Derived Langlands - Monomial Resolutions of

Admissible Representations

Victor P. Snaith
School of Mathematical and Statistics
University of Sheffield






Contents

Preface

Chapter 1. Finite Modulo The Centre Groups
1. Notation
Monomial Resolutions
Some functor categories
From functors to modules
The bar-monomial resolution
Finiteness of monomial resolutions in characteristic zero

A e

Chapter 2. GLs of a local field
1. Induction
From finite to compact open
The admissible monomial double-complex
Monomial resolutions for G Ly K
Monomial resolution and 7g-adic levels
Galois invariant admissibles for GLy K
A descent construction - a folly in the monomial landscape
A curiosity - or dihedral voodoo

e IR

Chapter 3. Automorphic representations
1. Automorphic representations of GL2Ag
2. Tensor products of monomial resolutions
3. Maass forms and their adelic lifts
4. VUHY) and spaces of modular forms

Chapter 4. GL, K in general
1. BN-pairs
2. Buildings and BN-pairs
3. Verification of Chapter Two, Conjecture 3.3

Chapter 5. Monomial resolutions and Deligne representations
1. Weil groups and representations
2. The bar-monomial resolution of a Deligne representation

3

—-

(ool NVl

17
24

31
32
36
39
41
57
59
65
72

81
81
91
95
99

107
108
114
137

141
141
147



CONTENTS

Chapter 6. Kondo style invariants

1.
2.
3.

Kondo style epsilon factors
Tate’s thesis in the compact modulo the centre case
Monomial resolutions and local function equations

Chapter 7. Hecke operators and monomial resolutions

1.

Hecke operators for an admissible representation

Chapter 8. Could Galois descent be functorial?

1.

A e

Morphisms and Shintani descent

Galois base change of automorphic representations
Integrality and the proof of Shintani’s theorem

Some recreational integer polynomials

Base change functoriality for stable homotopy theorists
Inverse Shintani bijection and monomial resolutions

Chapter 9. PSH-algebras and the Shintani correspondence

1.

e N o

PSH-algebras over the integers

The Decomposition Theorem

The PSH algebra of {GL,,,F,, m > 0}
Semi-direct products Gal(Fyn /F,) o< GLFgn

R and R

Shintani base change

Counting cuspidals irreducibles of GL,, ]F

An example of w(ky +)Pam—aW(ks )™ ﬂPa m—a

Chapter 10. Appendix I: Galois descent of representations

1.

PO NSO

9.

Subgroups and elements of A5 via PGLoFy

Complex irreducible representations of As

Semi-direct products

The Shintani correspondence for GL,,F ;q

Explicit Brauer Induction ag

Explicit Brauer Induction data for Cy oc PG LoF,

The weak descent algorithm

The strong descent algorithm

The role of the integers dimg (V' #+4)) in Shintani descent

10.  The observation of Digne-Michel [53]

11.

Tables of (—)((H:A) data

Chapter 11. Appendix II: Remarks on a paper of Guy Henniart

1.
2.

The basic ingredients
The formula of ([72] p.123 (5)) for the biquadratic extension

3. p-adic epsilon factors modulo p-primary roots of unity

Chapter 12.

149
150
164
182

185
185

191
191
201
203
211
212
213

217
217
218
219
226
228
230
234
237

243
243
247
249
252
253
255
258
261
261
267
276

281
281
293
297

Appendix III: Finite general linear and symmetric groups 303



CONTENTS

Symmetric Groups

Irreducibles for GL,F, and their zeta functions
Kondo-Gauss sums for GL,IF,

The symmetric group’s PSH algebra and Theorem 1.8

Ll o

Chapter 13. Appendix IV: Locally p-adic Lie groups
1. Monomial resolutions for arbitrary locally p-adic Lie groups

Bibliography

Index

303
309
315
323

329
329

331
337



Preface

The purpose of this monograph is to describe a functorial embedding of
the category of admissible k[G]-representations of a locally profinite topo-
logical group G into the derived category of the additive category of the
admissible k[G]-monomial module category!, based on the family of com-
pact open modulo the centre subgroups.

By virtue of the Langlands Programme (see, for example, [1] and [2])
the representation theory of locally profinite topological groups is related
in a very important manner to modern number theory and arithmetic-
algebraic geometry ([3], [52]). There are many facets to this relationship
(for example, there are more than 40 sources in the biography of this mono-
graph which deal with some feature of this relationship).

I shall concentrate, for simplicity, on the locally profinite groups asso-
ciated with GL,,. However in Chapter Thirteen (Appendix IV) I briefly
indicate how the main construction generalises to an admissible represen-
tation of an arbitrary locally profinite group.

After the local field case, motivated by the Langlands Programme, next
one is interested in monomial resolutions of a number of other settings:

(i) The admissible representations of the semi-direct product of GL,
with a Galois group occur in the phenomenon of Galois base change (aka
Galois descent; [7] and [91]).

(ii) The restricted tensor product of admissible representations in the
local field case occur in the construction of adelic automorphic representa-
tions and their connection with modular forms and Hecke operators ([67]
and [51]).

(iii) The local Langlands correspondence involves Deligne representa-
tions of the local Weil group [40].

1Experts in the Langlands Programme may be interested to learn, before going
any further, that when G is a locally p-adic Lie group the monomial category is closely
related to the category of topological modules over a sort of enlarged Hecke algebra with
generators ((K,v), g, (H, ¢)) with H, K compact open modulo the centre and (K,) <
(gHg™ 1, (g7 1)*(4)) subject to the multiplcation and relations which are described (for
G finite) in Chapter One, §1.
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(iv) The local correspondence is characterised in terms of invariants
such as e-factors and L-functions which participate in the local functional
equation as developed in Tate’s thesis ([86] and [142]).

In each of (i)-(iv) I have attempted to give at least an example of
how monomial resolutions are constructed and fit in to the overall picture.
Sometimes these examples are just given for GLy - perhaps out of lack of
time and, more often, an indication of the threadbare state of my expertise.

This monograph contains a partial fulfilment of a mathematical ambi-
tion which I have harboured since 1986, which is my cue for a brief scrap of
long-forgotten history! In the 1940’s Richard Brauer proved his famous In-
duction Theorem for representations in characteristic zero of a finite group.
In particular, explicit induction theorems (e.g. Artin’s Induction Theorem
[126]) are important in the derivation of Brauer relations between class
numbers and orders of units [31]. Around 1946 Brauer posed the problem
of deriving an explicit formula for his induction theorem analogous to that
of Artin’s induction theorem (see the footnote [113] p.71). In a series of re-
sults Dwork, Langlands and Deligne derived results which essentially solve
Brauer’s problem for solvable groups ([57], [48] and [89]).

Using a topological construction which originated in terms of formu-
lae in the stable homotopy category, I gave the first explicit formula to
solve Brauer’s problem ([121] and [122]). Monomial resolutions for finite-
dimensional complex representations of compact Lie groups were implicit
in my original formula because it was the Euler characteristic of a topo-
logically constructed chain complex of monomial modules (i.e. sums of
modules induced from lines). This point of view was particularly stressed
in [121] and [124]. At that time my ambition was to construct explicit
monomial resolutions for (a) finite-dimensional Galois representations and
(b) for admissible representations of GL, K when K was a local field and
thence to attempt to go back and forth (as then predicted by the Langlands
correspondence, since proved by Mike Harris and Richard Taylor) capital-
ising on the fact that monomial resolutions are built from one-dimensional
representations to which the local class field theory correspondence applies.

The two main obstacles to this ambition were (a) insufficient expertise
concerning admissible representations of locally profinite groups and (b)
complete ignorance of the correct categorical setting. The crucial advance
made by Robert Boltje in [19] was to to overcome obstacle (b) by describing
the (additive) category jjgymon in whose derived category monomial res-
olutions naturally live and to develop all the techniques for working there
when G is finite.

It is straightforward to extend jjgymon to the case where G is a lo-
cally profinite group which is compact open modulo the centre such as
K*-GL,0Ok in GL, K when K is a local field. By good fortune Tan Leary
had, around 2001, pointed out to me the properties of the Baum-Connes
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space E(G,C) (see Chapter Thirteen, Appendix IV) and that the Bruhat-
Tits building for GL, K almost equals E(GL, K,C) when K is a local field.
This fact implies, if C is the family of compact open modulo the centre sub-
groups, that given a sheaf of functorial monomial resolutions for groups in C
on E(GL,K,C) one may construct a double complex to give a 47, kjmon-
monomial resolution of any admissible k-representation V' of GL,, K having
a fixed central character.

The construction of monomial resolutions for arbitrary admissible k-
representations V' of arbitrary locally profinite groups follows once one has
the sheaf. This is given by the functorial bar-monomial resolution for the
restrictions of V' to subgroups of G which lie in C, the family of compact
open modulo the centre subgroups. The difficulty of verifying that the bar-
monomial resolution is indeed a monomial resolution is overcome by using
extensions of the recognition criteria of [19].

Without going into technical details, a monomial resolution M, — V'
gives rise to an exact “resolution” sequence of k-vector spaces of the form

N Mi((H7¢)) . Mz(ﬁlfvd’)) - Mé(H@)) _ V(H,d)) -0

for each continuous character ¢ : H — k™ where H € C and k is an
algebraically closed field. When G is, for example, adelic GLy and V is an
automorphic representation then V(#:9)’s (the subspace of V' where H acts
via ¢) include the classical spaces of modular forms. Hence the interest in
setting (ii) mentioned above. Hecke operators

[JgH] : y(He) __ y(H )

famously operate on spaces of modular forms. Hence the question arises
whether [JgH] may be extended to the above “resolution” for each (H, ¢).

One of my favourite mathematical discoveries is the Shintani corre-
spondence of [117] which is a bijection between Galois invariant complex
irreducibles of GL,F, and irreducibles of the Galois-fixed subgroup GL,,F, .
For classical algebraic groups this is a consequence of Lang’s Theorem, as
explained in [53] (see also [54] and Chapter Eight, §3). In the case of
local fields the analogue is Galois base change for admissible irreducibles
of GL,K as mentioned in setting (i) above. By virtue of a theorem of
Tate, a Galois invariant admissible irreducible representation V' is the same
as one which extends to an admissible irreducible representation of the
semi-direct product of the Galois group with GL,K. This extension is
unique up to twists by one-dimensional characters. Hence the question
arises of constructing monomial resolutions of admissible representations of
such semi-direct products.

For finite-dimensional representations of a finite group G monomial res-
olutions were defined and shown to exist, unique in the derived category of
kjgmon in [19]. However, even in this case the functorial bar-monomial
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resolution of Chapter One was previously unknown. It immediately extends
the monomial resolutions to finite dimensional representations of absolute
Galois groups and Weil groups. In the Langlands correspondence, as men-
tioned in setting (iii) above, Deligne representations of Weil groups are
important in order to complete the correspondence on the Galois side. A
Deligne representation is a finite dimensional representation of the Weil
group together with a nilpotent endomorphism. Hence the question arises
of constructing monomial resolutions of Deligne representations.

The local functional equation, as described in [86] and [142], is impor-
tant in the characterisation of the Langlands correspondence, as mentioned
in setting (iv) above. It uses the Fourier transform on vector spaces of
eigendistributions. Hence the question arises of deriving functional equa-
tions in spaces of eigendistributions for each term in a monomial resolution.

This monograph is organised in the following manner. Details of the
contents of each chapter are given in the chapter’s introduction.

In Chapter One we shall recapitulate the theory of the category of k[G]-
monomial modules and monomial resolutions of finitely generated k[G]-
modules. When G is a finite group this material is due to Robert Boltje
[19]. We shall be concerned (with a view eventually to treating the case
of G a locally p-adic Lie group in later chapters) with the extension to the
case where G is finite modulo the centre.

In Chapter Two we shall consider, in the local field case, the existence
and structure of the monomial resolution of an admissible k-representation
V of GLy K with central character ¢. The monomial resolution constructed
in this case is unique in the derived category of k[G Lo K], MON.

There are two (possibly important) incongruous sections which I have
included in Chapter Two. These are §7 and §8 concerning a “descent con-
struction” which is a quotient monomial complex that one may construct
from a monomial resolution. Chapter Ten, Appendix I was written sev-
eral years before the majority of this monograph and contains a tediously
lengthy, explicit analysis of the example of Shintani descent afforded by the
Galois group Gal(F,/F3) acting on GLyF4. These calculations allow one
to calculate (in §6 and §7 of Appendix I) the Euler characteristic of the
monomial resolutions of an extension of the Galois invariant irreducibles to
the semi-direct product of the Galois group with PG LsF,4. In §8 of Appen-
dix I the Euler characteristic of the descent construction is calculated when
mapped to the representation ring and its data compared with the Shintani
descent formula for this example. Even though the relevance and utility of
the descent construction is highly speculative, I thought I should attempt
to point out what it might be good for in the context of settings (i)-(iv).
Accordingly Chapter Two §7 describes the descent construction in general
and §8 gives the (—)((/))_data of the descent construction monomial com-
plex in an example of an involutory outer automorphism of the dihedral
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group of order eight and in the Shintani descent example of Chapter Ten,
Appendix 1.

