFqd ,

χSh(ρ)((Σ, g)d) = χρ̃(Σ, g).

The left side of this relation is interpreted in the following manner. By
Theorem 10.2, the C ∝ GLnFqd-conjugacy class of the element

(Σ, g)d = (1, gΣ(g) . . .Σd−1(g))

intersects GLnFq in a unique GLnFq-conjugacy class. The left side of the
characterising relation denotes χSh(ρ) applied to any element of this GLnFq-
conjugacy class.

Theorem 10.2 guarantees that the character function relation does in-
deed define a unique virtual representation Sh(ρ) in R(GLnFq)⊗ C. More
careful analysis, carried out in [117] shows that Sh(ρ) is in fact an irre-
ducible representation.

The remainder of this section contains a recapitulation of some of the
main ingredients of Shintani’s paper [117].

10.7. ([117] Lemma 2.2)
Let G be a linear algebraic group defined over Fq and assume that the

centraliser of each g ∈ G is connected. Then g, g′ ∈ G(Fq) are conjugate in
G(Fq) if and only if they are conjugate in G(Fqn).

This result applies to the parabolic groups Pµ1,µ2,... of which one is
GLsFqn .

Therefore for each class function χ on GLsFq we can extend to a class
function χ on GLsFqn by the formula

χ(g) =

 χ(g′) if g′ ∈ GLsFq is GLsFqn − conjugate to g

0 otherwise.
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Lemma 10.8. ([117] Lemma 1.1)
Denote the cyclic group of order m by Cm acting on G. Let ρ̃ be

an irreducible representation of Cm ∝ G. If ResCm∝GG (ρ̃) is reducible then
χρ̃(Σ, g) = 0. If ResCm∝GG (ρ̃) is irreducible then

|G|−1
m−1∑
l=0

ξklm
∑
g∈G

|χρ̃(Σl, g)|2 = m or 0

when k ≡ 0 (modulo m) or not, respectively.

Lemma 10.9. ([117] Lemma 1.2)
Let ρ̃1 and ρ̃2 be two irreducible representations of Cm ∝ G whose re-

strictions to G are irreducible and inequivalent. Then, for l = 0, 1, . . . ,m−
1, ∑

g∈G
χρ̃1(Σ

l, g)χρ̃2(Σl, g) = 0.

10.10. ([117] Lemma 1.4)
Let ρ be a representation of G on a vector space V . Let Σ act on the

m-fold tensor product of V with itself by

Σ(v1 ⊗ v2 ⊗ . . .⊗ vm) = vm ⊗ v1 ⊗ v2 ⊗ . . .⊗ vm−1.

Let g act by a formula of the type

g(v1 ⊗ v2 ⊗ . . .⊗ vm) = Σa1(g)(v1)⊗ Σa2(g)(v2)⊗ . . .⊗ Σam(g)(vm).

Therefore
(Σ · g · Σ−1)(v1 ⊗ v2 ⊗ . . .⊗ vm)

= (Σ · g)(v2 ⊗ v3 ⊗ . . .⊗ vm ⊗ v1)

= Σ(Σa1(g)(v2)⊗ Σa2(g)(v3)⊗ . . .⊗ Σam(g)(v1))

= Σam(g)(v1)⊗ Σa1(g)(v2)⊗ Σa2(g)(v3)⊗ . . .⊗ Σam−1(g)(vm))

and in order for this to be Σ(g)(v1 ⊗ v2 ⊗ . . .⊗ vm) we need that

am = a1 + 1, a1 = a2 + 1, . . . , am−1 = am + 1 (modulo m).

This works if

a1 = m− 1, am = 0, am−1 = 1, am−2 = 2, . . . , a2 = m− 2.

Therefore, if {eα} is a basis of V , then

(Σ, g)(eα1 ⊗ eα2 ⊗ . . .⊗ eαm)

= (1, g)(Σ, 1)(eα1 ⊗ eα2 ⊗ . . .⊗ eαm)

=
∑
i1,i2,...

Σm−1(g)i1,αmei1 ⊗ Σm−1(g)i2,α1ei2 ⊗ . . .⊗ gim,αm−1eim
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whose trace is given by∑
α1,α2,...

Σm−1(g)α1,αmΣm−1(g)α2,α1 . . . gαm,αm−1

= Trace(g · Σ(g) · . . . · Σm−2(g) · Σm−1(g)).

The observation of Digne-Michel applies to any parabolic subgroup of
GLs ([117] Lemma 2.6).

10.11. ([117] Lemma 2.8)
Let f̃ be a class function on the parabolic group P̃µ(Fqn) and let f be

a class function on Pµ(Fq) such that f̃(Σ, g′′) = f(g′) in the Digne-Michel
(g′, g′′) notation used earlier. Then for all h′′ ∈ GLsFqn and h′ ∈ GLsFq
we have

IndGLsFqn
P̃µ(Fqn )

(Σ, h′′) = IndGLsFq
P̃µ(Fq)

(h′).

Shintani uses J.A. Green’s classification of irreducibles of GLsFq and
GLsFqn in terms of induction from parabolic groups to make an induction
on s.

To handle the representations which are not parabolically induced Shin-
tani uses the elements of R(GLsFqn) given by the conjugacy class func-
tions Σlr of [69]. The proofs that these are in R(GLsFqn) rather than
R(GLsFqn)⊗Q uses a criterion for integrality due to Brauer [32].

I shall recall all this below.

Definition 10.12. Choose an injective homomorphism θ : F∗q −→ C∗.
Set Σlr equal to the following conjugacy class function on GLsFq. For
X ∈ GLsFq let {λ1, . . . , λs} denote the set of eigenvalues of X and set

Σlr(X) =
∑

1≤i1<...<ir≤s

θl(λi1 , . . . , λir ) ∈ C.

These functions may be collected int o polynomials if we set

X̂ =



θ(λ1) 0 . . . . . . 0
0 θ(λ2) 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 0 . . . 0 θ(λs)


so that the characteristic polynomial of X̂ satisfies

det(X̂ − tIs) = ts − Σ1
1(X)ts−1 + Σ1

2((X)ts−2 + . . .

+(−1)iΣ1
i ((X)ts−i + . . .+ (−1)sΣ1

s((X)
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and, more generally,

det(X̂ l − tIs) = ts − Σl1(X)ts−1 + Σl2((X)ts−2 + . . .

+(−1)iΣli((X)ts−i + . . .+ (−1)sΣls((X).

Theorem 10.13. ([69] Theorem 1) Identifying R(GLsFqn) ⊗ C, via
sending a representation to its trace function, X 7→ det(X̂ l − tIs) lies in
R(GLsFqn)[t] for all s, l ≥ 1, n ≥ 0.

Remark 10.14. The Adams operations ψl : R(G) −→ R(G) is a
ring homomorphism whose trace function is satisfies trace(ψl(ρ))(X) =
trace(ρ)(X l) so that Theorem 10.13 is implied by the case in which l = 1.

10.15. Proof of Theorem 10.13 (after [69])
By Brauer’s induction theorem every virtual representation

λ ∈ R(GLsFqn) may be written as a Z-linear combination of the form

λ =
t∑
i=1

αiIndGLsFqn
Ji

(φi)

where φ : Ji −→ C∗ is a character and Ji ∼= Hi×Ci with Hi being a p-group
for some prime p and Ci is a cyclic group of order prime to p. In particular
take λ = 1 and multiply the relation by a conjugacy class function f to
obtain, via Frobenius reciprocity, a relation between class functions

f =
t∑
i=1

αif · IndGLsFqn
Ji

(φi) = αiIndGLsFqn
Ji

(ResGLsFqn
Ji

(f) · φi)

which shows that if each ResGLsFqn
Ji

(f) ∈ R(Ji) ⊂ R(Ji) ⊗ C then f ∈
R(GLsFqn) ⊂ R(GLsFqn)⊗ C.

Therefore it suffices to prove Theorem 10.13 with GLsFqn replaced by
a subgroup of the form H ×C where H is a p-group for some prime p and
C is a cyclic group of order prime to p.

Now consider the cyclotomic field Q(ξqm−1) where ξa = e2π
√
−1/a and

m is a multiple of n which is large enough so that Fmq contains all the
eigenvalues of all the matrices in H × C. Let P � Z[ξqm−1] be any prime
ideal dividing the characteristic of Fq. Then Z[ξqm−1]/P ∼= Fmq where the
isomorphism sends a (qm − 1)-th root of unity x to its residue class x.

We may choose θ in §10.12 so that θ(x) = x.
Now let l be the characteristic of Fq. If l does not divide the order

of H × C then it is well-known that there is a complex representation
of the form ρ : H × C −→ GLsZ[ξqm−1] such that reduction modulo P
gives a representation ρ of H × C over Fqn which is equivalent to the Fqn -
representation

H × C ⊆ GLsFqn .
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For g ∈ H × C the eigenvalues of ρ(g) are precisely the images under θ
of the Fq eigenvalues of g. The i-th elementary symmetric function of the
θ-values of the Fq eigenvalues of g is equal to the i-elementary symmetric
function complex eigenvalues of ρ(g) which is the trace function of the i-th
exterior power representation λi(ρ) of ρ.

Now assume that l does divide the order of H × C. We may write
H ×C ∼= H1 ×H2 where the order of H1 is not divisible by l and H2 is an
l-group. If g ∈ H × C corresponds to (h1, h2) ∈ H1 ×H2 then h1 and h2

are two commuting elements of GLsFqn and the Fq eigenvalues of h2 are
all equal to 1. Therefore elementary matrix algebra shows that in GLsFqm
we may simultaneously conjugate (h1, 1) and (1, h2) to upper triangular
matrices of the form



ζ1 . . . . . . . . .

0 ζ2 . . . . . .

...
...

...
...

0 0 . . . ζs


and



1 . . . . . . . . .

0 1 . . . . . .

...
...

...
...

0 0 . . . 1



respectively.
Therefore the θ-values of the Fq eigenvalues of g = (h1, h2) are exactly

those of (h1, 1). This reduces us, by projection onto H1 from H ×C to the
case in which l does not divide the order of the subgroup, which completes
the proof. 2

Remark 10.16. In ([126] Proposition 2.1.17) it is shown by algebraic
topological methods that the relation

1 =
t∑
i=1

αiIndGLsFqn
Ji

(φi)

which occurs at the beginning of the proof of Theorem 10.13 is also true
for a family of Ji’s which are M-groups. M-groups are a special type of
solvable group and a proof of Theorem 10.13 ought to be possible based on
reduction to the case of an M-group.
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11. Tables of (−)((H,λ)) data

11.1. The subgroups of C2 ×D6 up to conjugation are

H generators Ĥ

C2 ×D6 (σ, 1), A, C 1, τ, φ, τφ
D6 A,C 1, φ

C2 × C3 (σ, 1), C 1 τ, φ ∼ φ2, τφ ∼ τφ2

C2 × C2 (σ, 1), A 1, τ, φ, τφ
C3 C 1, φ, φ2

C2 A 1, φ
C ′2 (σ, 1)A 1, φ′

C ′′2 (σ, 1) 1, τ
{1} 1 1

In the following tables (H,λ)G denotes the Line bundle IndC2∝PGL2F4
H (kλ)

for some H ⊆ C2 ×D6 = C2 ×GL2F2 ⊂ C2 ∝ PGL2F4.
With this notation ((H,λ)G)((J)) =

∑
λ∈Ĵ IndC2∝PGL2F4

H (kλ)((J))

The following tables calculate these invariants when H,J are subgroups
(up to conjugation) of C2 ×D6 and k = C.

(H,λ)G ((H,λ)G)((C2×D6)) ((H,λ)G)((D6)) ((H,λ)G)((C2×C3))

(C2 ×D6, τ)G τ 1 τ
(C2 ×D6, φ)G φ φ 1
(C2 ×D6, 1)G 1 1 1

(〈(σ, 1), C〉, τφ)G 0 0 τφ+ τφ2

(〈(σ, 1), C〉, φ)G 0 0 φ+ φ2

(〈(σ, 1), C〉, τ)G 0 0 2τ
(〈(σ, 1), A〉, τ)G 0 0 0
(〈(σ, 1), A〉, 1)G 0 0 0
(〈(σ, 1), A〉, φ)G 0 0 0

(C3, φ)G 0 0 0
(C2, φ)G 0 0 0
(C ′′2 , 1)G 0 0 0
(C ′′2 , τ)

G 0 0 0
({1}, 1)G 0 0 0
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(H,λ)G ((H,λ)G)((C2×C2)) ((H,λ)G)((C3)) ((H,λ)G)((C2))

(C2 ×D6, τ)G 2τ 1 2
(C2 ×D6, φ)G τ + τφ 1 2φ
(C2 ×D6, 1)G 2 1 2

(〈(σ, 1), C〉, τφ)G 0 φ+ φ2 0
(〈(σ, 1), C〉, φ)G 0 φ+ φ2 0
(〈(σ, 1), C〉, τ)G 0 2 0
(〈(σ, 1), A〉, τ)G 2τ 0 2
(〈(σ, 1), A〉, 1)G 2 0 2
(〈(σ, 1), A〉, φ)G φ+ τφ 0 2φ

(C3, φ)G 0 2φ+ 2φ2 0
(C2, φ)G 0 0 4φ
(C ′′2 , 1)G 0 0 0
(C ′′2 , τ)

G 0 0 0
({1}, 1)G 0 0 0

(H,λ)G ((H,λ)G)((C
′
2)) ((H,λ)G)((C

′′
2 )) ((H,λ)G)(({1}))

(C2 ×D6, τ)G φ′ τ 10
(C2 ×D6, φ)G 1 1 10
(C2 ×D6, 1)G 1 1 10

(〈(σ, 1), C〉, τφ)G 2φ′ 2τ 20
(〈(σ, 1), C〉, φ)G 2 2 20
(〈(σ, 1), C〉, τ)G 2φ′ 2τ 20
(〈(σ, 1), A〉, τ)G 6φ′ 6τ 30
(〈(σ, 1), A〉, 1)G 6 6 30
(〈(σ, 1), A〉, φ)G 3 + 3φ′ 3 + 3τ 30

(C3, φ)G 0 0 40
(C2, φ)G 0 0 60
(C ′′2 , 1)G 6 6 60
(C ′′2 , τ)

G 6φ′ 6τ 60
({1}, 1)G 0 0 120

11.2. Tedious calculations
The following subsection contains the calculations of the entries in the

table of §11.1. They are accomplished using the following observation and
are included only for completeness.

The Lines of IndC2∝PGL2F4
H (kλ) which are stabilised by (J, µ) for some

µ must be g ⊗H kλ where jg ⊗H v = g ⊗H w so that g−1Jg ⊆ H.
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Case: H = C2 ×D6 = J .
Since C2 ×D6 is its own normaliser in C2 ∝ GL2F4 the only possible

stabilised Line is 〈1⊗C2×D6 1〉 which J acts on via λ.