In Chapter Three one encounters the profound relation between auto-
morphic representations and modular forms in [[51], [62], [67], [80]], for
example. The topic is a breath-taking mathematical story of local-global
flavour which has proved so important in number theory and arithmetic-
algebraic geometry. Having already introduced monomial resolutions in the
admissible local case, in this chapter I shall give a brief sketch of their in-
troduction for global automorphic representations via the Tensor Product
Theorem.

In Chapter Four I shall verify Conjecture 3.3 for GL, K for all n > 2
where K is a p-adic local field. For GLy K this was accomplished (in Chap-
ter Two, Theorem 4.9 and Corollary 4.10) by means of explicit formulae, in
order to introduce the ideas of the general proof gradually. In this chapter
I shall adopt a similar gradual approach, going into considerable detail in
the GL3K case before giving the general case.

For GL; K the proof of Chapter Two Conjecture 3.3 was accomplished
by constructing a double complex in gr,K],¢mon using several
bar-monomial resolutions together with a simplicial action on the tree for
GLyK. For GLy K, by some low-dimensional good fortune, the construc-
tion of the differential in the double complex was made particularly easy
(see the introduction to Chapter Two). For GL,K with n > 3 we have
to use in a crucial way the naturality of the bar-monomial resolutions in
order to apply the construction of the monomial complex given in Chapter
Two §3. This requires a simplicial action on a space Y which, for GL, K
with n > 2, we take to be the Bruhat-Tits building. Such buildings are
constructed from BN-pairs.

In Chapter Five we recall the definition and properties of Deligne rep-
resentations of the Weil group. In Conjecture 2.4 we describe the bar-
monomial resolution resolution for a finite-dimensional Deligne representa-
tion (p, V,n). The verification of Conjecture 2.4 should be straightforward
but for the time being, out of laziness, I have left it unproved.

In [85] a Gauss sum is attached to each finite-dimensional complex
irreducible representation V' of GL,F,. The Kondo-Gauss sum is a scalar
d x d-matrix where d = dim¢ (V). In Chapter Twelve (Appendix III, §3)
I recapitulate the construction of [85] but using the formulae in terms of
character values, which simultaneously removes the irreducibility condition
and reveals the functorial properties (e.g. invariance under induction; see
Appendix III, Theorem 3.2).

In Chapter Six the theme is the association of e-factors, L-functions and
Kondo-style invariants to the terms in a monomial resolution of an admissi-
ble representation V of GL, K when K is a p-adic local field. The examples
here suggest that eventually one may be able to construct the e-factors and
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L-functions of [66] by merely applying variations of my constructions to
the monomial modules which occur in the monomial resolution of V' and
taking the Euler characteristic.

Chapter Seven recalls how Hecke operators

[JgH] : v He) _ y((H )

are defined in terms of the Double Coset Formula and explains how they
fit in with the exact sequences

M) e

which originate from a monomial resolution of the representation V. The
chapter explains the conditions under which [JgH]| extends to the entire
chain complex and gives a solitary illustrative example. In particular the
latter may apply to the adelic case of an automorphic representation. Then,
if J, H are the usual congruence subgroups I'o(N),I'1(N), the [JgH]’s are
the classical Hecke operators and the V(#:¢)’s are spaces of modular forms
(151] §11.2).

Throughout this monograph Galois base change keeps being mentioned
(particularly in Chapter Ten, Appendix I). Analogues of base change for
representations are known in the context of modular forms ( [55], [56],
[81], [107], [91]; see ([39] pp.84-88 and pp.90-103)) and are predicted in
the global Langlands Programme. As explained in Chapter Eight §2, func-
toriality of automorphic Galois base change would lead quickly to base
change for modular forms. Therefore, Chapter Eight §1 is concerned with
examples to illustrate the possibility of functoriality of Galois base change
in the simpler context of [117]. To establish functoriality of base change in
the case of Shintani descent one would need a different approach to the main
result of [117]. With this in mind, Chapter Eight §3 sketches the original
proof and then establishes the equivalence with a family of integrality con-
ditions. Chapter Eight §4 introduces some curious polynomials with integer
coefficients which were suggested by the discussion of §3. Chapter Eight §5
is a reminder for homotopy theorists and stable homotopy theorists of the
functorial topological constructions which should exist as a consequence of
(and as evidence for) functoriality of Shintani base change. Chapter Eight
§6 examines an example of the inverse Shintani correspondence, where one
starts with an irreducible for GL,F, and receives one for GLsFg». The
section finishes by posing a question, related to base change functoriality,
about constructing a resolution of the target irreducible from the monomial
resolution of the input irreducible.

Chapter Ten (Appendix I) contains more explicit detail than any reader
might conceivably want concerning Shintani descent from Galois invariant
complex irreducible representations of GLs;Fy to GLoF,. On the other
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hand, inter alia, it introduces a “descent algorithm” which may be of im-
portance in connection with Galois descent. The “descent algorithm” is a
procedure to construct an approximation to a monomial complex for Gx H¢
from a monomial resolution for an admissible representation of G < H, the
semi-direct product of G acting on H.

As I have mentioned earlier, Chapter Ten, Appendix I was written
several years before most of this monograph. This is not strictly true in
relation to Appendix I, §11 which derives tables of (—)((/})_data for use
in the descent construction examples of Chapter Two §7 and §8.

Chapter Eleven (Appendix IT) consists of a version of the calculation,
by Deligne and Henniart, of wildly ramified local root numbers modulo p-
primary roots of unity where p is the residue characteristic. In this mono-
graph it is relevant to the setting (iv) above. My hope is that a similar
argument will allow one to construct e-factors for admissible complex rep-
resentations of GL, K (at least modulo p-primary roots of unity when K
is local) term by term in the monomial resolution. In the case of complex
admissible representations (as proved in Chapter One, §6) the monomial
resolution has a “finite type” Pg-adic filtration whose associated graded
Euler characteristics are therefore finite. Included here because of its rele-
vance, Appendix II has been gathering dust on my home page for several
years, which accounts for its abstract!

Chapter Twelve (Appendix IIT) recalls in §1 the characterisation of irre-
ducible complex representations of the symmetric groups and finite general
linear groups, together with the construction of their zeta functions. Also
the formulae for and the functorial properties of Kondo-Gauss sums [85]
are explained.

Chapter Thirteen (Appendix IV) assures the reader, without going into
a single detail, that replacing GL, K and its Bruhat-Tits building by any
locally p-adic Lie group and its Tammo tom Dieck space (a.k.a. its Baum-
Connes space) E(G,C), where C is the family of compact modulo the centre
subgroups H C G, results in a construction of functorial monomial resolu-
tions for any admissible representation V' of G with a fixed central character
¢. The construction is accomplished by a direct imitation of that of Chapter
Four.

As far as I know the embedding of the category of admissible represen-
tations into the monomial derived category is new, even in the case of finite
groups. Apologies for my ignorance (characteristic of out of touch retirees,
particularly in the UK) if it is not.

The research in this monograph was partially supported by a Lever-
hulme Emeritus Professorial Fellowship. I am very grateful to the Lever-
hulme Foundation without whose contribution I would have had no chance
of travel to seek the advice of experts of this sort of representation theory.
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I am especially very grateful to Jim Arthur, Paul Baum, Tobias Berger,
Ken Brown, Paul Buckingham, Gerald Cliff, Ivan Fesenko, Guy Henniart,
Florian Herzig, Steve Kudla, Ian Leary, Rob Kurinczuk, Jayanta Manohar-
mayum, Tom Oliver, Roger Plymen, Peter Schneider, Alexander Stasinski,
Al Weiss for their interest and for their suggestions. As mentioned earlier,
this monograph is intended to introduce the embedding of representations
of locally p-adic Lie groups into the derived category of ;gymon and to give
some nascent examples. In a further article I hope to explain the “Bernstein
centre” [14] through the eyes of jjgmon. The reader might also find this
project interesting - it may not work out (I have not had the opportunity
to consult a haruspex!?)

Victor Snaith, FRSC, FFI, University of Sheffield,
November 2016.

2An augury who foretells with the aid of the sacrifice of medium-sized farm animals.



CHAPTER 1

Finite Modulo The Centre Groups

In this chapter we shall recapitulate the theory of the category of k[G]-
monomial modules and monomial resolutions of finitely generated k[G]-
modules. When G is a finite group this material is due to Robert Boltje [19].
Boltje’s paper was the culmination of a series of articles concerning explicit
(or canonical) versions of Brauer’s induction theorem for finite groups?,
details of which are to be found in the series ([17], [18], [20], [102], [121],
[122], [126]).

In this chapter we shall be concerned (with a view eventually to treating
the case of G a locally p-adic Lie group in later chapters) with the extension
to the case where G is finite modulo the centre.

Monomial resolutions for finite-dimensional complex representations of
compact Lie groups were implicit in the original, topological construction of
an explicit (or canonical) Brauer induction formula in [122]. This is because
the formula was the Euler characteristic of a topologically constructed chain
complex (this point of view was particularly stressed in [121] and [124]).

The crucial advance made by Robert Boltje in [19] was to describe
the (additive) category jjgymon in whose derived category monomial res-
olutions naturally live and to develop all the techniques for working there
when G is finite.

This chapter is arranged in the following manner. §1 sets up the no-
tation and §2 defines a monomial resolution of a k[G]-module, which is a
chain complex in the category jjgjmon. The category jjgjmon is additive
but not abelian so §3 introduces some functor categories which are used in
84 (in the style of what I imagine must have been the proof of the classi-
cal Freyd-Mitchell Theorem) to obtain a full embedding of the monomial
category into a module category. This enables one to recognise a mono-
mial resolution by mapping it to the module category where it becomes
a projective resolution. In §5 I introduce a new canonical and functorial
monomial resolution called the bar-monomial resolution. It is recognisable
as a monomial resolution because it becomes the familiar bar resolution in
the module category. The functoriality of the bar-monomial resolution is

IThis was a classical problem (see the footnote [113] p.71) of Richard Brauer from
the 1940’s. The first solution, using homotopy theory, appears in [121], [122].

1



2 1. FINITE MODULO THE CENTRE GROUPS

essential because it permits an extension to the case where G is a locally
p-adic Lie group which is compact, open modulo the centre. Thereafter
the functoriality allows one to construct a sheaf of monomial resolutions on
the Baum-Connes space EG when G is a locally p-adic Lie group. From
this in Chapters Two and Four we obtain p[gmon-monomial resolutions
for admissible k[G]-representations in general.

1. Notation

1.1. The first difference between this chapter and [19] is that we shall
assume that G is a finitely generated group with centre Z(G) and finite
quotient group G/Z(QG).

Fix a commutative Noetherian ring k and write G for the group of char-
acter homomorphisms Hom(G, k*) from G to k*, the multiplicative group of
units of k. In addition we shall fix a central character ¢ € Hom(Z(G), k*).
Let H be a subgroup of G which contains Z(G) and denote by ﬁ¢ the finite

subset of H consisting of characters which are equal to ¢ when restricted
to Z(G).

For an arbitrary k-algebra A we write 4mod (resp. mody) for the
category of left (resp. right) A-modules. We denote by slat (resp. lata)
the category of left (resp. right) A-lattices i.e. the subcategory of 4mod
consisting of those A-modules which are finitely generated and A-projective.
The rank of a free k-module M will be denoted by rky (M). When A = k[G]
we have subcategories g gmod C pgmod and i) ¢lat C jglat whose
objects are those on which Z(G) acts via ¢.

Let M, (G) denote the finite poset consisting of all pairs (H, ¢) € Hy
where (K,v) < (H, ¢) in the partial ordering if and only if K < H and the
restriction of ¢ to K is equal to ¢). Moreover My(G) admits a left G-action
by conjugation. That is, for g € G, g(H,¢) = (gHg™*,(g71)*(¢)) where
(g7 (¢)(ghg™t) = ¢(h) for all h € H. We shall write Ng(H, ¢) for the
G-stabiliser of (H, ¢)

NG(H7¢) = {g €eG | g(Hvd)) = (Ha¢)}
The G-orbit of (H,¢) will be denoted by (H,$)%.
For (H, ¢) € My(G) we denote by ky the k[H]-module given by h-v =
p(h)v for all v € k,h € H.
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DEFINITION 1.2, 2
A finite (G, ¢)-Line Bundle® over k is a left k[G]-module M together
with a fixed finite direct sum decomposition

M=M®®&- - &M,

where each of the M; is a free k-module of rank one on which Z(G) acts
via ¢ and the G-action permutes the M;. The M;’s are called the Lines of
M. For 1 < i < m let H; denote the subgroup of G with stabilises the Line
M;. Then there exists a unique ¢; € H’w such that h-v = ¢;(h)v for all
v € M;,h € H;. The pair (H;,$;) € My(G) is called the stabilising pair of
M;. B

The k-submodule of M given by

MUWD) = @1 cicrn (1,0)<(1,00) Mi

is called the (H, ¢)-fixed points of M.
A morphism from M to the finite (G, ¢)-Line Bundle N = N1 ®---® N,
is defined to be a k[G]-module homomorphism f : M — N such that

FMUD) € N(H6)

for all (H,¢) € My(G). The (left) finite (G, ¢)-Line Bundles and their
morphisms define an additive category denotedT)y k[G],oMON.