Case: H 6= C2 ×D6 = J .
In this case no conjugate of J lies inside H so there are no Lines sta-

bilised.

Case: H = C2 ×D6, J = D6.
D6 is its own normaliser in PGL2F4 so any conjugate of D6 by g 6∈

C2×D6 does not lie in C2×D6. Hence the only stabilised Line is 1⊗C2×D6

1 = (σ, 1)⊗C2×D6 1 which is acted upon by the restriction of λ to D6.

Case: H 6= C2 ×D6, D6, J = D6.
No conjugate of D6 can be a subgroup of these H’s.

Case: H = C2 ×D6, J = C2 × C3.
Any conjugate of C2 × C3 contained in C2 ×D6 has to be the unique

cyclic subgroup of order six. Hence g lies in the normaliser of C2 × C3 in
C2 ∝ PGL2F4 which is C2 ×D6. So the only stabilised Line is 1⊗C2×D6 1
acted upon by the restriction of λ.

Case: H = J = C2 × C3.
The stabiliser of C2×C3 in C2 ∝ PGL2F4 is C2×D6 so the stabilised

Lines are 1⊗C2×C3 1 and A⊗C2×C3 1. The first of these Lines is acted upon
by the restriction of λ and the second by

(σ, 1)A⊗C2×C3 1 = A(σ, 1)⊗C2×C3 1 = A⊗C2×C3 λ(σ, 1)

and
CA⊗C2×C3 1 = AC2 ⊗C2×C3 1 = A⊗C2×C3 λ(C2).

Case: H 6= C2 ×D6, D6, C2 × C3 and J = C2 × C3.
No conjugate of C2 ×C3 can be a subgroup of H so there are no Lines

stabilised.

Case: H = C2 ×D6 and J = C2 × C2.
The copies of C2 × C2 in C2 × D6 are 〈(σ, 1), A〉, 〈(σ, 1), AC〉 and

〈(σ, 1), AC2〉 which are all conjugate by powers of C ∈ H. Hence if
g−1C2 × C2g ⊂ H then g, gC or gC2 normalises C2 × C2. The normaliser
of C2 ×C2 in C2 ∝ PGL2F4 is 〈(σ, 1), A,B〉. Hence the stabilised lines are
1 ⊗C2×D6 1 and B ⊗C2×D6 1. Now B(σ, 1)B = A(σ, 1), BA = AB so the
first Line is acted upon by the restriction of λ and the second by

(σ, 1)B ⊗C2×D6 1 = B ⊗C2×D6 λ(A(σ, 1))

and
AB ⊗C2×D6 1 = B ⊗C2×D6 λ(A).
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Case: H = C2 × C3 and J = C2 × C2.
No conjugate of J is a subgroup of H.

Case: H = J = C2 × C2.
Then g lies in the normaliser of C2 ×C2 which is 〈(σ, 1), A,B〉. So the

Lines which are stabilised are 1⊗C2×C2 1 and B⊗C2×C2 1. The first is acted
on by λ and the second by

AB ⊗C2×C2 1 = B ⊗C2×C2 λ(A)

and
(σ, 1)B ⊗C2×C2 1 = B ⊗C2×C2 λ(A(σ, 1)).

Case: H = C3, C2, C
′
2, C

′′
2 , {1} and J = C2 × C2.

No conjugate of J is a subgroup of H.

Case: H = C2 ×D6 and J = C3.
Any conjugate of C3 lying in H must be C3 so g belongs to the nor-

maliser of C3 which is H. Hence there is only one stabilised line acted upon
by the restriction of λ.

Case: H = C2 × C3 and J = C3.
Any conjugate of C3 in H is J so g ∈ C2×D6. Therefore the stabilised

Lines are 1⊗C2×C31 and A⊗C2×C31 which are acted upon via the restriction
of λ and λ2 respectively.

Case: H = C2 × C2, C2, C
′
2, C

′′
2 , {1} and J = C3.

No conjugate of J is a subgroup of H.

Case: H = J = C3.
The normaliser of C3 is C2 ×D6 so there are four stabilised Lines

1⊗C3 1, (σ, 1)⊗C3 1, A⊗C3 1, (σ, 1)A⊗C3 1.

The first two are acted upon via λ and the other two by λ2.

Case: H = C2 ×D6 and J = C2.
Any conjugate of A lying inH must be A,AC,AC2 which are conjugate

to each other by powers of C. The centraliser of A in C2 ∝ PGL2F4 is
〈(σ, 1), A,B〉 so there are two lines stabilised 1 ⊗C2×D6 1 and B ×C2×D6 1
which are both acted upon via λ.

Case: H = C2 × C3 and J = C2.
Any conjugate of A in H must be (σ, 1) but these are not conjugate in

C2 ∝ PGL2F4 so there are no stabilised Lines.
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Case: H = C2 × C2 and J = C2.
Any conjugate of A lying in H cannot be (σ, 1) and B(σ, 1)B = A(σ, 1),

both of which are not conjugate to A. So g commutes with A and therefore
lies in 〈(σ, 1), A,B〉. Therefore there are two stabilised Lines 1 ⊗C2×C2 1
and B ×C2×C2 1 both acted upon via λ.

Case: H = C3, C
′′
2 , {1} and J = C2.

No conjugate of A lies in H so no Lines are stabilised.

Case: H = J = C2.
The centraliser of A is 〈(σ, 1), A,B〉. Therefore there are two stabilised

Lines 1⊗C2×C2 1 and B ×C2×C2 1 so there are four stabilised Lines

1⊗C2 1, B ⊗C2 1, (σ, 1)⊗C2 1, B(σ, 1)⊗C2 1

and A acts on each via λ.

Case: H = C2 ×D6 and J = C ′2.
IfA(σ, 1) is conjugate to an element ofH then it is (σ, 1) sinceB(σ, 1)B =

A(σ, 1). Therefore the only Line stablised is B ⊗C2×D6 1 on which A(σ, 1)
acts like multiplication by λ(σ, 1).

Case: H = C2 ×D6 and J = C ′′2 .
There are seven elements of order two in H but (σ, 1) is only conjugate

to itself. Its centraliser is H so there is only one stabilised Line, acted upon
via λ.

Case: H = C2 × C3 and J = C ′′2 . BC ′′2B = C ′2.
If a conjugate of (σ, 1) lies in H it must be (σ, 1). The centraliser of

(σ, 1) is C2×D6 so there are two stabilised Lines 1⊗C2×C3 1 and A⊗C2×C3 1
both of which are acted upon via λ.

Case: H = C2 × C2 and J = C ′′2 . BC ′′2B = C ′2.
If a conjugate of (σ, 1) lies in H it must be (σ, 1) or A(σ, 1) = B(σ, 1)B.

The centraliser of (σ, 1) is C2 ×D6 so there are six stabilised Lines

1⊗C2×C21, C⊗C2×C21, C
2⊗C2×C21, B⊗C2×C21, CB⊗C2×C21, C

2B⊗C2×C21.

The first three are acted upon via λ and the last three by multiplication by
λ(A(σ, 1)).

Case: H = C3, C2 and J = C ′′2 . BC ′′2B = C ′2.
No conjugate of J lies in H.

Case: H = J = C ′′2 . BC ′′2B = C ′2.
The centraliser of (σ, 1) is C2 × D6 so there are six stabilised lines

corresponding to g = 1, A, C,AC,C2, AC2 on each of which (σ, 1) acts via
λ.



CHAPTER 11

Appendix II: Remarks on a paper of Guy
Henniart

Abstract. This appendix contains an account of a calculation, by
Deligne and Henniart, of wildly ramified local roots numbers modulo

roots of unity. Since this result is relevant to epsilon factors derived
from monomial resolutions of GLn of a local field I have included the

account which has been gathering dust on my computer since 2010

or earlier and on my homepage since 2012. This is the homepage
version reproduced “as is” - here we go!

Originally, in other lectures in the series which begat this Ap-

pendix, one encounters local L-functions, functional equations and
local epsilon factors of admissible representations. The p-adic Ga-

lois epsilon factors are numbers lying on the unit circle and they

are fundamental in the local Langlands correspondence which was
proved by Mike Harris and Richard Taylor. Later part of the proof

was simplified by Henniart using his “uniqueness theorem”, which is

characterised in terms of p-adic epsilon factors.
This Appendix, which was formerly a lecture in the above men-

tioned series, is mainly expository. In it I shall outline the calculation
by Deligne and Henniart of the p-adic epsilon factors of wild, homoge-

neous Galois representations modulo p-primary roots of unity. This

formula is an important ingredient in the proofs of the uniqueness
theorem. The only novel ingredients in my exposition will be the use

of monomial resolutions to reduce to the one-dimensional case and

an explicit formulae for the Deligne-Henniart “Gauss sum” (which
seems in my opinion to contradict, in the tamely ramified case, one

of the lemmas - claimed in general but used by Henniart only in the

wild case - at the crux of the proof).

1. The basic ingredients

1.1. These notes are an exposition of the papers [49] and [73] which
culminate in the derivation of a formula for Galois local constants (otherwise
known as Galois epsilon factors) modulo p-power roots of unity for wildly
ramified, homogeneous representations on the Weil group of a p-adic local
field.

My account will differ from [49] in §3.3, which I shall derive using
monomial resolutions. Furthermore, since it is well-known how to pass

281
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to and fro between Galois group and Weil group representations, I shall
restrict the discussion to the Galois case.

I posted this on my webpage in this unpolished form, rather than post-
ing it on the Arxiv, because I have been allowing it to languish completely
unnoticed for nearly two years. I am very grateful to Paul Buckingham and
Guy Henniart for their expert assistance.

1.2. Ramification groups and functions
Let us recall from [114] the properties of the ramification groups

Gal(K/E)i, Gal(K/E)α and functions φK/E , ψK/E associated to a Galois
extension K/E of local fields with residue characteristic p.

Let vK denote the valuation on K, OK the valuation ring of K and
write G = Gal(K/E). The ramification groups form a finite chain of normal
subgroups ([114] p.62 Proposition 1)

{1} = Gr ⊆ . . . ⊆ Gi+1 ⊆ Gi ⊆ . . . ⊆ G1 ⊆ G0 ⊆ G−1 = G

defined by

Gi = {g ∈ G | vL(g(x)− x) ≥ i+ 1 for all x ∈ OK}.

The inertia group is G0 and G−1/G0 is isomorphic to the Galois group of
the residue field extension. If H = Gal(K/M) ⊆ G then Hi = Gi

⋂
H.

The quotient G0/G1 is cyclic of order prime to p while G1 is a p-group and
each Gi/Gi+1 with i ≥ 1 is an elementary abelian p-group.

The function φK/E : [−1,∞) −→ [−1,∞) is a piecewise-linear homeo-
morphism given by

φK/E(u) =



u if − 1 ≤ u ≤ 0,

u|G1|
|G0| if 0 ≤ u ≤ 1,

|G1|+...+|Gm|+(u−m)|Gm+1|
|G0| if m ≤ u ≤ m+ 1,

1 ≤ m an integer.

At a positive integer i ≥ 1 the slope of φK/E just to the left of i
equals |Gi||G0| and just to the right it is |Gi+1|

|G0| . Therefore the condition that
Gi = Gi+1 is equivalent to φK/E being linear at i. If Gi 6= Gi+1 then
φK/E is concave downward at i and i is called a “jump” value for the lower
filtration. If G0 = . . . = Gr 6= Gr+1 then φK/E(x) = x if −1 ≤ x ≤ r and
φK/E(x) < x if r < x.

If g ∈ G0 then g ∈ Gi if and only if g(πK)/πK ≡ 1 (modulo PiK).
The function ψK/E : [−1,∞) −→ [−1,∞) is the piecewise-linear home-

omorphism given by the inverse of φK/E . Hence ψK/E(i) = α is not nec-
essarily an integer. To accommodate this we extend the definition of the
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Gi’s to Gu for any real number u ≥ −1 by setting Gu = Gj where j is the
smallest integer satisfying u ≤ j.

Given a chain of fields E ⊆M ⊆ K there are chain rules

φM/E(φK/M (x)) = φK/E(x), ψK/M (ψM/E(y)) = ψK/E(y).

The upper numbering of the ramification groups is defined by the re-
lations

Gv = GψK/E(v) and GφK/E(u) = Gu.

If H = Gal(K/M) �G is a normal subgroup then (G/H)v = GvH/H.
In §1.5 we shall utilise the extension of the upper numbering filtration

to the case of infinite Galois extensions such as F/E. Following ([114]
Remark 1, p.75) for K/E an infinite Galois extension we set

Gal(K/E)v = lim
←

Gal(K ′/E)v

where K ′ runs through the set of finite Galois extensions of E contained in
K. The filtration Gal(K/E)v is left continuous in the sense that

Gal(K/E)v =
⋂
w<v

Gal(K/E)w.

As we shall see in Proposition 1.3, the upper filtration Gal(K/E)v is not
right continuous. One says that v is a “jump” for the upper numbering
filtration if Gal(K/E)v 6= Gal(K/E)v+ε for all ε > 0. Even for finite Galois
extensions an upper numbering jump need not be an integer ([114] Exercise
2, p.77).

Proposition 1.3.
(i) Let K/E be a, not necessarily finite, Galois extension of p-adic local

fields1. Then for any α ∈ R there exists γ < α such that Gal(K/E)γ =
Gal(K/E)α.

(ii) Let K/E be an infinite Galois extension of p-adic local fields. Then
the filtration Gal(K/E)v is not right continuous in the sense that, if v is a
jump for the upper numbering filtration,⋃

v<w

Gal(K/E)w
⊂
6= Gal(K/E)v.

Proof
In (i) the set of jumps in the upper ramification filtration is discrete.

Suppose that {βn} is an increasing sequence of real numbers such that
βn < α tending to α from below. Therefore the sequenceGβn will eventually

1I am very grateful to Paul Buckingham and Guy Henniart for explaining the proof
of this proposition to me.
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stabilise (i.e. becoming equal for large enough n < α). Therefore there is
one of these βn’s, say γ, such that

Gal(K/E)α =
⋂
w<α

Gal(K/E)w =
⋂
w<γ

Gal(K/E)w = Gal(K/E)γ ,

as required.
In (ii) we consider the infimum

α = inf{α ∈ R | Gal(K/E)α ⊆ Gal(K/E)v}.

By part (i) there exists γ < α such that Gal(K/E)γ = Gal(K/E)α. Sup-
pose that Gal(K/E)γ ⊆ Gal(K/E)v then, by definition, α ≤ γ which is a
contradiction. Therefore

Gal(K/E)α = Gal(K/E)γ 6⊆ Gal(K/E)v.

However, if v < w then Gal(K/E)w ⊆ Gal(K/E)v so that α ≤ w and
therefore Gal(K/E)w ⊆ Gal(K/E)α which implies that⋃

v<w

Gal(K/E)w ⊆ Gal(K/E)α
⊂
6= Gal(K/E)v,

as required. 2

The proof of part (ii) of Proposition 1.3 establishes the following result.

Corollary 1.4.
Let K/E be an infinite Galois extension of p-adic local fields. Let v be

a jump for the upper numbering filtration and define

α = inf{α ∈ R | Gal(K/E)α ⊆ Gal(K/E)v}.

Then α is strictly smaller than v.

1.5. Wild, homogeneous local Galois representations
All fields are non-Archimedean local containing F/Qp. Let σ be a non-

trivial, continuous, finite-dimensional complex representation of Gal(F/E).
The level α(σ) is the least α such that σ restricted to Gal(F/E)α is non-
trivial but σ restricted to Gal(F/E)α+ε is trivial for all ε > 0. There exists
an upper numbering ramification group with this property by left conti-
nuity of the Gal(F/E)α’s because there are certainly ramification groups
Gal(F/E)w on which σ is non-trivial. Define α(σ) to be the supremum of
the set of real numbers v such that σ is non-trivial on Gal(F/E)v. Therefore

Gal(F/E)α(σ) =
⋂

v<α(σ)

Gal(F/E)v.

Then σ is wild if α(σ) > 0. If σ is wild and irreducible then ([72] §3)

a(σ) = dim(σ)(1 + α(σ))
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where f(σ) = Pa(σ)
E is the Artin conductor of σ (see §1.10 for the definition

of a(σ)).
There exists a finite Galois extension K/E such that σ (faithfully) fac-

tors through the finite Galois group Gal(K/E). Since Gal(F/E)α(σ) is the
last ramification group (in the upper numbering) on which σ is non-trivial
its image in G = Gal(K/E) is abelian and normal. The representation σ is
homogeneous if

ResGal(F/E)

Gal(F/E)α(σ)(σ) = nχσ

where n = dim(σ) and χσ : Gal(F/E)α(σ) −→ C∗ is a character of finite
order.

Suppose that the image of Gal(F/E)α(σ) in G is

A = Gal(K/M) = Gal(K/E)α(σ) �G.

Suppose that σ is irreducible and wild then it will not necessarily also be
homogeneous but let us suppose that it is.

We remark that, if σ is not homogeneous then Clifford theory, which
deals with restriction to normal abelian subgroups, implies that

ResGA(σ) = m(χ1 ⊕ χ2 ⊕ . . .⊕ χt)

where the conjugacy G-orbit of χ1 is {χ1, . . . , χt}. This means that each
of the χi’s is non-trivial on A.

Furthermore, if σ is irreducible, wild and homogeneous, then χσ will
be fixed under the conjugation action by G. This is because for a ∈ A, g ∈
G, v ∈ V

σ(a)v = χσ(a) · v and σ(gag−1)(v) = σ(g)(χσ(a) · (σ(g)−1(v)) = σ(a)v

since σ(a) is multiplication by a scalar.
Therefore χσ corresponds via class field theory to a character χ :

M∗ −→ C∗ which is invariant under the Galois action of G on M . On
1 + Pa(χ)−1

M χ has the form χ(1 + x) = ψM (gx) for g ∈ M∗ such that g ∈
M∗/1+PM is well-defined. Here ψM is a choice of additive character, which
depends on the choice of ψF and is then defined as ψM = ψF · TraceM/F .
Therefore, defining CE = ((E∗/1 + PE) ⊗ Z[1/p]), we have a well-defined
element

g = gσ ∈ ((M∗/1 + PM )⊗ Z[1/p])G ∼= ((E∗/1 + PE)⊗ Z[1/p]) = CE .

From the short exact sequence, when p is odd,

0 −→ (OE/PE)∗ ⊗ Z[1/p] −→ CE −→ Z[1/p] −→ 0

we see that CE ⊗ Z/2 has four elements.
Note that the element gσ can be defined for any wild, homogeneous

representation, irreducible or not.
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1.6. Varying M in §1.5
One can vary the choice of M in the above construction. Suppose

we take another subfield M ′ fixed by A = Gal(K/M) = Gal(K/E)α(σ).
Therefore we must have M ′ ⊆M and we may as well assume that M ′ 6= M .
Set A′ = Gal(K/M ′) so that A ⊂ A′ is a proper subgroup. Note that A′ is
not necessarily abelian (it would be if σ were faithful) but A is, in fact it
is cyclic because χ is faithful on A.

We shall also assume that σ restricted to A′ is equal to nχ′ for a
character χ′ which must restrict to χ on A. In terms of local class field
theory we have

χ = χ′ ·N : M∗ N−→ (M ′)∗
χ′−→ C∗.

Consider A = Gal(F/M) = Gal(F/E)α(σ) and A′ = Gal(F/M ′). Let
α(M/M ′) denote the real number

α(M/M ′) = inf{α ∈ R | (A′)α ⊆ A}.

Theorem 1.7.
In the notation of §1.6

α(M/M ′) < α(χ′) = a(χ′)− 1.

We begin with an intermediate result.

Proposition 1.8.
In the notation of §1.6, α(M/M ′) ≤ α(χ′).

Proof
Since the upper ramification index is preserved under passage to quo-

tient Galois groups it will suffice to prove this by studying the finite ex-
tension K/E as in §1.6, where we continue to assume that σ is faithful
although K/E is not necessarily abelian.

We can show that α(M/M ′) ≤ α(χ′) by showing that

(A′)α(χ′) ⊆ A.

By definition ([114] p.71, Remark 1) α(σ) is a jump because σ :
Gal(K/E) −→ GLnC is one-one and σ is non-trivial on A = Gal(K/M) =
Gal(K/E)α(σ) but is trivial on Gal(K/E)α(σ)+ε for all ε > 0 so

{1} = Gal(K/E)α(σ)+ε 6= Gal(K/E)α(σ)

for all ε > 0.
By the theory of the Herbrand functions φ and ψ (§1.2; see also [114]

Chapter IV §3) there exists a real number γ = ψK/E(α(σ)) such that

Gal(K/E)α(σ) = Gal(K/E)γ .
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This means that Gal(K/E)γ = Gal(K/E)i where i is the smallest integer
satisfying ψK/E(α(σ)) = γ ≤ i. If γ < i then

α(σ) = φK/E(γ) < φK/E(i) = δ

and Gal(K/E)α(σ) = Gal(K/E)δ, which is a contradiction. Therefore
ψK/E(α(σ)) = i, an integer. Furthermore i must be a jump for other-
wise Gi = Gi+1 and
Gal(K/E)α(σ) = Gal(K/E)φK/E(i+1). Therefore we have

{1} = Gal(K/E)i+1 ⊂ Gal(K/E)i = Gal(K/E)α(σ).

Now consider A′
⋂
A which equals, by ([114] p.62 Proposition 2) since

i is an integer,

A′
⋂
A = A′

⋂
Gal(K/E)α(σ) = A′

⋂
Gal(K/E)i = (A′)i = (A′)β

for β = φK/M ′(i). Since χ′ restricted to A is equal to χ, which is one-one,
χ′ restricted to (A′)β is non-trivial.

Now let j be the largest integer for which the restriction of χ′ to (A′)j
is non-trivial. Therefore j ≥ i and also, by [114] p.102 Proposition 5),
φK/M ′(j) = α(χ′). Hence ([114] p.73 Proposition 12)

β = φK/M ′(i) ≤ φK/M ′(j) = α(χ′).

By definition of α(M/M ′) we have

α(M/M ′) ≤ β ≤ α(χ′).

2

1.9. Proof of Theorem 1.7
Suppose that α(M/M ′) = α(χ′) then, in the notation of the proof of

Proposition 1.8, α(M/M ′) = β = α(χ′) and so

A′
⋂
A = (A′)β = (A′)α(χ′).

Therefore
α(M/M ′) = inf{α ∈ R | (A′)α ⊆ (A′)α(χ′)}.

By the proof of Proposition 1.3(ii)

(A′)α(M/M ′)
⊂
6= (A′)α(χ′),

which contradicts the assumption that (A′)α(M/M ′) = (A′)α(χ′). 2

1.10. Recap of abelian local root numbers
Let us recall from ([94] p.29) the formula for the abelian local roots

numbers. Let χ : E∗ −→ C∗ be a character (i.e. with open kernel). Let
a(χ) = 0 if χ is trivial on O∗E and otherwise let a(χ) be the least integer
n ≥ 1 such that χ is trivial on 1+PnE . The Artin conductor is given by the



288 11. APPENDIX II: REMARKS ON A PAPER OF GUY HENNIART

ideal f(χ) = Pa(χ)
E . For example, if the residue field satisfies OE/PE ∼= Fpd

and χ restricted to O∗E has the form

O∗E −→ (OE/PE)∗
NormF

pd
/Fp

−→ F∗p ⊂ C∗

then a(χ) = 1.
In each of these cases the local root number is given by the formula

([94] p.29)

WE(χ) =
1√
NπE

∑
w∈(OE/PE)∗

χ(w)χ(c)−1ψE(w/c)

where c is a generator of f(χ)DE .

1.11. The Gauss sum of [73]
Let PE = πEOE and let νE be the E-adic order of ψE on so that the

inverse different satisfies D−1
E = P−νEE .

Suppose that p 6= 2 and that x ∈ E∗ satisfies νE(x) + νE is odd.
Therefore we have an integer b such that

0 = νE(x) + νE + 2b+ 1.

Hence
xπ2b

E PE ⊆ P
2b−νE−2b−1+1
E = D−1

K

so that ψE(xπ2b
E ξ) = 1 for all ξ ∈ PE .

Consider the Gauss sum

φ(x) =
∑

ξ∈(OE/PE)∗

ψE(xπ2b
E ξ

2/2) ∈ C∗.

Note that there is a misprint2 in the definition of φ in ([73] §2).
If we replace ξ by ξ + πEu with u ∈ OE we have

ψE(xπ2b(ξ + πEu)2/2) = ψE(xπ2bξ2/2) · ψE(xπ2b(ξπEu+ π2
Eu

2/2)

= ψE(xπ2bξ2/2)

so that φ(x) is well-defined.
If v ∈ O∗E then

φ(xv2) =
∑

ξ∈(OE/PE)∗

ψE(xπ2b
E (vξ)2/2) = φ(x)

and for any a

φ(xπ2a
E ) =

∑
ξ∈(OE/PE)∗

ψE(xπ2a
E π

2b−2a
E ξ2/2) = φ(x)

2In ([73] §2) the sum is taken over all the elements of the residue field. The error

can be seen by taking E = Qp (see §1.12 below).
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so that we have a function, which is not a homomorphism (see E = Qp in
§1.12 below),

φ : (E∗/(1 + PE))⊗ Z/2 −→ C∗

defined by setting φ(x) = 1 if νE(x) + νE is even. By the usual argument,
if qE is the order of the residue field OE/PE then φ(x)2 = (−1)(qE−1)/2qE
if νE(x) + νE is odd. Define a map

GE : E∗/(1 + PE) −→ µ4

by the formula

GE(x) =


φ(x)

+
√
qE

if νE(x) + νE is odd

1 if νE(x) + νE is even.

Since φ(x) = φ(xp) because p is odd we may extend GE to a non-
homomorphic function

GE : CE = ((E∗/1 + PE)⊗ Z[1/p]) −→ µ4.

When p = 2 set GE(x) = 1 for all x.

1.12. The case E = Qp and the misprint of ([73] §2)
When E = Qp with p 6= 2 we have

GQp : Q∗p/(Q2∗
p ) = Q∗p ⊗ Z/2 −→ µ4.

Now Q∗p/(Q2∗
p ) = {1, u, p, up} where u ∈ Z∗p and the mod p Legendre symbol

satisfies ([125] p. 267) (
u

p

)
= −1

We have νQp = 0 and νQp(x) + νQp is even for x = 1, u and νQp(x) + νQp +
2(−1) + 1 = 0 when x = p, up. Therefore

GQp(1) = 1 = GQp(u)
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and, if ξp = e2π
√
−1/p,

GQp(p) = 1√
p

∑
z∈(Z/p)∗ e2π

√
−1pp−2z2/2

= 1√
p

∑
z∈(Z/p)∗ ξ

z2/2
p

= 1√
p

∑
z∈(Z/p)∗ ξ

z/2
p + 1√

p

∑
w∈(Z/p)∗

(
w
p

)
ξ
w/2
p

= 1√
p

∑
w∈(Z/p)∗

(
w
p

)
ξ
w/2
p

=
(

2
p

)
1√
p

∑
w∈(Z/p)∗

(
w/2
p

)
ξ
w/2
p

=
(

2
p

)
WQp(l(p)) in the notation of ([125] p.267)

=


−
(

2
p

)√
−1 if p ≡ 3 (mod 4)

(
2
p

)
if p ≡ 1 (mod 4).

Hence GQp(p)
2 =

(
−1
p

)
= (−1)(p−1)/2.3

3The sum over all the residue field, as in ([73] §2), would add 1√
p

to GQp (p) and

then its square would not be equal to (−1)(p−1)/2 as claimed in ([73] §2)
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GQp(up) = 1√
p

∑
z∈(Z/p)∗ e2π

√
−1upp−2z2/2

= 1√
p

∑
z∈(Z/p)∗ ξ

uz2/2
p

= 1√
p

∑
z∈(Z/p)∗ ξ

z/2
p − 1√

p

∑
w∈(Z/p)∗

(
w
p

)
ξ
w/2
p

= − 1√
p

∑
w∈(Z/p)∗

(
w
p

)
ξ
w/2
p

= −
(

2
p

)
1√
p

∑
w∈(Z/p)∗

(
w/2
p

)
ξ
w/2
p

= −
(

2
p

)
WQp(l(p)) in the notation of ([125] p.267)

=


(

2
p

)√
−1 if p ≡ 3 (mod 4)

−
(

2
p

)
if p ≡ 1 (mod 4).

Therefore GQp(up) 6= GQp(u)GQp(p) which confirms that GQp is not a
homomorphism.

In general, therefore, the formula for GQp is given by ([125] p.267)

GQp(x) =

(
2νQp (x)

p

)
WQp(l(x)).

1.13. The formula for GE in general when p 6= 2
Let N : F∗qd −→ F∗q denote the norm. It is a surjective homomorphism,

by Hilbert’s Theorem 90 and element counting, so that we have a surjection

N : F∗qd/F
2∗
qd = F∗qd ⊗ Z/2 −→ F∗q/F2∗

q = F∗q ⊗ Z/2

which is therefore an isomorphism since both groups have only two ele-
ments.

The exact sequence

0 −→ O∗E −→ E∗ −→ Z −→ 0

yields a short exact sequence

0 −→ O∗E ⊗ Z/2 −→ E∗/E2∗ −→ Z/2 −→ 0

and in the short exact sequence

0 −→ 1 + PE −→ O∗E −→ F∗qd −→ 0
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the group 1 + PE is 2-divisible so that we have an isomorphism

O∗E ⊗ Z/2
∼=−→ F∗q ⊗ Z/2.