By definition each (G, ¢)-Line Bundle is a k-free k[G]-module so there
is a forgetful functor B

V: k[G],pTRON — k[G]’?mod.

1.3. Some natural operations

There are several operations which are obvious lifts to g ¢mon of
well-known operations in ;g 4mod. This means that the resulting functors
commute with the forgetful functor V: ;g ¢mon — g gmod.

(i) Direct sum: If M = M; & --- @& M,, and N = N; & --- & N,, are
objects in g, omon then so is

M@N:Ml@"'@MnL@Nl@"'@Nn'

2When we come to the bar-monomial resolution in Chapter One §5 and its sub-
sequent passage from finite groups to locally compact modulo the centre subgroups of
locally p-adic Lie groups in Chapter Two and later it becomes clear that I should have
set up the monomial category by stipulating that we are given the M((1:9))s with the
property that they are “Lineable” rather than that we are given the Lines. This would
require a straightforward but extensive revision which, at my age and with my resources,
is unlikely to happen! Apologies!

3The capital letters are chosen there to distinguish the Line Bundle from the familiar
vector bundle terminology.
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(ii) Tensor product: If M belongs to 4(¢),¢,, mon and N belongs to

k[G],¢ 0N then the tensor product o
M @ N = Bi<i<m,1<j<n M; Qi Nj
belongs t0 x[@),¢-¢ MON.

(iit) Homomorphisms: The k[G]-module Homy, (M, N') with the decom-
position into Lines of the form &1<;<m,1<;<n Homy(M;, N;) is an object of
K[G.éar-é 1 MON if G acts via the usual formula (g- f)(m) = g-(f(g~"'-m))
for ¢ € G,m € M. As a special case we have the dual of M given by
Homy (M, k).

(iv) Restriction: Let f : G — G be a homomorphism of finitely
generated groups which are both finite modulo the centre and such that
[(Z(G")) € Z(G). Then we have a restriction map Res; from ;g smod
to kj@),¢.ymod and similarly Resy from (g 4mon to (g 4. pmon. ;

(V)ilnduction: Suppose that H C G are finitely generated groups
which are both finite modulo the centre with Z(G) C H. Then the index
of H in G is finite and the usual induced k[G]-module Ind% (P) for P e
k[H],¢mod is the object of ;g gmod given by k[G] @) P. If P = P @
-+ @ Py lies in j(p) gmon then Ind% (P) with the Line-decomposition given
by ®g,1<i<s g ®k[HTP,», as g runs through a set of coset representatives for
G/H, is the object of ;g gmon denoted by Ind$%(P).

Note that, if the stabilising pair for P; is (H;, ¢;) then the stabilising
pair of the Line g ®yp) P is g(H;, ¢;). Also for (H, ¢) € My(G) then we
have a

Duweras Luw = Iy, g (ko)
where (J,4) runs through the G-conjugates of (H,$) and L(; is the
J-module k.

(vi) Canonical isomorphisms: Analogues of the usual distributivity

isomorphism of direct sums over tensor products, the Frobenius reciprocity

isomorphism and the Mackey decomposition isomorphism all hold in the
Line Bundle context (see [19] §1.5(f)-(h)).

PROPOSITION 1.4. ([19] §1.6 and §1.7)

EM=M®®: - &My,and N = N;®---® N, are objects in j|g] 4mon
the following statements are equivalent: a

(i) M and N are isomorphic in (g, smon.

(i) For all (H,¢) € My(G) the (Na(H, ¢), ¢)-Line Bundles over k

M(H, ¢) = @stabilising pair of M; equals (H,¢) Mi
and

N(H, ¢) = Dstabilising pair of N; equals (H,¢) Vj
are isomorphic in (g (#,¢)],emod.
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(iii) For all (H,¢) € My(G) the (Ng(H, ), ¢)-Line Bundles over k

M(H, ¢) = @stabilising pair of M; equals (H,¢) Mi
and
N(H, $) = Dstabilising pair of N; equals (H,¢) Vj
are isomorphic in yng(H,4)],¢ON.
(iv) For all (H,¢) € My(G) the (G, ¢)-Line Bundles over k

M((H,¢)%) = Sgtabilising pair of Mje (H,¢)¢ Mi
and
N((H,$)%) = Ostabilising pair of Nye (H,6)¢ Nj
are isomorphic in g} 4mon.
In fact M is isomorphic in ;g smon to the direct sum over the distinct
G-orbits on My (G) of the M((H, $)C)’s.

1.5. We call a finite (G, ¢)-Line Bundle M = My & --- & M,,, over k
indecomposable if it is not isomorphic to a non-trival direct sum N @ P in
k[c],omon. If we form the direct sum of the lines of a single G-orbit then
we obtain a finite (G, ¢)-Line Bundle over k and every M may be written
as the direct sum of these. Therefore, if M is indecomposable, then G
acts transitively on the Lines of M. In this case M = mf,(l%) for any
1 <i < m where (H;, ¢;) is the stabilising pair of the Line M;. Explicitly,
the isomorphism is given by sending g ® g, v € m%(l%) tog-v e M.

Therefore for each object M in g ¢mon we have a sum over the
G-orbits of M4(G) and uniquely determined integers T(h,)(M) > 0 such
that a

M = B\ pmy(0) T(hg) (M) - Indf (ky)

where 7, 4)(M) - P denotes the r(, 4)(M)-fold direct sum of copies of P.
Note that, in the notation of Proposition 1.4(iv),
rki (M ((H,$))) = [G : H] - r,4)(M).

ProPoOSITION 1.6. ([19] §1.9)
The set of finite (G, ¢)-Line Bundles over & given by

G
{Ind7; (k) | (H, ) € G\My(G)}
is a full set of pairwise non-isomorphic representatives for the isomorphism
classes of indecomposable objects in (g, 4mon. Moreover each finite (G, ¢)-

Line Bundle M over k is isomorphic to the direct sum of objects Ind% (k)
with (H, ¢) € G\ My(G) and uniquely determined multiplicity r ¢) (M) =
rk(M((H,$)))/[G : H].
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COROLLARY 1.7. ([19] §1.10) Let M, N be objects of 5] ,mon. In

the notation of Proposition 1.4 the following are equivalent:
(i) M and N are isomorphic in j[g),¢mon.

(ii) For all (H,¢) € My(G), rki(M((H,¢)
(iii) For all (H,¢) € My(G), rky(M(H,¢)
(iv) For all (H,¢) € My(G), rkk(M((H’¢))

$)9)) = rku(N((H, ¢)%)).
) =rk ( (H,9)).
) = rkg (N(H0)),

ﬁ =l

1.8. Let (K,v), (H,¢) € My(G) and let g € G. Define a morphism
fq € Hom, ¢mon(lndK(k¢) nd (kg))
by the formula
ggemv if (K.¥) <(9Hg™' (97")"(¢))
folg ®K v)
0 otherwise.
This is well-defined because, for k¥’ € K,
fo(dK @x (k) v) =gk gom k) v
=g'997 'K g@n p(k)!
=g'gou olg~ K g)(k) !
=g'g@m YK )P(k) v

= fol9' @K v).
The composition of morphisms

Hom, ., ,mon(Ind§ (ky), Indf (ks)) x Hom, g, ,mon(Indf (ks), Indg (k)

!
Hom, ) ,mon (Ind§ (ky), Indg (k)

is given by (fg, fg.) = fag1 = for - fo-
If h € H and f, € Hom, ¢m0n(IndK(kw) Ind% (k4)) then so does fyr,

and fgn, = ¢(h)fy since
fan(g' @k v) = g'gh @n v =¢(h)g'g @ v = d(h)fy(g D v).

Similarly if £ € K then fiy = ¥(k)fy. In particular fig, fgn and f, generate
the same line

<f1<:g> = <fgh> <fg> C Hom ¢mon(1ndK(kw) IndH(k¢))
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LEMMA 1.9. ([19] §1.11)
i) Let (K,v) € My(G) and let N be an object of yjg1 smon. Then
f [ ]7¢

there is a k-linear isomorphism
Hom, , ,mon (Ind% (ky), N) — N{U¥)
given by f+— f(1®g 1). The inverse isomorphism is given by
n— ((g ®x v vg-n)).
(i) Let (K,¢),(H,¢) € My(G). In the notation of §1.8 there is a

k-linear isomorphism

Homk[c],ngH(mg;((de)vmg(k@))

E(fg | (K,¥)<(gHg *.(g7")*(9)))
(Farn—&(R) fg:(frg—(R) fq | REH KEK) "

Il

(iii) Homk[G]‘d)mon(@IG((kw),mg(kqﬁ)) is a free k-module of finite

rank with basis given by fgr»--- s fg, where g; runs through the subset of
double coset representatives of K\G/H such that

(K. ¥) < (9iHgi ', (97 ) (9))-

LEMMA 1.10. ([19] §1.12)
Consider the diagram

MNP

in which M, P €g), mon and N €/g] 4 mod with h, f being morphisms
in j(q),gmod. In particular we include the situation where N’ €4¢) 4 mon
with h, f being morphisms to N’ in |5, ¢mon and the diagram above being

the result of applying the forgetful functor ¥V with N = V(N’). Assume,
for all (H, ¢) € My(G), that

FPUO) € R0,

Then there exists j € Hom, , ,mon (P, M) such that h-j = f.

kG

REMARK 1.11. Partial central characters ¢

There is an obvious analogous version of this section with partial cen-
tral characters Q’. That is, one fixes a central subgroup H' C Z(G) such
that G/H’ is finite and fixes ¢’ € H'. Then one repeats the section with
(Z(G), ¢) replaced by (H',¢').

The case of finite G, which is treated in [19] is the case in which H' =

{1}.
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2. Monomial Resolutions

2.1. Let G,k,¢ beasin §1.1. Let V be a finitely generated k[G]-module
on which Z(G) acts via the central character ¢. That is, V is an object of
k[c),omod. In this section we shall shall define the notion of a k[G],TIOTI-
resolution of V. This is a chain complex of morphisms in k[GMmo;l with
certain properties which will ensure that it is exists and is unique up to
chain homotopy in (g),omon.

2.2. For V €yq),¢ mod and (H,$) € My(G) define the (H, ¢)-fixed
points of V' by a

VWHS) — Ly eV | h-v=¢(h)v forall h € H}.
Clearly g(VH:?)) = yotHo) y(ZE)8) — v and (K,) < (H,¢) im-
plies that VU9 C V(K¥)  Note that f € Homk[c]Y(bmod(V7 W) satisfies
F(VUH2) C WEHD) for all (H,$) € My(G). In addition, if M €x[G],¢ MON
then M((H:®) C M) so that f = Hom, ., ;moa(V(M),V) satisfies
FMED)) C VH) for all (H,¢) € My(G).

DEFINITION 2.3. ([19] §2.2)
Let V €4, mod. A g, gmon-resolution of V' is a chain complex

M, : o5 M S My =SS My 2 M

with M; €y(g),» mon and 0; € Homk[cl:quon(MiH,Mi) for all 7 > 0 to-
gether with € € Hom, ,; ,mod(V(Mo), V) ‘such that

LD () By B () P, () e ya)

is an exact sequence of k-modules for each (H, $) € My(G). In particular,
when (H, ¢) = (Z(G), ) we see that

i Qi— 1¢] 0
M= S M S My -S YV — 0

is an exact sequence in (g omod.

ProOPOSITION 2.4.
Let V €g[q),¢ mod and let

On— Op— 0
o— M, TS My 22 S My -V —0

be a y[g),pmon-resolution of V. Suppose that

Lo 8, 5 8, ¢
—C, —Ch.1 — ... —Cy—V —0
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a chain complex where each 0; and C; belong to jjg)¢mon and € is a

k[c],¢mod homomorphism such that ¢ (CSHODy € VH®) for each (H, ¢) €
My (G).

Then there exists a chain map of ;) 4mon-morphisms {f; : C; —
M;,i > 0} such that

e-fo=¢€, fii1-0,=0;f; foralli>1.