Therefore E∗/E2∗ has four elements which are {1, u, πE , uπE} where u ∈
O∗E maps to a non-square in F∗qd . If q is a power of p then the condition on
u is equivalent to

(
NF

qd
/Fp(u)

p

)
= −1.

Recall that D−1
E = (πE)−νE .

Suppose that νE + 2b+ 1 = 0 so that

νE(1) + νE + 2b+ 1 = 0 = νE(u) + νE + 2b+ 1.

Therefore for x = 1, u we have

GE(x) = 1√
NπE

∑
z∈(OE/PE)∗ ψE(xπ2b

E z
2/2)

= 1√
NπE

∑
z∈(OE/PE))∗ ψE(xπ2b

E z/2)

+ 1√
NπE

∑
w∈(OE/PE))∗

(
NF

qd
/Fp (w)

p

)
ψE(xπ2b

E w/2)

=
(
NF

qd
/Fp (2x)

p

)
1√
NπE

∑
w∈(OE/PE))∗

(
NF

qd
/Fp (w)

p

)
ψE(π2b

E w).

It would be nice to be able to apply the Davenport-Hasse theorem ([87]
p.20) to this Gauss sum but this is only immediate in the case of E/Qp

being unramified because the additive character ψE involves the trace for
E/Qp rather than the trace for their residue fields. When νE is odd then
GE(uπE) = 1 = GE(πE).

Suppose that νE + 2b+ 2 = 0 so that

νE(πE) + νE + 2b+ 1 = 0 = νE(uπE) + νE + 2b+ 1.
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Therefore for x = πE , uπE we have

GE(x)

= 1√
NπE

∑
z∈(OE/PE)∗ ψE((x/πE)π2b+1

E z2/2)

= 1√
NπE

∑
z∈(OE/PE))∗ ψE((x/πE)π2b+1

E z/2)

+ 1√
NπE

∑
w∈(OE/PE))∗

(
NF

qd
/Fp (w)

p

)
ψE((x/πE)π2b+1

E w/2)

=
(
NF

qd
/Fp (2(x/πE))

p

)
1√
NπE

∑
w∈(OE/PE))∗

(
NF

qd
/Fp (w)

p

)
ψE(π2b+1

E w).

1.14. The case when a(χ) = 1
Now suppose that c is a generator of f(χ)DE . In the notation of §1.13

the inverse different is given by D−1
E = (πE)−νE . Therefore if a(χ) = 1 and

νE +2b+1 = 0 then f(χ)DE = P1+νE
E = P−2b

E and so c−1 = π2b
E . Similarly

a(χ) = 1 and νE + 2b + 2 = 0 then f(χ)DE = P1+νE
E = P−2b−1

E and so
c−1 = π2b+1

E .
Therefore, if χE : E∗ −→ C∗ satisfies χE(πE) = 1 and

χE(z) = (
NormF

pd
/Fp(z + PE)

p
) ∈ {±1}

for z ∈ O∗E and E∗/E2∗ = {1, u, πE , uπE}. the formulae of §1.13 become

GE(x) =



(
NF

qd
/Fp (2x)

p

)
WE(χE) x = 1, u and νE odd,

1 x = πE , uπE and νE odd,(
NF

qd
/Fp (2(x/πE))

p

)
WE(χE) x = πE , uπE and νE even,

1 x = 1, u and νE even.

2. The formula of ([72] p.123 (5)) for the biquadratic extension

2.1. Consider the formula of ([73] p.123 (5)) for an extension N/E

WE(IndN/E(1)) = δN/E(g)−1GN (g)−1GE(g)[N :E] ∈ µ4

which holds for all g ∈ E∗ but only depends upon

g ∈ E∗/E2∗ = 〈1, u, πE , uπE〉.
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In this subsection we shall examine the formula in the all important case
when N = E(

√
u,
√
πE). Bear in mind that p is odd so that E(

√
u)/E is

unramified and E(
√
πE)/E is totally ramified. The extension N/E is the

unique biquadratic extension of E.
Recall that (see §3.4)

WE(IndN/E(1)) = SW2(IndN/E(1)) ·WE(Det(IndN/E(1))

= SW2(IndN/E(1)) ·WE(δN/E).

The trace form of N/E is represented (in the sense of Galois de-
scent theory ([125] p.102 Example (2.31)) by the regular representation
of Gal(N/E) ∼= Z/2× Z/2

〈N/E〉 = 1 + l(u) + l(πE) + l(uπE)

in the notation of [125]. Therefore the second Hasse-Witt invariant is given
in H2(E; Z/2) ∼= {±1} by

HW2(〈N/E〉) = l(u)l(πE) + l(u)l(uπE) + l(πE)l(uπE)

= l(u)l(πE) + l(u)(l(u) + l(πE)) + l(πE)(l(u) + l(πE))

= l(u)l(πE) + l(−1)l(u) + l(−1)l(πE).

By a formula of Serre ([116]; [120]; [125] p.95 Corollary 2.8)

SW2(IndN/E(1)) = HW2(〈N/E〉) + l(2)δN/E = HW2(〈N/E〉)

since, in cohomological notation

δN/E = l(u) + l(πE) + l(uπE) ∈ H1(E; Z/2) ∼= E∗/E2

which is trivial because l(u) + l(πE) = l(uπE) (c.f. [125] p.102 Example
(2.31)).

Therefore the formula under discussion simplifies to the form

(l(u)l(πE))·(l(−1)l(u))·(l(−1)l(πE)) = WE(IndN/E(1)) = GN (g)−1 ∈ {±1}

where the products on the left hand side are cup-products in mod 2 Galois
cohomology.

Next we need to verify that νN is even, which will follow from the
transitivity formula for discriminants ([114] III §4). Let us recall how that
goes.

We have the trace TrL/K : L −→ K for an extension of local fields
L/K. The trace form 〈L/K〉 : (x, y) 7→ TrL/K(xy) is symmetric and
non-singular on L. Let {ei} be a choice of OK-basis for the free mod-
ule OL then the discriminant of L/K is the ideal of OL generated by the
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element det(TrL/K(eiej)) = (det(σ(ei))2 where σ runs through the set of
K-monomorphisms of L into an algebraic closure of K. Set

D−1
L/K = {y ∈ L | TrL/K(xy) ∈ OK for all x ∈ OL},

which is the inverse different of L/K (or codifferent) and it is the largest
OL-submodule of L whose image under TrL/K lies in OK . The inverse of
the codifferent is the different DL/K which is a non-zero ideal of OL. The
absolute different is the case when K = Qp, the prime field. Transitivity
for the chain of fields Qp ⊆ E ⊆ N takes the form

DN/Qp = DN/E · DE/Qp .

Also DE/Qp = DE = (πE)νE and the ramification index of N/E is 2 so that
the order νN of the discriminant of N is even unless E/Qp is unramified.

Suppose that E/Qp is ramified so that νN is even, πN =
√
πE and

GN (x) =


(
NF

qd
/Fp (2(x/πN ))

p

)
WN (χN ) x = πN , uNπN and νN even,

1 x = 1, uN and νN even.

Therefore GN (g) = 1 for g ∈ E∗.
This means that the unique biquadratic of E extends to a Q8-extension,

which is correct because each p-adic local field has a Q8-extension and each
such extension has a unique biquadratic subfield.

It remains to consider the case where E/Qp is unramified and so we
may assume πE = p. In this case, by the ramification criterion of ([114]
III §5 Theorem 1) DE/Qp = OE and DN/E = ON if and only if N/E is
unramified. However E(

√
u)/E is unramified but for N/E(

√
u) in fact the

inverse different is the fractional ideal generated by π−1
N =

√
πE
−1 so that

νN = 1 and

GN (x) =


(
NF

qd
/Fp (2x)

p

)
WN (χN ) x = 1, uN and νN odd,

1 x = πN , uNπN and νN odd.

Once again, because of the existence of Q8 extensions of E we must have,
for g ∈ E∗,

1 = GN (g) =

(
NF

qd
/Fp(2)

p

)
WN (χN ).

Now (
NF

qd
/Fp(2)

p

)
=
(

2
p

)dimFp (ON/PN )

= (−1)
(p2−1)dimFp (ON/PN )

8

by the second subsidiary law of quadratic reciprocity.
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Next we use the Davenport-Hasse theorem to compute the local root
number

WN (χN ) =
1√
NπN

∑
w∈(ON/PN )∗

χN (w)ψN (w/c),

where we have used the fact that χN (c) = 1. Also c generates
f(χN )DN = P1+1

N = (
√
p2) = (p) so that

WN (χN ) =
1√
NπN

∑
w∈(ON/PN )∗

χN (w)ψN (w/p).

Now let L = Qp(
√
p) then

WL(χL) = 1√
p

∑
x∈F∗p

(xp )ψL(x/p)

= ( 2
p )

1√
p

∑
x∈F∗p

( 2x
p )ψQp(2x/p)

= ( 2
p )WQp(l(p))

=


( 2
p )(−i) if p ≡ 3 (modulo 4)

( 2
p ) if p ≡ 1 (modulo 4),

by ([125] p.266).
Since N/L is unramified the Davenport-Hasse theorem ([87] p.20)

implies that
WN (χN ) = −(−WL(χL))dimFp (ON/PN ).

The residue degree is even so set dimFp(ON/PN ) = 2d. Then we have4

GN (g) = −( 2
p )

2d


( 2
p )

2d(−1)d if p ≡ 3 (modulo 4)

( 2
p )

2d if p ≡ 1 (modulo 4)

=

 (−1)d+1 if p ≡ 3 (modulo 4)

−1 if p ≡ 1 (modulo 4).

2.2. The Davenport-Hasse theorem when E/Qp is unramified
Suppose that E/Qp is unramified of degree d and that p 6= 2. The

restriction of the trace

TraceE/Qp : OE −→ Zp

4This seems to contradict the formula of ([73] p.123 (5)). However this is only a
tamely ramified extension.
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is surjective so that νE = 0 and we may choose πE = p. Then GE(1) =
1 = GE(u) and for x = p, up

GE(x)

=
(
NF

pd
/Fp (2(x/p))

p

)
1√
pd

∑
w∈(OE/PE))∗

(
NF

pd
/Fp (w)

p

)
ψE(p−1w)

= −
(
NF

pd
/Fp (2(x/p))

p

)
1√
pd

(−1)
∑
w∈(OE/PE))∗

(
NF

pd
/Fp (w)

p

)
ψE(p−1w)

= −
(
NF

pd
/Fp (2(x/p))

p

)
1√
pd

(−
∑
v∈F∗p

(
v
p

)
ξvp)

d

= (−1)d+1

(
NF

pd
/Fp (2(x/p))

p

)
WQp(l(p))

d,

by the Davenport-Hasse theorem ([87] p.20).

Question 2.3. Perhaps the proof of the Davenport-Hasse theorem
given in ([87] p.20) would evaluate the Gauss sums of §1.13 in general?

3. p-adic epsilon factors modulo p-primary roots of unity

In this section I shall give the proof of the main result of [73].

Theorem 3.1.
Let σ be a wild, homogeneous representation of Gal(F/E) then

WE(σ) ≡ Det(σ)(gσ)−1GE(gσ)deg(σ) (modulo µp∞).

3.2. How to use the strict inequality of ([73] p.121)
We shall use the strict inequality of §1.6 and Theorem 1.7

α(M/M ′) < α(χ′),

assuming which I can run the following argument from ([73] p.121). In this
case, providing that α(M/M ′) < n, we have a commutative diagram ([49]
Corollary 3.12(i))
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- (1 + PnM ′)/(1 + Pn+1
M ′ )PnM ′/Pn+1

M ′

??

- (1 + PmM )/(1 + Pm+1
M )PmM/P

m+1
M

NormM/M ′TraceM/M ′

x 7→ 1 + x

y 7→ 1 + y

in which the vertical maps are surjective and where m = ψM/M ′(n).
If we have the strict inequality α(M/M ′) < α(χ′) we may take

n = α(χ′) = a(χ′)− 1 and m = ψM/M ′(α(χ′)). By [49]

α(χ) = α(χ′ ·NormM/M ′) ≤ ψM/M ′(α(χ′)) = m

and since NormM/M ′ is surjective the composition χ = χ′ · NormM/M ′ is
non-trivial on (1 + PmM )/(1 + Pm+1

M ) so that m ≤ α(χ). Therefore

m = α(χ) and a(χ) = m+ 1.

Now suppose that we have g′ ∈ (M ′)∗/(1 + PM ′) such that for all
y ∈ Pα(χ′)

M ′ /Pα(χ′)+1
M ′

χ′(1 + y) = ψM ′(g′y)

and that we have g ∈M∗/(1 + PM ) such that for all x ∈ Pα(χ)
M /Pα(χ)+1

M

χ(1 + x) = ψM (gx).
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Taking y = TraceM/M ′(x) we have

ψM (gx) = χ(1 + x)

= χ′(NormM/M ′(1 + x))

= χ(1 + y)

= ψM ′(g′ · y)

= ψM ′(g′ · TraceM/M ′(x))

= ψM ′(TraceM/M ′(g′x))

= ψM (g′x)

which shows that choosing χ′ instead of χ leads to the construction of the
same element

gσ ∈ ((E∗/1 + PE)⊗ Z[1/p]) = C(E).

We have

C(E) = (E∗/1 + PE)⊗ Z[1/p]
∼=−→ (((M ′)∗/1 + P(M ′))⊗ Z[1/p])G

∼=−→ ((M∗/1 + PM )⊗ Z[1/p])G

and we have just shown that gσ = gσ,χ = gσ,χ′ when considered as elements
of C(E). This means that, if the elements ĝσ ∈ E∗ and ĝσ,χ′ ∈ (M ′)∗ both
represent gσ ∈ C(E) then, for some positive integer r,

(ĝσ/ĝσ,χ′)p
r

∈ 1 + PM ′ .

Therefore, if ρ : (M ′)∗ −→ C∗ is a character of finite order then

ρ(ĝσ)/ρ(ĝσ,χ′) ∈ µp∞ .

In addition
GM ′(ĝσ) = GM ′(ρ(ĝσ,χ′).

These facts are used below in §3.4.

3.3. The improved induction theorem
Here I shall assume a familiarity with monomial resolutions for finite

groups.
If σ is a wild and homogeneous representation of G = Gal(K/E) as

in §1.5 then V (A,χ) = V and the (A,χ)-part of the monomial resolution
for V gives another monomial resolution in which every stabilising pair
(Gal(K/Mj), χj) is larger than or equal to (A,χ). Furthermore the Euler



300 11. APPENDIX II: REMARKS ON A PAPER OF GUY HENNIART

characteristic in R+(G) is well-defined because the Euler characteristic of
the whole monomial resolution is well-defined. Therefore we have

σ =
∑
i

niIndGGal(K/Mi)(χi) ∈ R(G)

where A ⊆ Gal(K/Mi) and χi|A = χ for all i. Therefore each
IndGGal(K/Mi)(χi) restricts to [K : Mi]χ on A. This means that

gσ = gIndGGal(K/Mi)
(χi)

for each i.
Note: There is a subtlety here to be careful of.
The entire representation IndGGal(K/Mi)(χi) is wild and homogeneous

(with the same associated character as σ) but this does not mean that χi
is wild. We know that A is a ramification group for Gal(K/Mi) with the
same lower numbering as A has for G but the definition of gχi depends on
the upper numbering which does not intersect well with subgroups!