In addition, if {f/ : C; — M;,i > 0} is another chain map of
k[G],eon-morphisms such that e- fo = ¢ fj then there exists a j[g),smon-
chain homotopy {s; : C; — M1, for all i > 0} such that 0;-s;+s;—1-0] =
fi_fi/ fOI‘aHiZlandfo—fézao'So.

Proof
This is the usual homological algebra argument using Lemma 1.10. O

REMARK 2.5. Needless to say, Proposition 2.4 has an analogue to
the effect that every jg)¢mod-homomorphism V' — V' extends to a
k[G],pMOn-morphism between the monomial resolutions of V and V7, if
they exist, and the extension is unique up to g],¢mon-chain homotopy.

3. Some functor categories

3.1. The category j[g] ¢mon is additive but not abelian. Homological
algebra (e.g. a projective resolution) is more conveniently accomplished in
an abelian category. To overcome this difficulty we shall embed j|g] gmon
into more convenient abelian categories. This is reminiscent of the Freyd-
Mitchell Theorem which embeds every abelian category into a category of
modules.

3.2. The functor category functf(xq),omon,; mod)

Let funct(x[q),¢mon,; mod) denote the category of contravariant func-
tors, F,G etc, from g ¢mon to the category of finitely generated k-
modules whose morphismsiare k-linear natural transformations o : ¥ — G
etc.

Let jjg),¢mod denote the category of finite rank k[G]-modules with
central character ¢ (see §1.1). Consider the functor

T kG0 mod — functy (x(q),¢gmon,; mod)
given on objects by
V) = Homk[G],EmOd(V(_)7 V)

withZ(8:V — W)= (f— 3 f).



10 1. FINITE MODULO THE CENTRE GROUPS

Now we shall consider morphisms. In order to keep track not only of
g € G but also of K and H we shall write f; of §1.8 as a triple

(K., $),g. (H,0)) : IndF (ky) — Indj (ko).
Then the composition

Homk[c],fmon(mg(kw)vmg(l’%)) X Homk[c],gmon(mg(k@,mg(k#))

!

Homk[G],$m0n<m?{(kw)»mg(k#)

)
is given by (((Kaw)aga (Ha ¢))7 ((Hv (rb)?gl? (Ua H))) = (((K7
The tautological equality (¢Hg™ !, (g7 1)*(¢)) = (¢Hg ™1, (
an isomorphism
(9Hg™ " (g7")7(9)).9, (H, ) : Indgyy s (k(g-1)+ (9)) — IndF (ko)

given by ¢’ ®,pmg-1 v +— ¢'g ®p v, which is an automorphism if and only if
g € Ng(H, ¢), the normaliser of (H, ¢).
The morphism ((K,),g, (H, ¢)) induces
(K, ), 9, (H,))" : T(V)(Ind5 (ko)) — Z(V)(Ind5 (ky))

given by the pre-composition (K, ¢), g, (H, $))"(f) = f-((K,¢), g, (H, )).
There is an isomorphism of k-modules (analogous to §1.9(i))

Z(V)(Ind$ (kg)) = VIEH®

¢)79 17(U7H’)))
971)"(¢)) yields

given by sending v € V) to the k[G, ¢]-mod morphism

Indf (ky)) — V61 ®n a— agiv
for a € k. Therefore ((K,v),g,(H,¢))* corresponds to a k-linear map
yH9) 1 (K)
given by v’ — gv’ since
91 Ok @ — g19 O a — agigv’

is the map which corresponds to gv’ € V%) This makes sense because,
if z € K, then zgv' = gg~tzgv" = ¢(g~29)gv’ = ¢¥(z)gv’.

3.3. The functor T on morphisms

Let VW €41q),¢ mod and set F(—) = Z(V)(—), G(=) = Z(W)(-).
Given a natural transformation o : 7 — G for each M €G],y mon we
have

a(M): F(M) — G(M)

such that if 3: M — M’ is a morphism in jg),4mon we have a commu-
tative diagram
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F) 2 F(M)
a(M) a(M)
G(M") L G(M)

If we have a homomorphism v : V' — W in jg],smod we obtain a
natural transformation a

Yot F—G

given by v.(M)(f) =~-f € G(M) for all f: M — V in F(M). However,
given any natural transformation « there is a unique homomorphism ~ in
k[c),omod such that o = ~.. This is seen by the following discussion.

‘We have a morphism in k[G],pMON

(K, %), 9, (H,9)) : Ind (ky) — Ind (ky).

For example, when (K,v) = (Z(G), ¢) = (H, ) we have

((2(G), 9),9,(2(G), 8)).
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We have a commutative diagram

F((K,4),9,(H, $)))

F(1ndS (k) F(ndS (k)
o(1nd% (ky)) o(1nd% (k)
K, v),q9,(H,
GG (ky)) 019 (H0)) G(1nd$ (ky))

Taking (K,v) = (Z(G), ¢) = (H,¢) the commutative square may be iden-
tified with

(g-—)

\% —— \%4
@(@g(a)(k@) a(mg(c)(@))
W L W

Now setting (K, ) = (Z(G), ¢) we have a morphism

which shows that a(mg(G)(k )) is a homomorphism in (g, mod.

(Z(G), 0),9,(H,9)) : IndF ) (k) — Indf (ky).
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This yields the commutative diagram

F((2(6). ¢), 9, (H,9)))

F(Indf (ks)) F(Ind7 ) (k)
a(Ind (ky)) a(IndZ g (ky)))
oy S(EODa N e
which in turn may be identified with
e FUZ(©).0).0.(.0)) ;
a(Ind (ky)) a(Indg ) (ky)))
e IZ(6).9).9,(1.9)) .

The horizontal maps are injective. In fact, for example, the upper hor-
izontal map sends v € VIH®) to g-v € V. For v € VIH:® corresponds
to the homomorphism ¢1 ® g o — ag; - v. Since F(((Z(G), ¢), g, (H, $)))
corresponds to pre-composition with f, we see that the image of v corre-
sponds to the homomorphism g1 ®z(q) @ = g19 @5 a — agig - v which is
identified with g-v € V.

Hence a(Ind% (k,)) is uniquely determined by a(mg(a) (kg)) and so we

have established the following proposition, which follows from the previous
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discussion together with additivity of the functors and natural transforma-
tions.

ProprosITION 3.4.
In the notation of §3.3 given any natural transformation

a:F—G

there is a unique homomorphism v : V. — W in g ¢mod such that
« = 7,4, which completely determines «.

PROPOSITION 3.5. ([19] §3.2) Let Z denote the functor of §3.3 and
define a functor

J ‘k[G),p TMON — funth(k[G],fmon,k mod)

by J(M) = HornMG]ﬁmmm(—7 M).
Then the category funct}(xg),omon,; mod) is abelian. Furthermore

both Z and J are full embeddings (i.e. bijective on morphisms and hence
injective on isomorphism classes of objects).

Proof

By Yoneda’s Lemma J is a full embedding. The result for Z follows
from Proposition 3.4. O

PROPOSITION 3.6. ([19] §3.3)
For M €jq,4 mon the functor J(M) in functf(i[q),¢mon,; mod) is
projective. a a

Proof

Suppose that we have a diagram in functy (yg),¢mon,; mod) of the
form B

G- H L T (M)

in which « is surjective. Therefore for every N €(g),, mon the homomor-
phism a(N) : G(N) — H(N) is surjective. By Yoneda’s Lemma natural
transformations from J (M) to G correspond bijectively to the elements of
G(M). Similarly the natural transformations from J (M) to H correspond
bijectively to the elements of H(M). The fact that a(M) is surjective is

therefore equivalent to the fact that there exists a natural transformation
v from J(M) to G such that a-y = . O

REMARK 3.7. In general funct}(xg),omon,; mod) has more projec-
tives than just the J(M)’s. A complete analysis of all the projectives in
functz(k[G]yémon,k mod) may be given along the lines of the finite group

case, which is given in ([19] §3.4 and §3.8).
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DEFINITION 3.8. Let M €y(q),¢ mon,V €jq),» mod. Define a k-linear
isomorphism Kz of the form B B

Ka,v

Hom,;; ymoa(V(M), V) —> Hom puncts (1) ymon,moa) (J (M), Z(V))
by sending f : V(M) — V to the natural transformation
Ky (N) : J(M)(N) — Z(V)(N)
given by h+— f-V(h) for all N €k[G),¢ MON
Homk[c]yfmon(N, M) — Homk[G]YEmOd(V(N), V).

The inverse isomorphism is given by ICMV((;S) = ¢(M)(1pr) where 1y
denotes the identity morphism on M.
In fact K is a functorial equivalence of the form

K: Homk[c],ﬁmod(v(_)a _) — Homfunctg(k[G],Emon,kmod)(\-7(_)7:[(_))

THEOREM 3.9. ([19] §3.6)

Let

i Oi—
O I 2 v 2 My SV — 0

be a chain complex with M; €yq)¢ mon for i > 0, V €pg),4 mod,
0; € Homk[G]yfmon(MiH,Mi) and € € Homk[GMmod(V(MO)7 V). Then the
following are equivalent:
(i) M. — V is a g),emon-resolution of V.
(ii) The sequence
T (0:)
S

J(0i-1) J(81) J (8o Karg,v(€)

(M) T T 7 (M) e vy — 0

is exact in functf(x[q),mon,, mod).
REMARK 3.10. Theorem 3.9 together with Proposition 3.5 and Propo-
sition 3.6 imply that the map

Karg,v (e)
—

(M, — V) = (J(M) Z(V))

is a bijection between the ;g smon-resolutions of V' and the projective res-
olutions of Z(V') consisting of objects from the subcategory J(jjc),omon).

4. From functors to modules

4.1. The functor ®

Let M €y(g),p mon and let Ay = Homk[c1,¢mon(M7 M), the ring of
endomorphisms on M under composition. By Lemma 1.9 A, is a finitely
generated k-algebra.
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In this section we shall show that there is an equivalence of cate-
gories between functy,(xg),omon,;, mod) and the category of right modules

mod 4,, for a suitable choice of M.
We have a functor

Qs functy (rjg),pmon,; mod) — mod 4,

given by ®(F) = F(M). Right multiplication by z € Ay on v € F(M) is
given by

vz = F(2)(v)

where F(z) : F(M) — F(M) is the left k-module morphism obtained by
applying F to the endomorphism z. This is a right-A; action since

v (221) = Flz21)(v) = (F(21) - F(2))(v) = F(21)(F(2)(v)) = (v#2)#21.
In the other direction define a functor
Uy :mody,, — funth(k[G]@mon,k mod),
for P € mody,,, by

Uy (P> = Homy,, (Homk[c]@mOn(Ma _)a P)

Here, for N €4, mon, Homk[G],(bmon(M, —) is a right Ap/-module via
pre-composition by endomorphisms of M. For a homomorphism of Aj;-
modules
f: P — @ the map W, (f) is given by composition with f.

Next we consider the composite functor

Dy -V :mody,, — mody,,.
This is given by P+ Hom 4,, (Hom, ., ,mon(M, M), P) = Homy,, (Axr, P)

so that there is an obvious natural transformation 7 : 1 =9 - WYar such
that n(P) is an isomorphism for each module P.
Now consider the composite functor

W Py funth(k[GL?mon,k mod) — funth(k[G]@mon,k mod).
For a functor F we shall define a natural transformation
er: F — HomAM(Homk[G],fmon(M7 =), F(M)) =Ty - Dps(F).
For N €yq ¢ mon we define
er(N): F(N) — HomAM(Homk[G]yfmon(M, N),F(M))

by the formula v — (f — F(f)(v)).
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THEOREM 4.2. ([19] §3.8)
Let S €4(¢),¢ mon be the finite (G, ¢)-Line Bundle over k given by
S = B (mg)emy(c) Indf (ko).
Then, in the notation of §4.1,
s 1 functy(k[q),pmon,; mod) — mod 4,

and
Vg :moda, — functy(iq),gmon,, mod)

are inverse equivalences of categories. In fact, the natural transformations
7 and € are isomorphisms of functors when M = S.

REMARK 4.3. Theorem 4.2 is true when S is replaced by any M which
is the direct sum of Ind%(ky)’s containing at least one pair (H,¢) from
each G-orbit of My (G). That is, for any (G, ¢)-Line Bundle containing

B(1,0)ea\ M () ndf (ky)
as a summand. This remark is established by Morita theory ([88] p.636).