3.4. The proof of Theorem 3.1
The result is already known when p = 2 [138] so henceforth p is an

odd prime.
Write λN/E = WE(IndN/E(1)) ∈ µ4. The λN/E ’s are a very subtle and

important family of numbers, to the construction of which approximately
200 pages of the 400 pages essay [89] are devoted. In [48] it is shown that,
for any orthogonal Galois representation,

WE(σ) = SW2(σ)WE(Det(σ)).

In ([125] p.274; see also [122]) is given a very quick construction of WE(σ)
when σ is orthogonal, which immediately gives the existence and Deligne’s
formula. The formula is used in §2.1.

Suppose the we are given a wild, homogeneous representation σ as in
§1.5. Define

ζ(σ) = Det(σ)(gσ)−1GE(gσ)deg(σ) ∈ C∗/µp∞

so that our objective is to show that

WE(σ) = ζ(σ) ∈ C∗/µp∞ .

Notice that if σ and τ are two wild, homogeneous representations such
that gσ = gτ then ζ(σ ⊕ τ) = ζ(σ)ζ(τ). Furthermore when η is one-
dimensional we have WE(η) = ζ(η) ∈ C∗/µp∞ by ([64] p.4). Using the
inductivity properties of WE(−) and the induction theorem of §3.3 we shall
derive Theorem 3.1 from the one-dimensional case.

Consider the equation of §1.5

σ =
∑
i

niIndGal(K/E)
Gal(K/Mi)

(χi) ∈ R(Gal(K/E)).
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By inductivity (in relative dimension zero) of the local constants we have

WE(σ) =
∏
i

WE(IndGal(K/E)
Gal(K/Mi)

(χi))ni =
∏
i

λniMi/E
WMi

(χi)ni .

Since, by §3.3, for each i

gσ = gIndGGal(K/Mi)
(χi)

we find that

ζ(σ) =
∏
i

ζ(IndGal(K/E)
Gal(K/Mi)

(χi))ni ∈ C∗/µp∞ .

Therefore, if we can show that for each i

WE(IndGal(K/E)
Gal(K/Mi)

(χi))

WMi(χi)
=
ζ(IndGal(K/E)

Gal(K/Mi)
(χi))

ζ(χi)
∈ C∗/µp∞

then the result follows because WMi(χi) = ζ(χi) ∈ C∗/µp∞ .
In the situation of §1.5 we have ResGal(K/E)

A (σ) = nχσ and on
1 + Pa(χσ)−1

M we have χσ(1 + x) = ψM (gσx) and gσ ∈ C(E)[1/p].
Now suppose (N,χ) is one of the (Mi, χi)’s so that

(A,χσ) ≤ (H = Gal(K/N), χ) and N ≤M.

Therefore, if δN/E = Det(IndN/E(1)), in C∗/µp∞ we have

WE(IndN/E(χ)) = λN/EWN (χ)

= δN/E(g)−1GN (g)−1GE(g)[N :E]χ(ĝ)−1GN (ĝ),

by Proposition 3.5, for any g ∈ E∗ and where on 1 + Pa(χ)−1
N we have

χ(1 + y) = ψN (ĝy). Then ĝ = gσ ∈ C(M)[1/p] so that GN (gσ) = GN (ĝ).
Therefore

WE(IndN/E(χ)) = δN/E(gσ)−1GE(gσ)[N :E]χ(ˆ̂g)−1 ∈ C∗/µp∞

but gσ/ĝ lies in a pro-p group so χ(ĝ)/χ(gσ) ∈ µp∞ . Hence, by the
formula

Det(IndN/E(χ)) = ResN
∗

E∗ (χ)δN/E
of ([47] Proposition 1.2)

WE(IndN/E(χ)) = Det(IndN/E(χ))−1(gσ)GE(gσ)[N :E] ∈ C∗/µp∞

which implies the general formula for WE(σ) (modulo µp∞). 2

Proposition 3.5. ([73] Proposition 1 p.123)
Let K be a finite extension of E in F and let g ∈ CE ⊗ Z[1/p]. Then

WE(IndK/E(χ))
WK(χ)

= δK/E(g)−1GK(g)[K:E] ∈ C∗/µp∞

for every character χ of K∗.





CHAPTER 12

Appendix III: Finite general linear and
symmetric groups

This Appendix recalls in §1 the characterisation of irreducible complex
representations of the symmetric groups and in §2 those for finite general
linear groups, together with the construction of their zeta functions. §3 de-
scribes how to generalise the Kondo-Gauss sums [85] by means of a formula
in terms of character values and then derives the functorial properties of
the Kondo-style Gauss sums.

1. Symmetric Groups

1.1. Following ([93] Chapter One, §7) we recall the classification of
irreducible representations of the symmetric group Σn over an algebraically
closed field of characteristic zero. Without loss of generality we shall stick
to complex representations in this appendix. Denote by Λn the algebra
of symmetric polynomials Z[x1, . . . , xn]Σn whose homogeneous of degree k
part will be written Λkn ([93] p.10) and set Λ = ⊕n≥0 Λn. Hence Λ is a
graded algebra.

Define pr =
∑

xri ∈ Λ and if λ = (λ1, λ2, . . . ) is an integral partition
we write ([93] p.15)

pλ = pλ1pλ2 . . . pλi . . . .

Each permutation w ∈ Σn factorises uniquely as a product of disjoint
cycles. If the orders of the cycles are ρ1, ρ2, . . . with ρ1 ≥ ρ2 ≥ . . . we
set ρ(w) = (ρ1, ρ2, . . . ) which is a partition of n called the cycle type of
w. It determines the conjugacy class of w in Σn giving a bijection between
conjugacy classes and partitions.

Define a mapping ([93] p.60)

ψ : Σn −→ Λn

by ψ(w) = pρ(w) which satisfies the multiplicative relation ψ(v × w) =
ψ(v)ψ(w) where v × w is the disjoint union of the permutations v and w.

Next consider Rn = R(Σn), the (complex) representation ring of the
symmetric group and R = ⊕n≥0 R

n. This is a graded algebra (in fact, as
explained by Zelevinsky [146], it is a PSH Hopf algebra). The product is

303



304 12. APPENDIX III: FINITE GENERAL LINEAR AND SYMMETRIC GROUPS

given on x ∈ Rn and y ∈ Rm by

x · y = IndΣn+m
Σn×Σm

(x⊗ y).
Moreover R carries the Schur inner product

〈
∑

fn,
∑

gn〉 = ⊕n 〈fn, gn〉Σn .

There is also a scalar product on Λ ([93] p.34). For partitions λ, µ we
define symmetric functions ([93] pp. 11-15)

mλ =
∑

xα1
1 xα2

2 . . . =
∑

xα

where α runs through all the permutations of (λ1, . . . , λn), n is the length
of λ and for each positive integer r

hr =
∑
|λ|=r

mλ and hλ = hλ1hλ2 . . . .

The inner product is characterised by

〈hλ,mµ〉 =


1 if λ = µ,

0 otherwise.

The characteristic homomorphism is a Z-linear mapping

ch : R −→ Λ⊗Z Q
which sends f ∈ Rn to

ch(f) =
1
n!

∑
w∈Σn

f(w)ψ(w).

If λ is a partition write mi(λ) for the number of integers in λ which are
equal to i and define ([93] p.17)

zλ =
∏
i≥1

imi ·mi!.

The integer n!/zλ is equal to the number of elements of Σn which have
cycle type λ when |λ| = n. The combinatorial formula for the characteristic
homomorphism is

ch(f) =
∑
|ρ|=n

z−1
ρ fρpρ

where fρ is the value of f at elements of cycle type ρ.
The following result is important in the classification of irreducible

representations of Σn.

Proposition 1.2. ([93] p.61)
The characteristic homomorphism is an isometric isomorphism of R

onto Λ.
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Proof
The characteristic map is a ring homomorphism, by Frobenius reci-

procity, if f ∈ Rm, g ∈ Rn then

ch(f · g) = 〈IndΣn+m
Σm×Σn

(f ⊗ g), ψ〉Σm+n

= 〈f ⊗ g,ResΣn+m
Σm×Σn

(ψ〉Σm×Σn

= 〈f, ψ〉Σm〈g, ψ〉Σn

= ch(f)ch(g).

Now let 1n denote the one-dimensional trivial representation of Σn. If
λ = (λ1, λ2, . . . ) is a partition of n let 1λ = 1λ11λ2 . . . . Since

ch(1n) =
∑
|ρ|=n

z−1
ρ pρ = hn

we see that ch(1λ) = hλ.
Now, for each partition λ of n define

χλ = det(1λi−i+j) ∈ Rn

where the suffices i, j in the matrix each run through 1, 2, . . . , n. Therefore
χλ is a virtual representation of Σn which is characterised by ch(χλ) = sλ.
Since ch is an isometry we obtain

〈χλ, χµ〉Σn =


1 if λ = µ,

0 otherwise.

A counting argument completes the proof. 2

1.3. The sλ’s ([93] pp.23-24)
Writing xα = xα1

1 xα2
2 . . . for a strictly non-negative multi-index α =

(α1, α2, . . . ), define
aα =

∑
w∈Σn

sign(w)w(xα),

the antisymmetrisation of xα. Since aα is skew symmetric it vanishes unless
the non-negative integers α1, α2, . . . , αn are all distinct. Hence we may
assume α1 > α2 > . . . > αn ≥ 0. Therefore we may write α as the sum of
two partitions

α = λ+ δ = λ+ (n− 1, n− 2 . . . , 1, 0)

where αi = λi + n − i. In Z[x1, . . . , xn] the polynomial aλ+δ is divisible
by aδ and we define sλ = aλ+δ/aδ, which is a symmetric polynomial. Note
that aα is equal to a Vandermond-type determinant whose (i, j)-th entry
is xαji .
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Proposition 1.4. ([93] p.62)
The irreducible representations of Σn are {χλ; |λ| = n}.

Proof
By Proposition 1.2(proof) we know that each χλ is either an irreducible

representation or minus an irreducible representation in Rn. To show that
the latter is not the case it suffices to show that dim(χλ) = χλ(1) > 0.

We have([93] p.61 (7.2))

sλ = ch(χλ) =
∑
|ρ|=n

z−1
ρ χ

λ
ρpρ

so that χλρ = 〈sλ, pρ〉 and in particular

χλ(1) = χ
λ

(1,1,... ,1) = 〈sλ, pn1 〉

so that
hn1 = pn1 =

∑
|λ|=n

χλ(1)sλ.

Therefore, in the notation for transition matrices of ([93] p.56),

χλ(1) = M(h, s)(1,1,... ,1),λ

and so χλ(1) equals the number of standard tableaux of shape λ, which is
a positive integer. 2

Remark 1.5. In the course of the proof of Proposition 1.4 one sees
that the transition matrix M(p, s) gives the character table of Σn. That is,

pρ =
∑
λ

χ
λ
ρsλ.

1.6. Maximal terms in aΣn(χλ)
In the notation of Appendix One, Section Five the element aG(ρ) ∈

R+(G) is an explicit formula for Brauer’s Induction Theorem when G is a
finite group and ρ is a representation of G over an algebraically closed field
of characteristic zero.

I would like a formula for the coefficient in aΣn(χλ) of (Cµ, φµ)Σn where
(Cµ, φµ) is maximal inMΣn of the form

Cµ = Cµ1 × Cµ2 × . . .× Cµr ⊆ Σµ1 × Σµ2 × . . .× Σµr

and φµ = φµ1 ⊗ φµ2 ⊗ . . .⊗ φµr with Cj a cyclic group of order j.
The formula for this is

|NΣn(Cµ, φµ)|−1
∑
g∈Cµ

χλ(g)φµ(g).
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In order to benefit from the combinatorial formulae of [93] this should be
written in terms of the χλρ ’s.

However, we shall take an easier route.
Now I want to evaluate the terms involving some maximal pairs (H,φ)Σn

in aΣn(χλ). To do this is will suffice to replace χλ by IndΣn
Σλ

(1) where
Σλ = Sλ1 × . . .× Σλd . This representation is denoted by ηλ in ([93] p.61).
As explained in ([9] §1) both the IndΣn

Σλ
(1)’s and the χλ’s form a free basis

for the abelian group R(Σn). Since ch(χλ) = sλ and ch(ηλ) = hλ there
is an invertible square matrix with integer entries, in the notation of ([93]
p.55) it is the transition matrix M(s, h) such that

sλ =
∑
µ

M(s, h)λ,µ ηµ and χλ =
∑
µ

M(s, h)λ,µ IndΣn
Σµ

(1).

Now suppose that (Cµ, φµ) is a maximal pair as in §1.6 and that φµ =
φµ1 ⊗ . . . φµr where χµj is a faithful character on Cµj . This means that φµ
is non-trivial on any subgroup of Cµ. Then

coefficient of (Cµ, φµ)Σn in aΣn(IndΣn
Σλ

(1))

=
|Cµ|
|Σn|

|Σn|
|NΣn (Cµ,φµ)| 〈φµ,ResΣnCµ IndΣn

Σλ
(1)〉Cµ

=
|Cµ|

|NΣn (Cµ,φµ)|
∑
z∈Cµ\Σn/Σλ〈φµ, Ind

Cµ

Cµ∩zΣλz−1(1)〉Cµ

=
|Cµ|

|NΣn (Cµ,φµ)| |{z ∈ Cµ\Σn/Σλ | Cµ ∩ zΣλz
−1 = {1}}|

1.7. An interesting combinatorial polynomial identity
This section describes a result due to Francesco Mezzadri, my son-in-

law. The following sketch of the proof is my responsibility, both for the
method and any errors therein!

Let λ be a partition of n. Francesco was interested in factorising the
polynomial

fλ(x) =
1

χλ(1)

∑
g∈Σn

χλ(g)xlength(ρ(g))

where length(ρ(g)) is the length of the partition ρ(g) corresponding to the
cycle type of g (see [83]). Recall that the length of a permutation whose
expression in terms of disjoint cycles has ri i-cycles is

∑
i ri. Since n!/zρ(g)

equals the number of elements in the conjugacy class of g we have

fλ(x) =
n!

χλ(1)

∑
|ρ|=n

χ
λ
ρ

zρ
xlength(ρ).
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On the other hand the characteristic homomorphism satisfies ([93]
p.63)

sλ = ch(χλ) =
∑
|ρ|=n

χ
λ
ρ

zρ
pρ

in the ring of symmetric polynomials in x1, . . . , xN with N ≥ n. The
symmetric polynomials sλ are, I believe, called the Schur functions.

If we set 1 = x1 = . . . = xN we obtain pρ|{xi=1, all i} = N length(ρ).
Therefore

fλ(N) =
n!

χλ(1)
sλ|{xi=1, all i}.

As is well-known, first observed by Weyl I believe, there is an isomor-
phism of Σn ×GLNC-representations of the form ([9] §1)

(CN )⊗n ∼=
∑
|λ|=n

χλ ⊗HomΣn(χλ, (CN )⊗n).

We write Wλ = HomΣn(χλ, (CN )⊗n). Hence

Nn =
∑
|λ|=n

χλ(1)Wλ(1).

The characteristic homomorphism followed by evaluating at 1 = x1 =
. . . = xN gives a homomorphism depending on N from R to the integers.
The theory of polynomial functors, I believe, shows that this homomor-
phism sends χλ to Wλ(1) so that

fλ(N) =
n!Wλ(1)
χλ(1)

.

The dimensional equation for (CN )⊗n leads to the result, if length(λ) ≤
N , that

Wλ(1)χλ(1) =
∏

1≤j≤k≤N
λj−λk+k−j

k−j

which yields

fλ(N) =
length(λ)∏
i=1

(N − i+ 1)(N − i+ 2) . . . (N + λi − i).

Varying N yields the following result:

Theorem 1.8. (F. Mezzadri 2010; appearing in [83])

fλ(x) =
length(λ)∏
i=1

(x− i+ 1)(x− i+ 2) . . . (x+ λi − i).
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2. Irreducibles for GLnFq and their zeta functions

2.1. Irreducible representations of GLnFq ([93] §1)
Let F̂∗qn denote the group of characters of the multiplicative group of

the field of qn elements. When m divides n the (surjective) norm homo-
morphism induces an injective map

N∗n,m : F̂∗qm −→ F̂∗qn
and we set

Γ = lim
n→

F̂∗qn ,

which is a discrete torsion group non-canonically isomorphic to the multi-
plicative group of Fq, the algebraic closure of Fq. The Frobenius automor-
phism Fr acts on Γ as the q-th power map. Write Γn for the fixed points
of Frn. We have a pairing

〈−,−〉 : F̂∗qn × F∗qn −→ C∗

given by 〈γ, x〉 = γ(x).
If f is a Frobenius orbit in Γ denote by d(f) the number of elements

in f , called the degree of f . The irreducible representations of GLnFq
are described in the following manner, which originally appeared in [69].
To each Frobenius orbit f ∈ Γ with d(f) = n there corresponds a unique
irreducible cuspidal1 representation of GLnFq and the remaining irreducible
representations of GLnFq are constructed from these representations of
GLmFq for m < n.

Let n1, . . . , nr be positive integers whose sum is equal to n. Let
Pn1,... ,nr ⊂ GLnFq be the standard parabolic subgroup consisting of ma-
trices of blocks of the form

Y1,1 Y1,2 Y1,3 · · · · · · · · ·

0 Y2,2 Y2,3 · · · · · · · · ·

0 0 Y3,3 · · · · · · · · ·

0
...

...
...

...
...

0
...

...
...

...
...

0 0 0 · · · · · · Yr,r


where Yi,i ∈ GLniFq and all blocks below the diagonal are zero. The
parabolic subgroup is a semi-direct product Pn1,... ,nr = Un1,... ,nrDn1,... ,nr

1Cuspidal representations are also sometimes called discrete series representations.
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where Un1,... ,nr is the subgroup of Pn1,... ,nr in which the diagonal blocks
are identity matrices and Dn1,... ,nr is the subgroup in which all off-diagonal
blocks are zero. Hence

Dn1,... ,nr
∼= GLn1Fq ×GLn2Fq × . . .×GLnrFq.

Suppose we are given irreducible representations πi of GLniFq for 1 ≤
i ≤ r then the iterated tensor product π1 ⊗ π2 ⊗ . . . ⊗ πr is an irreducible
representation of Dn1,... ,nr . The “induction product” of π1, π2, . . . , πr is
denoted by π1 ◦ π2 ◦ . . . ◦ πr and defined by

π1 ◦ π2 ◦ . . . ◦ πr = IndGLnFq
Pn1,... ,nr

InfPn1,... ,nr
Dn1,... ,nr

(π1 ⊗ π2 ⊗ . . .⊗ πr).

The induction product is part of the PSH algebra structure used in the
approach of [146] to the results of [69].

Suppose for the moment that π1 = π2 = . . . = πr = (f), which is a cus-
pidal representation of GLdFq with d = d(f) and n = rd. The commuting
algebra of (f) ◦ (f) ◦ . . . ◦ (f) = (f)◦r is the group-ring of the symmetric
group Σr. Therefore the irreducible GLnFq-components of (f)◦r are given
by (fλ) = HomΣr (λ, (f)◦r) as λ runs through the irreducible representa-
tions of Σr. From Proposition 1.4 the irreducible representations λ are
indexed by partitions of r.

More generally suppose that λi is a partition of |λi| for 1 ≤ i ≤ m and
that f1, . . . , fm are distinct Frobenius orbits in Γ with n =

∑m
i=1 d(fi)|λi|

then (fλ1
1 )◦(fλ2

2 )◦ . . .◦(fλmm ) is an irreducible representation of GLnFq and
all irreducible representations are obtained in this way, without repetition.

If we think of the above data as a function λ from Frobenius orbits
in Γ to partitions given by fi 7→ λi for 1 ≤ i ≤ m and sending every
other Frobenius orbit to zero then we shall denote the resulting irreducible
representation by πλ. In other words λ 7→ πλ gives a canonical bijection
between partition-valued functions on Frobenius orbits of Γ and irreducible
representations of GLnFq as n varies.

2.2. Zeta functions for GLnFq
Let Ψ : MnFq −→ C∗ be the usual additive character, as used in the

section on Kondo-Gauss sums (Definition 3.1). Let C(MnFq) denote the
space of complex-valued functions on MnFq, the set of n×n matrices with
entries in Fq.

As we shall soon see as we recapitulate the process of ([93] §2), the
finite field case is precisely taking the top level in the Godement-Jacquet
approach to zeta functions for GLn of a local field (see [40] pp.147-155).

For Φ ∈ C(MnFq) the Fourier transform of Φ is Φ̂ ∈ C(MnFq) given
by

Φ̂(X) = q−n
2/2

∑
Y ∈MnFq

Φ(Y )Ψ(XY ).
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Hence
ˆ̂Φ(X)

= q−n
2/2

∑
Y ∈MnFq Φ̂(Y )Ψ(XY )

= q−n
2/2

∑
Y ∈MnFq q−n

2/2
∑
Z∈MnFq Φ(Z)Ψ(Y Z)Ψ(XY )

= q−n
2 ∑

Y ∈MnFq
∑
Z∈MnFq Φ(Z)Ψ(Y (Z +X)).

Fixing Z and hence fixing Z + X we see that Y 7→ Ψ(Y (Z + X)) is a
non-trivial character unless X+Z = 0 and so this subsum over Y vanishes.
Therefore

ˆ̂Φ(X) = q−n
2 ∑
Y ∈MnFq

Φ(−X) = Φ(−X),

which is the usual relation satisfied by the Fourier transfer.
Let π be a finite-dimensional complex representation of GLnFq. Then

the zeta function associated to Φ ∈ C(MnFq) and π is defined by

ζ(Φ, π) =
∑

X∈GLnFq

Φ(X)π(X) ∈MdimC(π)(C).

Define the normalised trace of the zeta function to be

ζtr(Φ, π) =
1

dimC(π)

∑
X∈GLnFq

Φ(X)χπ(X) ∈ C.

Hence
Trace(ζ(Φ, π)) = dimC(π) · ζtr(Φ, π).

Define
W (π,Ψ, X) = q−n

2/2
∑

Y ∈GLnFq

π(Y )Ψ(Y X)

and

Wtr(π,Ψ, X) =
q−n

2/2

dimC(π)

∑
Y ∈GLnFq

χπ(Y )Ψ(Y X).

For each Z ∈ GLnFq we have

W (π,Ψ, XZ) = q−n
2/2

∑
Y ∈GLnFq π(Y )Ψ(Y XZ)

= q−n
2/2

∑
Y ∈GLnFq π(Y )Ψ(ZY X)

= q−n
2/2

∑
Y ∈GLnFq π(Z)−1π(ZY )Ψ(ZY X)

= π(Z)−1W (π,Ψ, X)
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and

W (π,Ψ, ZX) = W (π,Ψ, X)π(Z)−1.

Proposition 2.3.
Let π be an irreducible representation of GLnFq such that

〈π, 1〉GLnFq = 0. Then W (π,Ψ, X) = 0 for all singular matrices X.

Proof
Let H(X) = {Y ∈ GLnFq | Y X = X}. For Y ∈ H(X) we have

W (π,Ψ, X) = W (π,Ψ, Y X) = W (π,Ψ, X)π(Y )−1

so that

W (π,Ψ, X) = W (π,Ψ, X)
1

|H(X)|
∑

U∈H(X)

π(U).

Therefore it suffices to show that
∑
U∈H(X) π(U) is the zero matrix. If

the rank of X is r with 0 ≤ r ≤ n − 1 then for suitable A,B ∈ GLnFq we

have X = AerB where
(

1r 0
0 0

)
we have H(X) = AH(er)A−1 so it is

sufficient to assume X = er in which case

H(er) = {Y =
(

1r ∗
0 ∗

)
}.

If the matrix
∑
U∈H(er)

π(U) is non-zero then the map it induces on the
representation space for π maps it non-trivially into the subspace fixed by
the action of H(er). Therefore it suffices to show that there is no non-zero
vector in the representation space which is fixed by H(er), which contains
the subgroup H(en−1), which is a normal subgroup of the parabolic sub-
group Pn−1,1.

Since

〈IndGLnFq
H(en−1)

(1), π〉GLnFq = 〈1,ResGLnFq
H(en−1)

(π)〉H(en−1) 6= 0

so that the irreducible π is a component of

IndGLnFq
H(en−1)

(1) = Ind
P
GLnFq
n−1,1

(IndPn−1,1

H(en−1)
(1)).

But Pn−1,1/H(en−1) ∼= GLn−1Fq so that IndPn−1,1

H(en−1)
(1) is obtained by in-

flating IndGLn−1Fq
{1} (1)⊗1 from GLn−1Fq×GL1Fq so that, by the classifica-

tion of irreducibles of GLnFq, π is an irreducible component of π1 ◦ (1)
for some irreducible representation π1 of GLn−1Fq. This implies that
〈π, 1〉GLnFq 6= 0, which is a contradiction. 2
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2.4. Next we observe that∑
X∈MnFq Φ̂(−X)W (π,Ψ, X)

=
∑
X∈MnFq W (π,Ψ, X) q−n

2/2
∑
Y ∈MnFq Φ(Y )Ψ(−XY )

=
∑
X∈MnFq q−n

2/2
∑
Z∈GLnFq π(Z)Ψ(ZX) q−n

2/2

×
∑
Y ∈MnFq Φ(Y )Ψ(−Y X)

=
∑
Z∈GLnFq π(Z)Φ(Z)

= ζ(Φ, π).

Taking traces

Trace(ζ(Φ, π))

= dimC(π) · ζtr(Φ, π)

= dimC(π)
∑
X∈MnFq Φ̂(−X)Wtr(π,Ψ, X).

or
ζtr(Φ, π) =

∑
X∈MnFq

Φ̂(−X)Wtr(π,Ψ, X).

Theorem 2.5.
Let π be an irreducible representation of GLnFq such that

〈π, 1〉GLnFq = 0. Then

ζ(Φ̂, π∨)Transpose = W (π∨,Ψ, 1)ζ(Φ, π).

Proof
By Proposition 2.3 and §2.4

ζ(Φ̂, π∨)Transpose

=
∑
X∈MnFq

ˆ̂Φ(−X)W (π∨,Ψ, X)Transpose

=
∑
X∈GLnFq Φ(X)W (π∨,Ψ, X)Transpose

= W (π∨,Ψ, 1)Transpose
∑
X∈GLnFq Φ(X)π(X)

= W (π∨,Ψ, 1)
∑
X∈GLnFq Φ(X)π(X)

= W (π∨,Ψ, 1)ζ(Φ, π)
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because W (π∨,Ψ, 1) is a scalar matrix. 2

Corollary 2.6.
In the situation of Theorem 2.5

ζtr(Φ̂, π∨) = q−n
2/2WGLnFq (π

∨)ζtr(Φ, π)

where WGLnFq (π
∨) is as in §2.2.

2.7. W (π,Ψ, X) when π is reducible
In §2.2 we defined

W (π,Ψ, X) = q−n
2/2

∑
Y ∈GLnFq

π(Y )Ψ(Y X)

which is an endomorphism of the representation space of π. Suppose that

π = π1 ⊕ π2 ⊕ . . .⊕ πr
where the πi’s are irreducible representations (possibly with repetitions).
Suppose that πi is represented by a homomorphism

ρi : GLnFq −→ GLdiC
for 1 ≤ i ≤ r. Therefore π is represented by the matrix homomorphism
into GLd1+...+drC

X 7→



ρ1(X) 0 0 . . . . . . 0
0 ρ2(X) 0 . . . . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . 0 ρr(X)

 .

Therefore the formula for W (π,Ψ, X) in terms of a matrix is given by

W (ρ1,Ψ, X) 0 0 . . . . . . 0
0 W (ρ2,Ψ, X) 0 . . . . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . 0 W (ρr,Ψ, X)

 .

By Proposition 2.3 if X is singular and 〈πi, 1〉GLnFq = 0 then
W (πi,Ψ, X) = 0. If

0 = 〈π, 1〉GLnFq =
r∑
i=1

〈πi, 1〉GLnFq

then each positive integer 〈πi, 1〉GLnFq is zero and so W (π,Ψ, X) is the zero
matrix. In other words, we may remove the adjective “irreducible” from
the statement of Proposition 2.3.
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Proposition 2.8.
Let π be a finite-dimensional complex representation of GLnFq such

that
〈π, 1〉GLnFq = 0. Then W (π,Ψ, X) = 0 for all singular matrices X.

2.9. Theorem 2.5 when π is reducible
The formula of §2.4 does not require that π be irreducible so that

Proposition 2.8, §2.4 and the proof of Theorem 2.5 establish the following
result.

Theorem 2.10.
Let π be a finite-dimensional complex representation of GLnFq such

that
〈π, 1〉GLnFq = 0. Then

ζ(Φ̂, π∨)Transpose = W (π∨,Ψ, 1)ζ(Φ, π).