5. The bar-monomial resolution

5.1. The bar resolution

We begin this section by recalling the two-sided bar-resolution for A-
modules. Let k be a commutative Noetherian ring and let A be a (not
necessarily commutative) k-algebra. For each integer p > 0 set

By(M,AN) =M@, AR, ARk ... Qs AQr N
in which there are p copies of A and M € mody, N € 4 mod. Define
d:Bi(M,A,N) — Bo(M,A,N)
by dm®a®n)=m-a®n—m®a-n. For p>2 define
d:B,(M,A,N) — Bp_1(M,A,N)
by
dm®a ®... ®ap,®n)
=m-a1®... ®ap,dn

3PN )M ®... Qa4 -t ®@...Qa,@n

+(-1)PmRau ®... @®a,-n.
Setting N = A we define

€:Boy(M,A,A) =M@ A— M
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by e(m ® a) =m - a and
n:M — By(M,A,A) =M ®; A
by n(m) = m ® 1. Finally define, for p > 0,
s:By(M,A, A) — Bpt1(M, A, A)

by s(m®@a; ®...0a,®a)=(—1)P"'"mea®...0aq a1
With these definitions, if p > 2, we have, for ¢ > 0,

dd=0:Bjj2(M,A,A) — B;(M,A,A) and e.d=0: B;(M,A, A) — M.
Also we have
l=€en: M — By(M,A,A) — M
and for p > 0
ds+sd=1:B,(M,A A) — B,(M,A,A).
Finaaly we have
ds+mne=1:By(M,A, A) — Bo(M, A, A).

All the d’s and € are right A-module maps if the A-multiplication is given
by multiplication on the right-hand factor only.

Therefore we have established the following well-known result concern-
ing the bar resolution for a right A-module.

PROPOSITION 5.2.
In the situation of §5.1 the chain complex

. — By(M, A, A) -5 B, (M, A, A) %

. — By(M, A, A) -5 By(M, A, A) = M — 0
is a free right- A-module resolution of M.

5.3. As in §3.8 and §4.1, let M €yq),¢ mon,V €yg),» mod and let
Ay = Homk[G],gmon(M, M), the ring of endomorphisms on M under com-
position. For ¢ > 0 define MM,i € rmod by (i copies of Ajyy)

MMJ = Homk[c],fmod(v(M)v V) Qr Ay Rk ... Q. Anr

and set }
MM’i = M]\/[,i ®k} Homk[clyimon(_a M)

Hence My, € funct}(ya),¢mon,; mod) and in fact the values of this
functor are not merely objects in ymod because they have a natural right
Aps-module structure, defined as in §4.1.

If © > 1 we defined natural transformations das,0,dar,1,- - ,dar,; in the
following way. Define

dM,O : MMJ- — MM,ifl
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by
dyo(fe®..0q;@u)=f(— o) ®@az...® a; @u.
The map f(—-a1) : V(M) — V is a jjg),¢mod- homomorphism since «;
acts on the right of M. ;
For 1 < j <1i—1 we define

dwm 5MM,i — MM,i—l

by
dv;(f®a1®..0qu)=fQar... a1 ®...0 a; Qu.
Finally
dai s My, — Mpgiq
is given by

d(M)(fem®..0q;Qu)=fRa1®...0 ;1 Q a; - u.
Since u is a ;[g),pMon-morphism so is a; - u because
(i - u)(am) = a;(u(am)) = a;(au(m)) = aa;(u(m)) = ala; - u)(m)

since «; is a |g],¢mon endomorphism of M.
Next we define a natural transformation

€M - MM70 —I(V) = Homlelvfmocl(V(_)7 V)

by sending f @ u € My, to f-V(u) € Z(V).
Finally we define
dy = Z (_1)de7j My — My
7=0

THEOREM 5.4.
The sequence

S My (M) 2% Moy y (M) 55 My o(M) 25 (V) (M) — 0
is the right A4 )/-module bar resolution of Z(V')(M).

5.5. The functorial monomial resolution of V.

Let V' be a finite rank k-lattice with a left G-action. Let M € j[g] 4mon
and W € jlat. Define another object W @y M € g ¢mon by letting
G act only on the M-factor, g(w ® m) = w ® gm, and defining the Lines
of W ®, M to consist of the one-dimensional subspaces (w ® L) where
w € W, runs through a k-basis of W, and L is a Line of M. Therefore, if
M’ € jjc),smon we have an isomorphism

Hom, ., ,mon(W ®k M, M') == W @), Hom, , ,mon(M, M’)

[G]
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providing that W is finite-dimensional. Similarly we have an isomorphism
Homk[G])fmon(M, W@, M) — W @ Hornk[G]yEmon(M7 M)

when W is finite dimensional.

As in Theorem 4.2, let S €4, mon be the finite (G, ¢)-Line Bundle
over k given by ;

S = B(mg)emy(c) Indf (ko).
As in §5.3, for ¢ > 0 we have ]\;[571- € rmod by (i copies of Ag)
MSJ = Homk[c;],imod(v(s)v V) Sk -AS k.- Ok -AS’

which is a finite dimensional k-lattice. As a k-basis for Mg ; we take the
tensor product of the direct sum of bases for each VH:#) and a basis for
each Ag-factor given by the f;’s of Lemma 1.9. Note that, conveniently,
the product of two f,’s is either zero or an f;. Therefore we may form
MS,i Rk S € k[G],p1MON.

Recall from §3.2 that

Hom, ) ,mod(V(S), V) = Z(V)(S) = @ (n.s)em, () VI,

which we shall assume is a finite dimensional k-lattice. In our principal
application where k is a field this will be fulfilled automatically.
We have morphisms in g} gmon for i > 1

doydy,...  di: Ms; ®y S — Mg, 1 @ S
defined on
O ®... ®0;®s € Homyg,g-moa(V(S),V) @k AL @ S
by
d(f@u®..00@s)=fV(m)®a®...0uq s,

and for 1 <j<i—1
G(fRuM®..00Qs)=fRa®...0 4jaj...Q0; @S
Gi(fR®..00;08)=fRa1®...Q0 a;_1 ® a;(s).

Setting d = Z;:O (—1)7d; gives a morphism in k[G],MON
d:Ms; @S — Mg 1 ®S
for all ¢ > 1. In addition we define a homomorphism in g ,gmod
€: MS,O R S = Homk[G
by e(f @) = £(5).

]’Emod(v(s)v V) Rk S—V
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The chain complex
.LMSVZ‘@;CSLM..LMS71®/§SL>MS7Q®1€S;V—>O

satisfies the conditions of Theorem 3.9. Therefore, abbreviating M 5, ®k S
to M; pro tem, this chain complex is a j[g],smon-resolution of V' if and
only if the sequence

J() 72 7 (M)
is exact in functf(xq),mon,; mod). By Theorem 4.2 this chain complex
of functors is exact if and only if the result of applying ®g to it is exact in
the category mod 4. However, by Theorem 5.4 with M = S the resulting
chain complex in mod 4, is the bar resolution, which is exact.

Therefore, taking k to be a field in order to ensure the lattice conditions,
we have proved the following result.

J(d) J(d)

A 7o VARAL Forto v (€

(V) —0

THEOREM 5.6. Fuxistence of the bar-monomial resolution
Let k£ be a field. Then, in the notation of §5.5, The chain complex

.LM57i®kSi>...LMS’1®;€SLMS70®/€S;V—>O
is a p[g],¢mon-resolution of V.

REMARK 5.7. Using Theorem 3.9 and Theorem 4.2 to prove Theorem
5.6 had the advantage that it guided us directly from the classical bar resolu-
tion for rings and modules to a description of the bar-monomial resolution.
However, now that we have its description, it is presumably straightforward

to construct the correct type of “contracting homotopy” which would im-
mediately show that the complex of Theorem 5.6 is a monomial resolution.

5.8. Naturality - inclusions of subgroups

Suppose we have an inclusion homomorphism i : G C J of finite modulo
the centre groups with i(Z(G)) C Z(J), Suppose that G and J have central
characters ¢ G and ¢ 7 respectively, which satisfy ¢ o= [ 5ol

As in Theorem 4.2 define Sg €(g),» mon and S; €;(j],4 mon to be

Sc = ®(,g)emy(c) Ind (ky)
and
S = ®rr,gnemy (1) diy ().
We have a [q),gmon-morphism, as in §3.2,
((Ka¢)’ga (H7¢)) : SG I SG

associated to each triple ((K, ), g, (H, ¢)) which satisfies the condition that
(K.9) < (9Hg™ ' (97)"(¢)). It maps Indf(ky) — Indf (k) via
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g @k v — ¢'g ®y v and is zero on the other summands. Varying over
the set of such triples, we have

ASG = Homk[g]ygmon(SGa SG) = k<((K7 w)a g, (Ha ¢))>/ =
where =~ is the subspace generated by
(K1), gh, (H,$)) — ¢(h) (K, ), g, (H, ¢)) for h € H.

Then Ag,, is a ring under composition which is given in terms of generators
by
((K’ w)’ 9, (Ha ¢)) : ((Ha ¢)> Uu, (U7 M)) = ((K’ ¢)7 gu, (Uv :U’))

The inclusion homomorphism G C J means that we have a map on
triples which sends ((K,), g, (H, ¢)), a triple for G, to ((K,v), g, (H, ))
considered as a triple for J. This preserves composition and the relation ~
so we have a ring hommorphism

iG,J : ASG — ASJ.
Next, if V' is a representation of J then Frobenius reciprocity gives an
isomorphism, also iq, s,

Hom, ., ,moa(V(Indf (ks)), Resg(V)) — Hom, ) ;moa(V(Indy (ks)), V)

which sends f to ig,s(f) 1 @uv— jf(l®gv).
We have two routes from Homk[cwmod(V(mg (ky)), Res&(V)) ® As,

to
Hom, ,, ,moa(V(Ind (ks)), V). Starting with f : Ind§(¢)) — Res(V)

and (K1), 9, (H, 8)) we may form i (f - V(K. ). 9. (H,))) given by
1Ok v g1g@u v gig(f(l®pv) eV
or we can form ig j(f) - ic,s(V((K, %), g, (H,¢))) which is given by
JOr v jg@u v jgf(1®@uv).

Therefore the two routes agree.
Also we have two routes Ag ® S¢ — S given by evaluation followed
by ig,; or ig,; ® ig,; followed by evaluation. Both are given by

((Kv 77[])797 (Ha ¢)) ® (gl KK ’U) — g19 QH V.

We define a G-map ig,; : S¢ — S by sending g ® g v € mg(/%) to
9 ®u v € Indy(ky).

Therefore it is easy to see that i, induces a canonical homomorphism
of bar-monomial resolutions of Theorem 5.6

iG.y: (Msg.« ®) Sg —— Resl(V)) — (Ms, . ®) Sy —— V)

which commutes with the augmentations to V' and with the left-action by
the subgroup G.
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In addition, if G C J C H is a chain of groups the canonical homomor-
phisms are transitive in the sense that iy - iq,; = iq.H-

5.9. Naturality - surjections onto quotient groups

Let N <G be a normal subgroup which acts trivially on V. In this case
the central character ¢ factorises through G/N and we shall also denote
by ¢ the resulting central character on G/N. If ¢ € H is trivial on H NN
then ¢ induces a unique character ¢ on HN/N. Let 7 : G — G/N denote
the quotient map. Define

Ta,q/N P Sa — Sa/n
to be zero on summands Ind% (¢) unless N C H and Res& (¢) is trivial. If
N C H and Res®(¢) is trivial then there is an k[G],¢TNON- isomorphism

a6/ - Indf (ky) o mg%(l’%)

given by g @ v — 7(g) @ N V.

There is a ring homomorphism 7g g/n : A — Ag/n given by send-
ing (K,%),g,(H,®)) to zero unless N is a subgroup of H (| K, which is
equivalent to N C K, and Resh (¢) (hence also Resh (1)) is trivial. Other-
wise

7TG,G/N(([(a '9[])79) (H, ¢)) = ((K/N, "/)>7 71'(9), (H/N’ (b))

There is an isomorphism

TG,G/N
—

Homk[G] ,pmod (V(mg (de))a V) Homk[G/N] ,pmod (V(mg% (k(g)) ) V)

if N C H and Res¥(¢) is trivial and we define Ta,q/N to be zero on
Homk[GLtbmod(V(mg (kg)), V) otherwise.
The maps Ta,q/n induce a chain map of bar-monomial resolutions

TG.6/N t (Msg . ®k S — V) — (MSG/N,* ®k Sayn — V)

which commutes with the augmentations to V' and with the left-action by
G.