Corollary 2.11.
In the situation of Theorem 2.10

ζtr(Φ̂, π∨) = q−n
2/2WGLnFq (π

∨)ζtr(Φ, π)

where WGLnFq (π
∨) is as in §2.2. In particular, if π = IndGLnFq

H (ρ) with
〈ρ, 1〉H = 0 then

ζ(Φ̂, IndGLnFq
H (ρ∨))Transpose = q−n

2/2WH(ρ∨)ζ(Φ, IndGLnFq
H (ρ)).

3. Kondo-Gauss sums for GLnFq
Definition 3.1. Let ρ : H −→ GLnC denote a representation of a

subgroup H of GLnFq. If q is a power of the prime p we have the (additive)
trace map

TrFq/Fp : Fq −→ Fp.
In addition we have the matrix trace map

Trace : GLnFq −→ Fq.
Define a measure map Ψ on matrices X ∈ GLnFq by

Ψ(X) = e
2π
√
−1TrFq/Fp (Trace(X))

p

which is denoted by e1[X] in [85]. Let χρ denote the character function of
ρ which assigns to X the trace of the complex matrix ρ(X).

Define a complex number WH(ρ) by the formula

WH(ρ) =
1

dimC(ρ)

∑
X∈H

χρ(X)Ψ(X).

When H = GLnFq and ρ is irreducible WGLnFq (ρ) = w(ρ), the Kondo-
Gauss sum which is introduced and computed in [85].
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Theorem 3.2.
Let σ be a finite-dimensional representation of H ⊆ GLnFq. Then for

any subgroup J such that H ⊆ J ⊆ GLnFq
WH(σ) = WJ(IndJH(σ)).

Proof
Set ρ = IndJH(σ). By definition

WJ(ρ) = |H|
|J|·dimC(σ)

∑
X∈J χρ(X)Ψ(X)

= 1
|J|·dimC(σ)

∑
X∈J

∑
Y ∈J, Y XY −1∈H χσ(Y XY −1)Ψ(X)

by the character formula for an induced representation ([126] Theorem
1.2.43). Consider the free action of J on J × J given by (X,Y )Z =
(Z−1XZ, Y Z) for XY,Z ∈ J . The map from J × J to J sending (X,Y ) to
Y XY −1 is constant on each J-orbit. Therefore
WJ(ρ) = 1

|J|·dimC(σ)

∑
X∈J

∑
Y ∈J, Y XY −1∈H χσ(Y XY −1)Ψ(Y XY −1)

= 1
|J|·dimC(σ) |J |

∑
U∈H χσ(U)Ψ(U)

= WH(σ).

Lemma 3.3.

(dimC(σ1)+dimC(σ2))WH(σ1⊕σ2) = dimC(σ1)WH(σ1)+dimC(σ2)WH(σ2).

Example 3.4. The Weil representation r(Θ) of GL2Fq
The Weil representation is a very ingenious construction of a (q − 1)-

dimensional irreducible complex representation of GL2Fq. It is constructed
from scratch in ([126] Chapter Three). However there is a very simple de-
scription of r(Θ) in terms of induced representation, which may be verified
(for example) using the character formulae of ([126] Chapter Three).

There is a copy of F∗q2 , unique up to conjugation, embedded in GL2Fq.
For example, if σ is a non-square in F∗q then sending a+ b

√
σ to a bσ

b a


gives such an embedding. Let F denote the generator of Gal(Fq2/Fq) and
suppose that Θ : F∗q2 −→ C∗ is a character such that F (Θ) 6= Θ.

Let H denote the “top line” subgroup consisting of of matrices of the
form  a b

0 1


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so that H ∼= F∗q ×Fq by sending the above matrix to (a, b/a). Therefore we
have a character on H given by

(Θ⊗Ψ)

 a b

0 1

 = Θ(a)Ψ(b/a).

Here Ψ is the additive measure defined in Definition 3.1 on n× n matrices
in the case n = 1.

There is a (splt) short exact sequence of complexGL2Fq-representations

0 −→ IndGL2Fq
F∗
q2

(Θ) −→ IndGL2Fq
H (Θ⊗Ψ) −→ r(Θ) −→ 0.

To establish this result I first used the fact that ([126] Chapter Three)
provides an easy description of the right-hand map together with a com-
plicated argument to show that the left-hand representation was inside the
kernel. Then, smugly pleased with the discovery, I check it using the char-
acter values of ([126] Chapter Three) only to find the same result appears
in ([40] p.47)!

By Theorem 3.2 and Lemma 3.3 we have

WGL2Fq (r(Θ)) +WF∗
q2

(Θ) = WH(Θ⊗Ψ).

However
WH(Θ⊗Ψ) =

∑
(a,b)∈H

Θ(a)Ψ(b/a)Ψ(a+ 1) = 0

since the sum of the values of a non-trivial character over a finite abelian
group (Fq in this case) is zero. Therefore

WGL2Fq (r(Θ)) = −WF∗
q2

(Θ)

where the right side in the familiar Gauss sum over a finite field.

Proposition 3.5.
For i = 1, 2 let σi : Hi −→ GLniC be a representation of Hi ⊆ GLsiFq.

Then we have a representation of H1 × H2 (embedded into GLs1+s2 by
direct sum of matrices) given by the tensor product σ1 ⊗ σ2 and

WH1×H2(σ1 ⊗ σ2) = WH1(σ1)WH2(σ2).
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Proof
We have

WH1×H2(σ1 ⊗ σ2)

= 1
s1·s2

∑
X1⊕X2∈H1×H2

χσ1⊗σ2(X1 ⊕X2)Ψ(X1 ⊕X2)

= 1
s1·s2

∑
X1⊕X2∈H1×H2

χσ1(X1)χσ2(X2)Ψ(X1)Ψ(X2)

= WH1(σ1)WH2(σ2).
2

Remark 3.6. In [85] Kondo gives formulae for his Gauss sums on the
irreducible complex representations of GLnFq. The calculations of [85] do
not use the function WH(ρ) but stick to the case of an irreducible ρ and
H = GLnFq. The greater freedom and generality of WH(ρ) should make
the calculations much simpler.

To obtain Kondo’s formulae and (elsewhere in this monograph) to gen-
eralise to the case in which Fq is replace by a local field we need to under-
stand the behaviour of Kondo-Gauss sums under taking spaces of homo-
morphisms of irreducibles of Σn into ρ’s.

3.7. Towards Kondo’s formulae
The semi-direct product Σn

∫
H1 consists of elements (τ, (X1, X2, . . . , Xn)) ∈

Σn ×Hn
1 with multiplication defined by

(τ, (X1, X2, . . . , Hn)) · (τ ′, (X ′1, X ′2, . . . , X ′n))
= (ττ ′, (X1X

′
τ(1), X2X

′
τ(2), . . . , XnX

′
τ(n))).

If H1 ⊆ GLrFq then Σn
∫
H1 ⊆ GLnrFq. If σ is a representation of H1

then Σn
∫
H1 acts on σ⊗ . . .⊗σ (the n-fold tensor product) by the formula

(τ, (X1, X2, . . . , Hn))(v1 ⊗ . . .⊗ vn) = σ(X1)(vτ(1))⊗ . . .⊗ σ(Xn)(vτ(n)).

This defines a left action because
(τ, (X1, X2, . . . , Hn)) · (τ ′, (X ′1, X ′2, . . . , X ′n))(v1 ⊗ . . .⊗ vn)

= (τ, (X1, X2, . . . , Hn))(σ(X ′1)(vτ ′(1))⊗ . . .⊗ σ(X ′n)(vτ ′(n)))

= σ(X1)(σ(X ′τ(1))(vττ ′(1)))⊗ . . .⊗ σ(Xn)(σ(X ′τ(n))(vττ ′(n)))

= σ(X1X
′
τ(1))(vττ ′(1)))⊗ . . .⊗ σ(XnX

′
τ(n))(vττ ′(n)))

= (ττ ′, (X1X
′
τ(1), X2X

′
τ(2), . . . , XnX

′
τ(n)))(v1 ⊗ . . .⊗ vn)

as required. These formulae define the exterior n-fold tensor representation
σ©

n

of Σn
∫
H1.
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In order to calculate the Kondo Gauss sum for the representation given
by

HomΣd(IndΣd
Σa1×···×Σar

(1), π⊗d) = ⊗ri=1 HomΣai
(1, π©ai)

and we can get the Kondo-Gauss sum of HomΣai
(1, π©ai) by Möbius in-

version from the Kondo Gauss sums of π©
ai .

Given a representation λ of Σn we may inflate it to give a representation
Inf(λ) of Σn

∫
H1. Set Hn = Σn

∫
H1. We shall now examine how to

calculate WH(Inf(λ)∨ ⊗ σ©n

) where Inf(λ)∨ is the contragredient (equals
dual in this case) of Inf(λ). It will suffice to calculate this in case of the
free generators λ = IndΣn

Σu1×Σu2×...×Σum
(1) where u = (u1, . . . , um) is a

partition of n by positive integers (i.e. ui > 0 and
∑
j uj = n). Since this

representation is self-dual we shall consider

WHn(Inf · IndΣn
Σu1×Σu2×...×Σum

(1) · σ©n

)

= WHn(IndHnHu1×Hu2×...×Hum
(σ©

n

))

= WHu1×...×Hum (σ©
n

)

=
∏m
j=1 WHuj

(σ©
uj ).

Therefore it suffices to calculate WHn(σ©
n

).

3.8. WHn(σ©
n

)
Let v1, v2, . . . , vd be a basis for the vector space underlying σ. Suppose

that Xi ∈ H acts via σ according to the matrix formula

σ(Xi)(vs) =
d∑
t=1

Xi;t,svt.

It τ ∈ Σn then

(τ, (X1, X2, . . . , Xn))(vs1 ⊗ . . .⊗ vsn)

= σ(X1)(vsτ(1))⊗ . . .⊗ σ(Xn)(vsτ(n))

=
∑d
t1=1

∑d
t2=1 ...

∑d
tn=1 X1;t1,sτ1

X1;t2,sτ2
...X1;tn,sτn vt1 ⊗ vt2 ⊗ ...⊗ vtn .

Therefore the trace of (τ, (X1, X2, . . . , Xn)) ∈ Hn acting on σ©
n

is equal
to ∑

1≤s1,s2,... ,sn≤d

X1;s1,sτ1
X2;s2,sτ2

. . . Xn;sn,sτn .
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The formula for WHn(σ©
n

) is equal to

WHn(σ©
n

)

= 1
dim(σ)n

∑
(τ,(X1,... ))∈Hn χσ©n ((τ, (X1, . . . )))Ψ((τ, (X1, . . . , Xn))).

Now consider the expression for Ψ((τ, (X1, . . . , Xn))). When τ is the
transposition (1, 2), in terms of matrices in Hn the element
((1, 2), (X1, . . . , Xn)) corresponds to the product of matrices of d×d blocks


X1 0 0 0 · · · · · ·
0 X2 0 0 · · · · · ·
0 0 X3 0 · · · · · ·
...

...
...

...
...

...




0 1 0 0 · · · · · ·
1 0 0 0 · · · · · ·
0 0 1 0 · · · · · ·
0 0 0 1 · · · · · ·
...

...
...

...
...

...



=


0 X1 0 0 · · · · · ·
X2 0 0 0 · · · · · ·
0 0 X3 0 · · · · · ·
0 0 0 X4 · · · · · ·
...

...
...

...
...

...

 .

The behaviour for general τ is clear and we obtain the formula

Ψ((τ, (X1, . . . , Xn)))

= e
2π
√
−1TrFq/Fp (Trace((τ,(X1,... ,Xn))))

p

=
∏
τ(i)=i Ψ(Xi).

Therefore we have the formula

WHn(σ©
n

)

= 1
dim(σ)n

∑
(τ,(X1,... ))∈Hn

×
∑

1≤s1,s2,... ,sn≤d X1;s1,sτ1
. . . Xn;sn,sτn

∏
τ(i)=i Ψ(Xi).

Now let us evaluate some small examples of the above formula.

3.9. Small examples of WHn(σ©
n

) when 〈σ, 1〉H = 0
In this subsection 〈σ, 1〉H denotes the Schur inner product, which is

zero when the trivial representation does not occur in σ.
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When n = 2 we have
WH2(σ

©2
)

= 1
dim(σ)2

∑
(1,(X1,X2))

∑
1≤s1,s2≤d X1;s1,s1X2;s2,s2Ψ(X1)Ψ(X2)

+ 1
dim(σ)2

∑
((1,2),(X1,X2))

∑
1≤s1,s2≤d X1;s1,s2X2;s2,s1

= WH(σ)2 + 1
dim(σ)2

∑
(X1,X2)∈H2 Trace(X1X2).

However, as (X1, X2) runs through H2 the element X1X2 runs through H
precisely |H| times. Therefore we have

WH2(σ
©2

) = WH(σ)2 + 1
dim(σ)2 〈σ, 1〉H = WH(σ)2.

When n = 3 consider the contribution to the formula of §3.8 from a
2-cycle, which may as well be τ = (1, 2), and a 3-cycle, which may as well
be τ = (1, 2, 3). We have

1
dim(σ)3

∑
((1,2),(X1,X2,X3))

∑
1≤s1,s2,s3≤d X1;s1,s2X2;s2,s1X3;s3,s3Ψ(X3)

= 1
dim(σ)2

∑
(X1,X2)∈H2 Trace(X1X2)WH(σ)

= 0

and
1

dim(σ)3

∑
((1,2,3),(X1,X2,X3))

∑
1≤s1,s2,s3≤d X1;s1,s2X2;s2,s3X3;s3,s1

= |H|2
dim(σ)3

∑
X∈H Trace(X)

= 0.

Therefore we obtain the formula

WH3(σ
©3

) = WH(σ)3.

In general we have the following result.

Theorem 3.10.
If the Schur inner product 〈σ, 1〉H vanishes then

WHn(σ©
n

) = WH(σ)n.

Proposition 3.11.
In the notation of §2.1

WPn1,... ,nr
(InfPn1,... ,nr

Dn1,... ,nr
(ρ)) = |Un1,... ,nr |WDn1,... ,nr

(ρ).

Also
|Un1,... ,nr | = qn

2−n2
1−n

2
2−...−n

2
r .
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Proof
We have

WPn1,... ,nr
(InfPn1,... ,nr

Dn1,... ,nr
(ρ))

= 1
dim(ρ)

∑
A∈Un1,... ,nr ,B∈Dn1,... ,nr

χ
Inf

Pn1,... ,nr
Dn1,... ,nr

(ρ)
(AB)Ψ(AB)

= 1
dim(ρ)

∑
A∈Un1,... ,nr ,B∈Dn1,... ,nr

χ
Inf

Pn1,... ,nr
Dn1,... ,nr

(ρ)
(B)Ψ(B)

= |Un1,... ,nr |WDn1,... ,nr
(ρ).