In addition, if N C M is an inclusion of normal subgroups of G the
canonical homomorphisms are transitive in the sense that
TG/N,G/M " TG,G/N = TG,G/M-

The chain map ig,; of §5.8 together with 7g ¢ n define a canonical
chain map of bar-monomial resolutions associated to any homomorphism

NG — Gy
At (Msg @k Sg ——= V) — (Mscl,* ®k Say, — V)

which commutes with the augmentations to V' and with the left-action by
the subgroup G. In addition Ay - 7 = (A« 7).
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To see this one verifies the following property. Suppose that we have
an inclusion G C J and a surjection J — J/N as in §5.8 and §5.9. The
composition of these two homomorphisms is equal to the surjection G —
GN/N followed by the inclusion GN/N C J/N. However

iGN/N,J/N " TGQ,GN/N = TJJ/N " 1G,J-

5.10. Naturality - inclusions of sub-representations

Let j : V C Vi be the inclusion of a sub-representation of G such
that each representation has the same central character ¢. Then post-
composition with j induces B

Homk[c],ngd(V(SG)a V) e Homk[G],ngd (V(SG), Vl)
and a canonical chain map of bar-monomial resolutions
Ju: (My 544 @k Sg ——= V) — (My, 5.« @k S —— V1)

which commutes with the augmentations and with the left-action by G.
Here the suffices V' and Vj, which will usually be suppressed, have been
included to stress which representation is being resolved.

6. Finiteness of monomial resolutions in characteristic zero

6.1. Suppose that G is a locally p-adic group which is finite modulo
the centre and suppose that V' is a finite dimensional, irreducible complex
representation of G with central character ¢ on Z(G). We shall construct a
finite length, finite type monomial resolution of V by modifying the proof
for finite groups which is given in ([19] §6). In this section, temporarily, we
shall suppress the mention of ¢ and merely write Mg for My (G).

This is an involved induction of the “homological algebra” type which
produces a monomial resolution unique up to chain homotopy equivalence.

Eventually I hope to be able to construct a proof which proceeds di-
rectly by modification of the bar-monomial resolution, for example by con-
structing a contracting homotopy which respects “depth”, the filtration on
which the following proof is based.

6.2. We say that (H,¢) € Mg is V-admissible if V(#:#) £ 0 and
(Z(G),¢) < (H,¢). Let S(V) denote the set of non-zero subspaces of V'
and let A(V) C M dente the set of V-admissible pairs. Define maps

Fy:AV)— S(V)and Py : S(V) — A(V)
by the formulae
Fy(H,¢) = V9 and Py (W) = sup{(H,¢) | W C VH:2)},

Usually suprema do not exist in Mg but Py (W) exists in this context.
Firstly W C VZ@:9)  On the other hand, if W C VH®) and W C
VHY) then W C VEH"9") where H” is the subgroup generated by H
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and H' and ¢” is a character which extends both ¢’ and ¢. This extension
exists since H/Z(G) and H'/Z(G) are both finite and C* is an injective
abelian group.

Both §(V) and A(V) are posets with G-action with W C Fy (Py (W))
and (H, ¢) < Py(Fy(H,¢)). Define the V-closure cly (H, ¢) by

CIV(Hv d)) = PV(FV(H, d)))
and say that (H,¢) is V-closed if (H,¢) = cly(H, ¢). Hence cly (H, ) is
the largest pair (H’,¢') such that V(¢ = VEHY)  Closure commutes
with the G-action, is idempotent and order-increasing. Let C1(V) C A(V)
denote the subset of closed pairs.

For (H,¢) € CI(V) define the V-depth dy (H, ¢) to be the largest in-
teger n > 0 such that there exists a strictly increasing chain in CI(V') of
length n of the form

(H7 (b) = (H07¢0) < (H17¢1) < < (Hn71a¢n71) < (Hna¢n)
Therefore dy (H, ¢) = 0 if and only if (H, ¢) is maximal in C1(V).

THEOREM 6.3.

In the situation and notation of §6.1 and §6.2 there exists a finite type
C[G]-monomial resolution

M, —V —0
such that:

(i) For ¢ >0, M; has no Line with stabiliser pair (H, ¢) ¢ Cl(V).

(ii) For ¢ > 0, M; has no Line with stabiliser pair (H, ¢) € Cl(V) and
dv(H,¢) < i.

In particular M; = 0 for all ¢ > max{dy (H, ¢) | (H,¢) € CI(V)}.

Proof
By induction on n we shall show that there exists a chain complex
My 22 M,y 222 My -V 0

in which each M; is a C[G]-Line Bundle, each 9; is a morphism and e is
a homomorphism of C[G]modules such that the following conditions are
satisfied:

(A;) For 0 < i <mn, M; has no Line with stabiliser pair (H, ¢) & CI(V).

(By,) For 0 <4 <n, M, has no Line with stabiliser pair (H, ¢) € CI(V)
and dy (H, ¢) < i.

(Ch) The sequence of vector spaces

M) It (o) Iz B0y (H0) €y (e) g
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is exact for all (H,¢) € Mg.

(D) The sequence of vector spaces
0 — MH®) It (00 Oz - G0,y ((H6) e, y(He) g

is exact for all (H,¢) € Cl(V) with dy (H, ¢) < n.
Note that for n > max(dy (H, ¢) | (H,$) € CI(V)) the properties (4,)
and (B,,) imply that M,, = 0 and property (C,,) implies that

M,V —0

is a C[G]-monomial resolution satisfying conditions (i) and (ii) of Theorem
6.3. By C[G]-equivariance it suffices to prove (A4, )-(D,,) for one pair (H, ¢)
in each G-orbit.

Step (a): We show that if (A4,) , (B,) and (D,) hold then it suf-
fices to prove (C,) only for (H,¢) € CI(V). Let (H,¢) € Mg such that
(Z2(G),9) < (H,9¢). If (H,$) ¢ A(V) then no larger (H', ¢') is V-admissible
and since CI(V) C A(V') we have Mi((H’¢)) =0for 0 <i<nby(4,). Also
VH:#) — 0. Now suppose that (H,¢) € A(V) then we must prove that the
sequence in (C,,) is exact, assuming that it is exact for all (H, ¢) € CL(V).
We have VH:#) = yelv(H.6) by the definition of closure. In addition,

M) — prevHd) g1 211 0 < i < n. This is seen as follows: (H,¢) <

K3 K3

cly (H, ¢) implies that MV ) ¢ prH9) and for all (H', ¢') > (H, ¢) we
have no Lines in M; with stabiliser pair (H’, ¢’) unless (H', ¢') € C1(V), by
(A,), but in this case we have (H',¢") = cly (H',¢') > cly (H, ¢) = (H, ¢)
so that MZ-((H/’W)) - MiClV(H’d)). Therefore the sequences in (C),) for (H, ¢)
and for its closure coincide but the latter is exact by assumption.

Step (b): We start the induction on n by defining € : My — V.
For each (H,¢) we need to define the set of Lines in My whose stabiliser
pair is G-conjugate to (H,¢). If (H,¢) € C1(V) we shall define the set of
such Lines to be empty. If (H,$) € Cl(V) define this set of lines to be
given by the Line Bundle Ind$ (V(#:9)) where V%) is viewed as a C[H]-
Line Bundle with any choice of decomposition into Lines with the H-action
hv = $(h) - v, which was given on V#:9) already. Define € on this sub-Line
Bundle of M,

Ind&(VHS) v
by €(g ®cjm) v) = g - v. This satisfies both (Ag) and (By).

Next we show that (Dg) holds. Suppose that (H,¢) is a maximal el-
ement in Cl(V'), which implies that (H,¢) is maximal in A(V) because
if there were a larger pair in A(V) its closure would be in CI(V) and
larger than (H, ¢). Therefore the normaliser of (H, ¢) must equal H. For
the normaliser is stabg(H, ¢) and so if it is greater than H the charac-
ter ¢ may be extended ¢’ on to H' > H with an abelian quotient group
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H'/H and VH:$) = (. By Clifford theory VH"¢) - 0 and therefore
(H',¢') > (H,¢) in A(V) - a contradiction. Maximality in C1(V'), (Ao)
and the condition H = stabg(H, ¢) imply that Mé(H’¢)) = 1®c(m) V (H.9)
so that e : M((H:#) — yV(H:9) ig an isomorphism. Finally, by step (a), we
must show that e : M((H:2)) s V(H:9) is surjective for any (H, ¢) € CI(V),
which is clear by construction.

Step (c): Next we assume that we have already constructed a chain

complex

On— On— o)
M, “= M, ;1 == ... 5 My -5V —0

such that (A,), (Byn), (Cp) and (D,) hold. When n = 0 we interpret
(M,,,0n-1) as (V,e). We shall define 9,, : M, +1 — M,, by defining the
Lines of M,,+1 whose stabiliser pair is G-conjugate to (H, ¢) and specifying
Op, on the direct sum of those Lines. If (H,¢) ¢ CL(V) we set the sum of
these Lines to be zero, which assures that (A,1) holds. If (H, ¢) € CI(V)
and dy (H,¢) < n we also set the sum of these Lines to be zero, so that
(Bp+1) follows from (By,). Moreover (D,,) and (A,+1) implies (C,+1) for all
(H, ¢) with dy (H, ¢) < n. Also (D,,) implies (Dy41) for all (H,¢) € CI(V)
with dy (H, ¢) < n.

If (H,¢) € Cl(V) with dy(H,¢) > n+ 1 we define the direct sum of
Lines in M, with stabiliser pair conjugate to (H,¢) to be Ind% (QQH’@)
with Q4% = Ker(0y,—1 : MO Mfl(_fll’¢))) considered as an H-Line
Bundle with any chosen decomposition and we set 0, (9 ®c(u) v) = gv.
Clearly 9,,_1 - 0, = 0 as defined so far and 0, is a morphism by Frobenius
reciprocity. Also

Ker (81 : M{TO) — M)y — F0) — 9, (1 @) Q) C Tm(d,,)

shows that (C,41) holds for this pair (H,¢) (and its G-conjugates) and
(Dp1) is vacuously true for it.

It remains to deal with the case when dy (H, ¢) = n+1 and only (D, 41)
requires to be proved since (Cy,41) is vacuously satisfied in this case. We
shall show in Lemma 6.4 that

Q%H"i’) = Ker(dy,_1 : M,S(H’qb)) N M7(l(_Hl’¢))) o IndzabG(H’(ﬁ)(L(H@))

as C[stabg(H, ¢)]-modules for some C[H]-submodule L, 4) C Q% Since
H acts on Lp 4y via multiplication by ¢ we may choose a decomposition
for L(p 4) as a direct sum of (H,¢)-Lines. Then we define the direct sum
of Lines in M,, 11 whose stabilisers are G-conjugate to (H, ¢) to be given by
mf,(L(H,@) and define 9,, on mg(L(H,@) by 0n(9 ®cia) v) = gv. Then
Oy, is a morphism, by Frobenius reciprocity, and (D,,+1) holds because, by
(An+1) and (Bp1),

H,
MUY = (d$ (L) ) = yegiave (i $ @cim Lima),
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which shows that 0,, induces an isomorphism Mégﬁ"ﬁ)) — Q%H’qs).
The proof will be completed by Lemma 6.4. O

LEMMA 6.4.
Suppose we have a chain complex as at the start of the proof of Theorem
6.3
UM VN UG /AN VN
such that conditions (A,), (B,), (Cy) and (D,,) hold. Let (H,¢) € CI(V)
with dy (H, ¢) = n+1. Then the class § € Ky(C[N]) of the C[stabg(H, ¢)]-
module
Ker(8y_1 : M{HO) — pp(ULO)y _ (H.0)

is a (possibly zero) multiple of the character of IndStabG(H ) (4).

Proof

Set N = stabg(H,¢). Then, by (C,) for (H,¢) we have an exact
sequence of C[N]-modules

0 — QD N Ot () In

L0, () <,y g,

Denote by x; € Ko(C[N]) the character of Mi((H”z))) and v the class of
VH:9) | Therefore we obtain

v=(-1)"t1g+ Z (—1)'x; € Ko(C[N]).

At this point the proof of ([19] §6) uses the existence of the explicit
Brauer induction maps ay and by (in the notation of [126]) which could
be established for finite modulo the centre groups (with a fixed, possibly
non-finite central character) by the algebraic argument of [17] which is
reproduced in [126]. However, it is easier to use the topological construction
of these maps by the method of Peter Symonds construction [134], which
uses the action of G on the projective space of V' and works more general
for finite modulo the centre groups.

Now consider the class of the C[N]-Line Bundle Mi((H’¢)) which satisfies

X = bN(Mi((H’é))), by definition. We also have by (an(v)) = v so that we

obtain
n

(=)0 = by (an (v Z )ixi) € Ko(C[N]).

Observe next that all the stabiliser pairs of the Lines of Mi((H’@) for

0 < i < n have the form (H' (N, Resgij(gb/)) for some (H',¢') € Mg
such that (H,¢) < (H',¢'). Hence in the free abelian group Ry (N) on
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the N-conjugacy classes of My the class of Mi((H’¢)) € R (N) may have
non-zero coefficients only at basis elements (K, 1) € My /N with (H, ¢) <
(K, ). By a basic property of ay, the same is true of ay (v) since v restricts
to a multiple of ¢ on H. Therefore we may write

n

an() =Y (1M = ST gy, (K Y)N € Ry (N)
=0 (K, Y)NEMN /N
(H,¢)<(K )

where each ok ), is an integer.

We shall show that ok ), = 0 forall (H, $) < (K,4), which concludes
the proof.

Assume that o g, y,)y 7 0 for some (H, ¢) < (Ko, o) and assume also
that (Ko, o) is maximal amongst pairs satisfying this condition.

Recall that there is a (non-symmetric) bilinear form on R4 (V) and
maximality of (Ko, 1) yields

(Ko, %0) Ny Dk yermn /v Q) - (K Y)N)N
(H,$)< (K1)

=D (wrnemy/n Q)N (Ko, Yo)n, (K, ¥)N)N
(H,p)<(K,9)

= (K0 (Ko, %0) N, (Ko, Yo)N) N

= a(Koﬂlio)N[StabN(KOa 1;[}0) : KO] 7é 0.

On the other hand, adjointness properties of ag and the bilinear form
yield

(Ko, o) n,an(v) — S0y (—1)iM oDy g
= (Ko, o) n,an )y — Sieg (=1 (Ko, o), M)y

= (I, ($o0), ¥)v — iy (1) dime (Homepn)mon(Indis, (o), M)
= (0, Resi, (1)) iy — g (—1) dime (ML FO¥))

= dimC(V(KOawO)) — Z?:o (—1)idim@(Mi((K0’w0))).

The lemma will be proved by showing that this last expression is zero. If
(Ko, 1) is not VH:®)_admissible then (A,,) implies that every term in this
sum vanishes. If (Ko,10) is VH#)_admissible then we have cly (H,$) =
(H,¢) < (Ko, o) < cly (Ko, 10). This implies that

dv(Clv(Ko,Ql)o)) < dv(H, (]5) =n+1.
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However (D,,) implies that the chain complex

0 — Mgletv (Ko.o)) On—a Mr(LCl\{(Kov¢o)) On-z

i} MéClV(K0,¢0)) _€, yelv(Koso) — 1/ (Kobo) ()

is exact. In addition, by an argument used in the proof of Theorem 6.3(a)
we have Mi(dV(KO’wO)) = Mi((KO’wO)) for 0 < ¢ < n, which completes the
proof. O

COROLLARY 6.5.

When £k is an algebraically closed field of characteristic zero in Theo-
rem 5.6 the bar-monomial resolution of V' is chain homotopy equivalent in
k[G],oT0n to a finite length, finitely generated j(q) gmon-resolution of V.



CHAPTER 2

GL- of a local field

In this chapter we shall consider, in the local field case, the existence
and structure of the monomial resolution of an admissible k-representation
V of GLy K with central character ¢. The monomial resolution constructed
in this case is unique in the derived category of k[G Lo K], TOML.

In §1 we recall the definition and properties of compactly supported
(modulo the centre) induction of an admissible representation (and the
k[g)mon-analogue) of a locally profinite Lie group such as GL, K. In §2 the
finite modulo the centre monomial resolutions of Chapter One are extended,
using the functoriality of the bar-monomial resolution, to the case of com-
pact open modulo the centre groups. In §3 we construct a pgr,, k],¢mon-
monomial double complex made from a compact open modulo the centre
bar-monomial resolution for each such orbit stabiliser of a G L,, K-simplicial
complex Y and the natural monomial morphisms between them. In §4 with
n = 2 we take Y to be a simplicial subdivision of the Bruhat-Tits building
(the classical tree of [115]) of GL2 K. Since the tree is one-dimensional one
can make the construction without recourse to the naturality properties -
homological algebra with chain complexes will suffice. For GLs K we adopt
this simplification in order better to illustrate the basic construction with-
out the extra technicalities. In §5 I describe what becomes of a monomial
resolution of an admissible representation of GLy K when one takes the part
“fixed by level-n units”. Not surprisingly the result is a finite modulo the
centre monomial resolution. §5 concludes with some remarks about the rel-
evance of this to local e-factors and L-functions. In §6 for GLy K (although
the results hold for arbitrary GL, K) I describe the monomial resolution of
an admissible representation of the semi-direct product of a Galois group
with GL, K which extends a given Galois invariant GLs K admissible rep-
resentation. This construction should be related to Galois base change (or
Galois descent) of admissible irreducibles (see [91] and [7]). With this sort
of application in mind I have given in Appendix I, which is Chapter Ten,
an extended discussion of a particular Shintani descent example. Shintani
descent [117] is the finite group (possibly motivating) analogue of base
change.

31
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1. Induction

In this section we are going to study admissible representations of
GLsK and its subgroups, where K is a p-adic local field. These repre-
sentations will be given by left-actions of the groups on vector spaces over
k, which is an algebraically closed field of arbitrary characteristic. Let us
begin by recalling induced and compactly induced smooth representations.

DEFINITION 1.1. ([40] p.17)
Let G be a locally profinite group and H C G a closed subgroup. Thus
H is also locally profinite. Let

o: H— Auty(W)

be a smooth representation of H. Set X equal to the space of functions
f+ G — W such that

(i) f(hg) =hf(g) forallhe H,g € G,

(ii) there is a compact open subgroup Ky C G such that f(gk) = f(g)
for all g € G,k € Ky.

The (left) action of G on X is given by (g f)(z) = f(xg~!) and

Y G — Autp(X)

gives a smooth representation of G.
The representation 3 is called the representation of G smoothly induced
from ¢ and is usually denoted by ¥ = Ind% (o).

1.2. Definition 1.1 does make sense since, if g € G,h € H and f € X,
then
(9- N)(hg1) = f(hgrg™") = hf(g19™") = h(g- f)(91)
so that (g - f) satisfies condition (i) of Definition 1.1.
Also

(991-f) (@) = f(z(991) ") = flzgr g™ Y) = g(w = flagr ")) = (9:(91-1))(2)
so X is a left representation, providing that g- f € X when f € X. However,
condition (ii) asserts that there exists a compact open subgroup K such
that k- f = f for all k € K. The subgroup gK;g~! is also a compact open
subgroup and, if k¥ € Ky, we have

(gkg™") - (9-f) = (gkg™'g) - f=(9k)-f=(g9-(k-f))=(9-f)
so that ¢g - f € X, as required.

The smooth representations of G form an abelian category Rep(G).

PROPOSITION 1.3. ([40] p.18)
The functor
Ind$ : Rep(H) — Rep(G)

is additive and exact.
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PROPOSITION 1.4. (Frobenius Reciprocity; ([40] p.18))
There is an isomorphism

Homg (7, Ind% (0)) — Homp (7, 0)
given by ¢ — « - ¢ where « is the H-map
md$ (o) — o
given by a(f) = £(1).
1.5. In general, if H C @ are two closed subgroups there is a -map
md% (o) — Ind% (o)
given by restriction of functions. Note that a in Proposition 1.4 is the

special case where H = Q.

1.6. The c-Ind variation ([40] p.19)
Inside X let X, denote the set of functions which are compactly sup-
ported modulo H. This means that the image of the support

supp(f) = {g € G | f(g) # 0}

has compact image in H\G. Alternatively there is a compact subset C C G
such that supp(f) C H - C.

The 3-action on X preserves X, since supp(g- f) = supp(f)g C HCy,
and we obtain X, = ¢ — Ind% (W), the compact induction of W from H to
G.

This construction is of particular interest when H is open. Then there
is a canonical H-map
G
af: W — ¢ —Indj (W)

given by w +— f, where f,, is supported in H and f,(h) = h-w (so
fuw(g) =01if g & H).
For g € G we have
0 if g~ ¢ H,

(9 fu)(@) = fulzg™) =
(g™ -w if xg~! € H,

0 ifx ¢ Hg,

(zg™Y)-w if x € Hg.

LEMMA 1.7. ([40] p.19)

Let H be an open subgroup of G. Then

(i) a°: w +— f, is an H-isomorphism onto the space of functions
f € ¢ —Ind$ (W) such that supp(f) C H.

(ii) fwe W and h € H then h- fi, = fr-14-
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(iii) If W is a k-basis of W and G is a set of coset representatives for
H\G then
{g~fw|wEW, gEg}
is a k-basis of ¢ — Ind% (W).

Proof

If supp(f) is compact modulo H there exists a compact subset C' such
that
supp(f) C HC = U He.
ceC
Each Hc is open so the open covering of C' by the Hc’s refines to a finite

covering and so
C:Hclu...Uch

supp(f) C HC = Hey UUch
For part (i), the map a° is an H-homomorphism to the space of func-
tions supported in H with inverse map f — f(1).
For part (ii), from §1.6 we have

and so

0 ifx ¢ H,
(h- fu)(@) = fulzh™) =
zh~'w if z € H.
so that, for all x € G, (h- fu)(x) = fr-1,(x), as required.

For part (iii), the support of any f € ¢ — Ind$ (W) is a finite union of
cosets H g where the g’s are chosen from the set of coset representatives G of
H\G. The restriction of f to any one of these Hg’s also lies in ¢—Ind% (W).
If supp(f) C Hg then (g1 - f)(2) # 0 implies that zg € Hg so that g=! - f
has support contained in H. Hence g~'- f on H is a finite linear combination
of the functions f,, with w € W. Therefore f is a finite linear combination
of g+ fu's where w € W, g € G. Clearly the set of functions g - f,, with
g € G and w € W is linearly independent. O

ExampPLE 1.8. Let K be a p-adic local field with valuation ring Ok
and mx a generator of the maximal ideal of Ok . In GL,, K if H is compact,
open modulo K* then there is a subgroup H’ of finite index in H such that
H' = K*H, with H; compact, open in SL, K. This can be established
by studying the simplicial action of GL, K on a suitable barycentric sub-
division of the Bruhat-Tits building of SL, K (see §4.12 and Chapter Four
§1).

To show that H is both open and closed it suffices to verify this for H’.
Firstly H' is open, since it is H' = J,cp. 2H1 = Uyey 75 H1-

Also H' = K*H, is closed. Suppose that X' ¢ K*H;. K*H; is
closed under mutiplication by the multiplicative group generated by 7w so
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that 72X’ ¢ K*H, for all m. By conjugation we may assume that H; is
a subgroup of SL, Ok, which is the maximal compact open subgroup of
SL, K, unique up to conjugacy. Choose the smallest non-negative integer
m such that every entry of X = 72X’ lies in Og. Therefore we may write
0 # det(X) = 75.u where u € Oy and 1 < s. Now suppose that V is an
n X n matrix with entries in Ok such that X + 7%V € K*H;. Then

det(X + 7% V) = 75-u (modulo 7k).

So that if t > s then s must have the form s = nw for some integer w
and 7" (X + 74 V) € GL,Ok (\K*H; = H;y. Therefore all the entries in
' X lie in Ok and 72X € GL,Ok. Enlarging t, if necessary, we can
ensure that 7" X € Hy, since H; is closed (being compact), and therefore
X' € K*H,, which is a contradiction.

Since H is both closed and open in GL,, K we may form the admissible
representation ¢ — Indg]‘ nK (kg) for any continuous character ¢ : H — k*
and apply Lemma 1.7.

If g€ GL,K,h € H then (g f1)(z) = ¢(zg™!) if zg~! € H and zero
otherwise. On the other hand, (hg- f1)(z) = ¢(xg= h~ 1) = p(h~Hp(zg™1)
if zg~! € H and zero otherwise. Therefore as a left GL,, K-representation
¢ — Ind$E 5 (k) is isomorphic to

kIGL,K]/(g—¢(h)hg | g € GL, K, h € H)

with left action induced by g1 - g = ggfl.

This vector space is isomorphic to the k-vector space whose basis is
given by k-bilinear tensors over H of the form g ®py 1 as in the case of finite
groups. The basis vector g - f; corresponds to ¢~ ®y 1 and GL, K acts
on the tensors by left multiplication, as usual. This is well-defined because
#(h)(hg - f1) corresponds to g 'h~' @z ¢(h) = g7 @5 1.

PRrRoOPOSITION 1.9. ([40] p.19)
The functor
¢ —Ind% : Rep(H) — Rep(G)

is additive and exact.

ProposITION 1.10. ([40] p.20)
Let H C G be an open subgroup and (o, W) smooth. Then there is a
bi-functorial isomorphism
Homg(c — Ind§ (o), 1) —> Homp (o, 7)
given by f— f-af.
ExXAMPLE 1.11. The Line Bundle ¢ — @gL"K(M)

In the situation of Example 1.8, suppose that M is a Line Bundle in
k[ H,],omon. Then ¢ — IndgL"K(M) can be given the structure of a Line
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Bundle in (g1, k],¢mon denoted by ¢ — mgL”K(M). Choose for W, a
basis for M, a set consisting of one non-zero vector from each Line. The
Lines of ¢ — mgL »K (M) are then given by

{9 fuw) |weW,ge€G}

in the notation of Lemma 1.7.