The order of |Un1,... ,nr | follows from the fact that there are (n − ni) × ni
arbitrary entries from Fq to the right of the diagonal block given by the
ni × ni identity matrix for 1 ≤ i ≤ r. 2

3.12. Computing WGLnFq ((f
λ1
1 ) ◦ (fλ2

2 ) ◦ . . . ◦ (fλmm ))
Let f1, . . . , fm be distinct Frobenius orbits in Γ in the notation of

§2.1 with degrees d(fi) > 1. Let λ1, . . . , λm be partitions such that n =∑m
t=1 d(ft)|λt|. We shall use the results of this section to calculate

WGLnFq ((f
λ1
1 ) ◦ (fλ2

2 ) ◦ . . . ◦ (fλmm )).

Since

(fλ1
1 ) ◦ (fλ2

2 ) ◦ . . . ◦ (fλmm )

= IndGLnFq
Pd(f1)|λ1|,... ,d(fm)|λm|

(Inf
Pd(f1)|λ1|,... ,d(fm)|λm|
Dd(f1)|λ1|,... ,d(fm)|λm|

((fλ1
1 )⊗ (fλ2

2 )⊗

. . .⊗ (fλmm )))

we have

WGLnFq ((f
λ1
1 ) ◦ (fλ2

2 ) ◦ . . . ◦ (fλmm ))

= WPd(f1)|λ1|,... ,d(fm)|λm|
(Inf

Pd(f1)|λ1|,... ,d(fm)|λm|
Dd(f1)|λ1|,... ,d(fm)|λm|

((fλ1
1 )⊗ (fλ2

2 )⊗

. . .⊗ (fλmm )))

= qn
2−d(f1)2|λ1|2−...−d(fm)2|λm|2WDd(f1)|λ1|,... ,d(fm)|λm|

((fλ1
1 )⊗ (fλ2

2 )⊗

. . .⊗ (fλmm ))

= qn
2−d(f1)2|λ1|2−...−d(fm)2|λm|2

∏m
t=1 WGLd(ft)|λt|

((fλtt )).
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Now let χλt denote the irreducible representation of Σ|λt| of Proposition
1.4. There exist unique integers aµt such that

χλt =
∑

µt a partition of |λt|

aµtInd
Σ|λt|
Σµt

(1)

where Σ(µt,1,µt,2,... ,µt,u = Σµt,1 × . . .× Σµt,u .
Therefore

WGLd(ft)|λt|
((fλtt ))

=
∏

µt a partition of |λt|
µt=µt,1,... ,µt,u

∏u
v=1 Wd(ft)((ft))

µt,vaµt

=
∏

µt a partition of |λt|
µt=µt,1,... ,µt,u

Wd(ft)((ft))
|λt|aµt

and from [93]

Wd(ft)((ft)) = (−1)d(ft)q−d(ft)/2τ(ft,Ψd(ft)).

Due to laziness I have not attempted to compare these formulae with
those of [85]!

4. The symmetric group’s PSH algebra and Theorem 1.8

4.1. In §3 of [83] a Schur inner-product of some character functions on
the symmetric group are computed. I mentioned (and reproved) the result
in 1.8. To recapitulate the result we need to recall that the length of a
permutation in σ ∈ Σn, the symmetric group on n objects, is

∑
i ri where

l(σ) = ri is the number of i-cycles in the expression for σ are the product
of disjoint cycles.

Let N be a positive integer. The function ln : σ 7→ l(σ) is a function on
the conjugacy classes of permutations in Σn and so also is ρN,n : σ 7→ N l(σ).
There exist irreducible representations Vj of Σn and complex numbers αj
such that the character function of

∑
j αjVj is ρN,n or, equivalently,∑

j

αjχVj (σ) = ρN,n(σ)

for all σ ∈ Σn. Here χV is the trace function (i.e. the character) of a
representation V .

Recall (see also Chapter Nine) the PSH-algebra for the symmetric
groups R = ⊕n≥0 R(Σn). This Hopf algebra is the unique PSH-algebra
over the integers with a unique primitive irreducible. The coproduct

R(Σn) −→ ⊕k R(Σk)⊗R(Σn−k)
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has (k, n− k)-component given by the restriction to Σk ×Σn−k. That is, a
representation maps via

V 7→ ResΣnΣk×Σn−k
(V ) ∈ R(Σk × Σn−k) ∼= R(Σk)⊗R(Σn−k).

The dual Hopf algebra may be identified with complex class functions.
The product in the PSH algebra is given by mapping

V1 ⊗ V2 ∈ R(Σk)⊗R(Σn−k)

to IndΣn
Σk×Σn−k

(V1 ⊗ V2) = m(V1 ⊗ V2). Let us calculate χm(V1⊗V2). The
trace formula for this character is

χm(V1⊗V2)(σ̂) =
1

k!(n− k)!
∑

τ∈Σn,τ σ̂τ−1∈Σk×Σn−k

χV1⊗V2(τ σ̂τ
−1)

which is zero unless σ̂ is conjugate in Σn to an element (σ, σ′) ∈ Σk×Σn−k.
Two elements of Σk ×Σn−k are conjugate in Σn if and only if they are

conjugate in Σk × Σn−k, because cycle shape determines conjugacy.
Suppose that σ̂ is conjugate in Σn to an element (σ, σ′) ∈ Σk × Σn−k.

Let ri, r′i be the numbers of i-cycles in the cycle decomposition for σ, σ′

respectively. The number of distinct elements in the Σn-conjugacy class of
(σ, σ′) is

n!
1r1+r′1(r1 + r′1)!2

r2+r′2(r2 + r′2)! . . .
while the number in the Σk-conjugacy class of σ is

k!
1r1(r1)!2r2(r2)! . . .

and the number in the Σn−k-conjugacy class of σ′ is

(n− k)!
1r′1(r′1)!2

r′2(r′2)! . . .
.

Therefore the denominators are the orders of the relevant centralisers.
Next we want to simplify the formula for χm(V1⊗V2)(σ̂). If τ σ̂τ−1 ∈

Σk ×Σn−k there exists µ ∈ Σk ×Σn−k such that µτσ̂τ−1µ−1 = σ̂. Setting
τ1 = µτ we see that τ1 ∈ ZΣn(σ̂), the centraliser of σ̂ in Σn. Therefore
τ = µ−1τ1 and we have a surjective map

(Σk × Σn−k)× ZΣn(σ̂) −→ {τ ∈ Σn, τ σ̂τ−1 ∈ Σk × Σn−k}

sending (ν, τ1) to ντ1. Also ντ1 = ν′τ ′1 if and only if

(ν′)−1ν = τ ′1τ
−1
1 ∈ ZΣk×Σn−k(σ, σ

′).

Therefore if λ = (ν′)−1ν then (ν, τ1) = (ν′λ, λ−1τ ′). Therefore there is a
bijection

(Σk × Σn−k)×ZΣk×Σn−k (σ,σ′) ZΣn(σ̂)↔ {τ ∈ Σn, τ σ̂τ−1 ∈ Σk × Σn−k}.
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Therefore the number of τ ’s in the formula for χm(V1⊗V2)(σ̂) is

k!(n− k)!1r1+r′1(r1 + r′1)!2
r2+r

′
2(r2 + r′2)! . . .

1r1(r1)!2r2(r2)! . . . 1r
′
1(r′1)!2

r′2(r′2)! . . .

and each τ σ̂τ−1 gives an element in the Σk × Σn−k-conjugacy class of
σ̂ = (σ, σ′) we find that

χm(V1⊗V2)(σ̂) =
1r1+r

′
1(r1 + r′1)!2

r2+r
′
2(r2 + r′2)! . . .

1r1(r1)!2r2(r2)! . . . 1r
′
1(r′1)!2

r′2(r′2)! . . .
χV1(σ)χV2(σ

′)

if σ̂ is Σn-conjugate to (σ, σ′) ∈ Σk × Σn−k and zero otherwise.

Definition 4.2. Following ([83] Corollary 3.1), if V is a representation
(not necessarily irreducible) of the symmetric group Σn and N is a strictly
positive integers define

fV,N =
1

dimC(V )

∑
σ̂∈Σn

χV (σ̂)N length(σ̂).

Up to a scalar factor this is the Schur inner product of V with the
virtual representation (with complex coefficients) whose character function
takes the form σ̂ 7→ N length(σ̂). This function is the analogue for symmetric
groups of the additive character Ψ for finite general linear groups and the
function fV,N is the anaolgue of the Kondo-Gauss sum. The Schur inner
product is the non-generate bilinear form of the PSH-algebra structure of
R = ⊕t≥0 R(Σt) [146]. This suggests examining the properties of fV,N
with respect to the Hopf algebra structure of R. The following result gives
the behaviour under the product in R.

Proposition 4.3.
If V1 and V2 are representations of Σk and Σn−k respectively and

m(V1 ⊗ V2) is the product in R then

fm(V1⊗V2),N = fV1,NfV2,N .

Proof:
From the preceding discussion about the character values of

IndΣn
Σk×Σn−k

(V1 ⊗ V2) = m(V1 ⊗ V2)

we see that
fm(V1⊗V2),N

= k!(n−k)!
n!dimC(V1)dimC(V2)

∑
σ̂∈Σn

χm(V1⊗V2)(σ̂)N length(σ̂)

= k!(n−k)!
n!dimC(V1)dimC(V2)

∑
σ̂∈Σn

1
r1+r′1 (r1+r

′
1)!2

r2+r′2 (r2+r
′
2)!...

1r1 (r1)!2r2 (r2)!...1
r′
1 (r′1)!2

r′
2 (r′2)!...

χV1(σ)

×χV2(σ
′)N length(σ̂)
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where the sum is taken over those σ̂ in Σn which are conjugate to some
(σ, σ′) in Σk × Σn−k. Now if σ̂ = (σ, σ′) with legnths as in the preceding
discussion then the ratio of conjugacy class sizes satisfies

|{Σn−conjugates of (σ,σ′)}|
|{Σk×Σn−k−conjugates of (σ,σ′)}|

= n!

1
r1+r′

1 (r1+r′1)!2
r2+r′

2 (r2+r′2)!...

1r1 (r1)!2
r2 (r2)!...
k!

1
r′1 (r′1)!2

r′2 (r′2)!...
(n−k)!

Therefore we may re-write the function as a sum over Σk × Σn−k in the
form

fm(V1⊗V2),N

= 1
dimC(V1)dimC(V2)

∑
(σ,σ′)∈Σk×Σn−k

χV1(σ)χV2(σ
′)N length(σ̂)

= fV1,NfV2,N ,

as required. 2

Example 4.4. Let m, k1, k2, . . . , kt ≥ 1 be positive integers such that

m =
t∑
i=1

ki.

Let 1ki ∈ R(Σki) denote the class of the one-dimensional trivial represen-
tation. Then the iterated PSH-algebra product

m(1k1 ⊗ 1k2 ⊗ . . .⊗ 1kt) = IndΣm
Σki×...×Σkt

(1) ∈ R(Σm).

Therefore

fIndΣm
Σki

×...×Σkt
(1),N =

t∏
i=1

f1ki ,N

and
f1ki ,N =

∑
σ∈Σki

N l(σ) = Nki + a1N
ki−1 + . . .+N ∈ Z[N ].

If k = (k1, . . . , kt) is a partition of m let us denote IndΣm
Σki×...×Σkt

(1)
by mk. According to [9] as k runs through the partitions of m the mk’s run
through a Z-basis for the free abelian group R(Σm). On the other hand, as
explained in (Appendix III, Proposition 1.4), the irreducible representations
of Σm are given by χλ as λ runs through the partitions of m. Hence there
are integers tk,λ, indexed by ordered pairs of partitions of m such that

χλ =
∑
k

tk,λ ·mk ∈ R(Σm).
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Consequently we obtain, for all values of N ,

fχλ,N =
∑
k

tk,λ · fmk,N .





CHAPTER 13

Appendix IV: Locally p-adic Lie groups

This Appendix assures the reader, without going into a single detail,
that replacing GLnK and its Bruhat-Tits building by any locally p-adic Lie
group and its Baum-Connes space E(G, C), where C is the family of compact
open modulo the centre subgroups H ⊆ G, results in a construction of
functorial monomial resolutions for any admissible representation V of G
with a fixed central character φ. The construction is accomplished by a
direct imitation of that of Chapter Four.

1. Monomial resolutions for arbitrary locally p-adic Lie groups

1.1. Let G be a locally p-adic Lie group and let V be a smooth repre-
sentation defined on a k-vector space with central character φ. A functorial
monomial resolution may be constructed for V by the same method as that
used in Chapter Four for GLnK.

In order to accomplish this construction one requires a canonical sim-
plicial complex E(G, C) on which G acts simplicially in such a way that,
for every compact open modulo the centre subgroup H ⊆ G, the H-fixed
subcomplex E(G, C)H is non-empty and contractible. One then replaces
the Bruhat-Tits building by E(G, C) in the construction of Chapter Four.

The construction of E(G, C) is due to Tammo tom Dieck ([135], [136])
and is discussed in ([100] pp.6-7). Here is a sketch of the construction.

Let M be a zero-dimensional simplicial complex with a G-action. For
example, if C is a family of subgroups of G which is closed under conjugation
and passage to subgroups then we may take M equal to the disjoint union
of all the cosets G/H as H varies throughout C. Form the iterated n-fold
join

M(n) = M ∗M ∗ . . . ∗M (n copies of M).

Set

E(G, C) =
⋃
1≤n

M(n)

with the weak topology (A ⊆ E(G, C) is closed if and only if A
⋂
M(n) is

closed in M(n) for all n).

329
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If H is a subgroup of G then E(G, C)H is empty unless H ∈ C in which
case it is non-empty and contractible because M(n) is an (n−2)-connected
space.

This G-space is very large but it is canonical and would suffice to give
functorial monomial resolutions for admissible G-representations, as in the
case of GLnK.

Presumably for many families of classical p-adic Lie groups Bruhat-
Tits buildings provide canonical, finite dimensional complexes which are
G-homotopy equivalent to E(G, C). This is what happens in the case of
GLnK.
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[30] N. Bourbaki: Groupes er algèbres de Lie; Chapters IV-VI (1968) Hermann Paris.

[31] R. Brauer: Bezeihungen zwischen Klassenzahlen vonTeilkörpern eines Galoischen
Körpers; Math. Nachr. 4 (1951) 158-174.

[32] R. Brauer: A characterization of the characters of groups of finite order; Annals

of Math. (2) 57 (1953) 357-377 (also R. Brauer: Collected Papers (vol I), MIT
Press (1980) (eds. Paul Fong and Warren J. Wong) 588-608.

[33] R. Brauer and J. Tate: On the characters of finite groups; Ann. Math. 62 (1955)

1-7.
[34] G.E. Bredon: Equivariant cohomology; Lecture Notes in Math. #34, Springer

Verlag (1967).
[35] K.S. Brown: Buildings; Springer Verlag (1989).

[36] F. Bruhat: Distributions sur un groupe localement compact et applications á l’
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