This vector space is isomorphic to the k-vector space whose basis is
given by k-bilinear tensors over H of the form g® gy w as in the case of finite
groups. The basis vector ¢ - f,, corresponds to ¢! ®y w and GL, K acts
on the tensors by left multiplication, as usual. This is well-defined because
O(h)(hg- fu) = G(R)g- firrsy cotresponds to g~ h1 @y p(h)w = g\ Dy w.

2. From finite to compact open

2.1. Let K be a p-adic local field with valuation ring Ok and wx a
generator of the maximal ideal of Ok. In GL, K let H be compact, open
modulo K* of the form H = K*H; with H; compact, open, as in Example
1.8.

For 1 <m let Uy denote the subgroup of GL, K given by

U ={X € GL,Ok | X =1 (modulo 7}})}.

Let V be a (left) admissible k-representation of GL,K with central
character ¢. Since every vector of V lies in the fixed subspace v/ =y

for some open subgroup J, we have

v=|J vUED = ] vETRD

m>1 m>mg

where myg is the least integer such that the central character is trivial
on Up°. Also each VIE UKD is a finite-dimensional representation of
H via a left action which factorises through the quotient H/HNUR =
K* - Hy/H, (U}, which is finite modulo the centre providing that m is
large enough. This fact is established by observing that every maximal
compact open subgroup of GL, K is conjugate to GL,Og. For example,
when n =2 and «, 3,7.0 € Ok, the conjugate

-1

a 3 a
GL>Ok
v 6 A
a e =
= GL>Ok
v 0 — @

ab—yB  ad—fB
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contains

6 —
a f “3—3 av—1B

Ug
v 9 o078 as-B

which contains Uz ™" for some integer depending on the K-adic valuation
of ad —~f.

Write V(m) for the k-vector space V& UKD which we consider as a
k-representation, via inflation, of each of the finite modulo the centre quo-
tients G(m +r) = K* - Hy/H; UZ™", for r large.

For each sufficiently large integer r we have a bar-monomial resolution
of V(m) in k(G (mtr)], g TOTL denoted by

MV(m),*,G(m+r) L) V(m) — 0.

By inflation we shall construct a monomial resolution of V(m) in
k[K+-H,],o1mon denoted by

“.H,

K
InfG’(m+7")

(M (m) . G(mr)) — V(m) — 0.

Let 7 : K* - HA — G(m + r) denote the canonical projection ho-
momorphism. Since Hy/H; ﬂU?+T is finite, there is an isomorphism of
k[K*.H,],p10n Line Bundles of the form

e —Ind" "M (7%(¢)) = Inf55 M (Ind§ (ky))

for (H,$) € Mgy(G(m+r))-
Define a y(g~.p,),gmon Line Bundle S+ g, m+r by
Sk Hymir = D(H,p)eMy(Gimtr)) €~ Indf—*ig%) (7m(9))-
For any triple ((K,v),g,(H, ¢)) € Ag(m+r) We may construct its inflation
(7= (K), 7" (), gHy (\UR™, (= (H), 7" (¢)))

which represents a well-defined K[K*-H), omon-endomorphism of Sg+. g, m4r
given by the same formulae as for the finite modulo the centre case in
Lemma 1.9. It only depends on the Hy (U " -coset of g because, as in
Lemma 1.9, for h € Hi URT" C 7~ 1(H), we have

((x= 1K), 7 (), gh, (71 (H), 7*(¢)))
= ¢(h)((r~H(K), 7" (), g, (v~ (H),7*(9)))

= (1K), 7 (), g, (v~ 1 (H), 7*(9)))
because ¢(h) = 1.
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The formulae of Lemma 1.9 give a ring structure on the k-vector space
of spanned by the inflated triples

((rH(E), 7" (), gHr (\URT, (=7 1 (H), 7 (6)))-
We denote this ring of y[x+.p,],gmon-endomorphism of Sk« g, mir by

AK* -Hy,m—47r-
As in §3.2 we have isomorphisms

HOI’HHK* ,Hl]yfmonmod(V(SK*<H1,m+r)7 V(m))

= Hom, ., ymod(V(Scmin), V(m))

THEOREM 2.2.
The chain complex

If Gt (My () e Gmet)) — V(m) — 0

V(S),V), Ag and S, in the construc-
tion of §5.5, respectively by Hom, .. ,, ;  monmod(V (S, m+r), V(m)),

is defined by replacing Hom,

Gl,¢mod (

AK*‘Hl,m-&-r and SK*~H1,m+7'-
It is a monomial resolution of V/(m) in y(x+.f,),¢mon.

Proof

As a chain complex the inflated complex and the bar-monomial resolu-
tion of V' (m) in y(g(m+r)),smon are isomorphic. Therefore we have only to
verify monomial exactness. Suppose that (J,\) € My(K* - Hy). In order

for V(m)/) to be non-zero we must have ResiImUm+rﬂJ()\) = 1. In this
K ~

case we may extend A trivially on Hy N U to give A on

(JLHiNURT™Y = J =7 (= (J])).

Also, by construction, V(m)* = V(m)(‘]~ N = V(m)™DA) | where
N-m = A Also the j(x+.5,],mon-Lines of the inflated resolution whose sta-
biliser pair is greater than or equal to (J,\) are the same as the
k[G(m+r)],pmon-Lines whose stabiliser pair is greater than or equal to
(w(J), X'). On the other hand, if V (m)(*}) = 0 there are 1o j.s,),ymon-
Lines of the inflated resolution whose stabiliser pair is greater than or equal
to (J, A), which completes the verification of monomial exactness. O

REMARK 2.3. The discussion of Chapter One §5.9 shows that if we fix
m we may form the direct limit as r varies. In addition the discussion of
Chapter One §5.10 shows that we may form the direct limit over m also.
The net result is the following.
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THEOREM 2.4.
The chain complex
lim lim Infg(;ﬁlr)(Mv(m)7*7g(m+,.)) — lmV(m) =V —0
is a monomial resolution of V' in j(x+.5,),omon. This will be called the
k[K*-H,],pTnon-bar monomial resolution of V and denoted by W s ko= H, -

REMARK 2.5. The j(g+.p,], g mon-bar monomial resolution of V' of The-
orem 2.4 inherits from Chapter One §5.8-§5.10 naturality properties analo-
gous to those which hold in the finite module the centre case.

3. The admissible monomial double-complex

3.1. Monomial complexes for GL, K

In this section we are going to study (left) admissible k-representations
of GL, K with central character ¢. Here K continues to be a p-adic local
field. As usual k is an algebraically closed field of arbitrary characteristic.
If V is such an admissible k-representation we shall begin by applying
Theorem 2.4 to the restrictions of V' to compact open modulo the centre
subgroups.

Let Y be a simplicial complex upon which GL,, K acts simplicially and
in which the stabiliser H, = stabg (o) is compact, open modulo the centre,
K* of GL, K.

An example of such a Y is given by GL,, K acting on (a suitable sub-
division of) its Bruhat-Tits [35] building.

For each simplex o of Y, by Theorem 2.4, we have a [y, ] smon-bar
monomial resolution of V' ;

Wv.m, — V — 0.
Form the graded k-vector space which in degree m is equal to
Mm = ®a+n:m WV,O[,HUn .

If 6™ 1 is a face of o™ there is an inclusion Hyn C H,n-1. Therefore there
is a canonical monomial chain map

©Hopn H 1 - Wy Hon — WyieH
such that

UH oy, H 2 VHon \H oy = UHyn ,H -

If 0"~ is a face of o™ let d(0™ 1, 0™) denote the incidence degree of ¢!
in ¢”; this is +1. In the simplicial chain complex of Y

d(o") = Z d(o™ 1 0™ L.

on—1 face of on
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For x € Wy o . write

dy(x) = Z d(e" "t o™) iHn H,, (T)-

on—1 face of o™

Let don : Wy a,0,n — Wv,a—1,1,» denote the differential in the ;5 ) omon-
bar monomial resolution of V.
Defined: M,, — M,,_, when m = a +n by

d(z) =dy (z) + (—1)"don ().

Therefore we have

d(d(x))
=d(X i1 face of on UL 0") ibpn m, o (%) + d((—1)"don ()

= Za”*Q face of on—1 d(anizﬂ O—nil) Z.Hanfl ’Ha"*Q(

on=1 face of o
d(e™ Y 0™ g, ,Hgnfl(:n))
+ X gn1 face of on A0 0") Wb pn m -y (—1)"don ()
(=) Y 1 face of on AT 0™) dgn (im0 H,_ (2))
+(=1)"don ((—=1)"don ()

= Za"*zlface of on—1 d(a-niQ? O-nil) d(o'n717 Un) iH(r"yHo.n—2 (I)
on—1 face of o™

+(71)n Zo’"—l face of o™ d(o—nilﬂ O—n) iH(r",Hgn—l (do'" (:C))
_’_(_1)”*1 Zo-"*l face of o d(a-nil? O—n) ng" 7H0n—1 (da-n (x))
+d0-n (da-n (fL’))

= Eo"*ifacc of on—1 d(an_27 Un_l) d(o.n—170.n) iHo‘"aHo-n—Z (z)
on—1 face of om

=0

because, as is well-known, for each pair (6", 0"~ 2) the sum

E d(c" 26" 1) d(e™ ", 0™) = 0.
oM =2 face of on—1
on—1 face of on
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Note that M, has an obvious structure of a g1, k],¢mon-Line Bundle

since the GL, K-action permutes the summands Wy . g, ., each of which
is a p[p,.],pmon-Line Bundle.

THEOREM 3.2.

If Y is the Bruhat-Tits building for GL, K, suitably subdivided to
make the GL,K-action simplicial, then (M,,d) is a chain complex in
k[GL,K],pT1ON.

In addition, this complex has a canonical augmentation homomorphism
in e, K),pmod of the form M, V.

CONJECTURE 3.3. For n > 2, K local and G = GL, K

M, M M, v 0

is a monomial resolution in 4(qr,, x],¢mon. That is, for each (H, ) € Mg,y

] —>M§(H’¢)) AME(_I{,@) i) '__A)M(()(H@)) SLyHES)
is an exact sequence of k-vector spaces.

REMARK 3.4. When we come to the proof of Conjecture 3.3 for GLy K
in §4.12 it will become clear that a “suitable” simplical action on the
Bruhat-Tits building of GL, K must have the property that every com-
pact open modulo the centre subgroup of GL,K must be contained in
some simplex-stabiliser. In general this property is a consequence of the
Bruhat-Tits fixed point theorem for group actions on CAT(0) spaces (see
[4]). For GL,K we prove it, for the specific simplicial structure used of
§4.12, in Proposition 4.8.

4. Monomial resolutions for GL, K

Let K be a p-adic local field. In this section I shall use the well-
known action of GLy K on its tree ([115] p.69) to verify Conjecture 3.3 for
GLy; K. The resulting monomial resolution is unique up to chain homotopy
in k[GL, K] 7?IIIOH.

I shall begin with a detailed recapitulation of the tree (also known as
the Bruhat-Tits building for GL2 K [35] pp.130-131). The notation is that
of §2.1.

4.1. The GLyK-action on its tree

A lattice in K @ K is any finitely generated Og-submodule which gen-
erates K ® K as a K-vector space. If x € K* and L is a lattice then so
also is xL. The homothety class of L is the orbit of L in the set of lattices
under this K*-action. The set of classes of lattices gives rise to a tree ([115]
Chapter IT) with a right G Lo K-action.
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Let H1 = GLQOK and

TK 0 TK 0 -1

Hy = H,
0 1 0 1

which are two of the maximal compact subgroups. All other maximal com-
pact subgroups of GLy K are conjugate to H;. Explicitly we have

a b g
Hy =/ | a,b,c,d € Ok, ad —bc € Ok }.
CTF[_(l d

By ([115] p.69 et seq) if L = O ® Ok and L' = Og @ Ogmk then
Stabgr,ix (L) = Hy - K* and Stabgr,ix (L") = Hy - K* where GL2 K acts by
right multiplication on the vector space V = K & K. This fact will enable
us to calculate some normalisers.

If XH X ' = Hy then (L)X)H; = (L)H;X = (L)X but from the
tree structure each homothety class of a lattice is stabilised by a different
maximal compact subgroup so that H; - K* stabilises L and (L)X and
so (L)X = L and X € Hy - K*. This shows that Ngp,xH1 = Hy - K*.
Similarly for Ha.

If YH,NHY ! = H{()Hs then (L)Y = (L)YH;(H, and
(LY = (L)Y Hy (| Ha. Also (Hy (Hs)-K* C Stabgr, k(L) () Stabgr,x (L').
Now the distance from L to L’ is one [115], so they are adjacent in the
graph, and the (pointwise) stabiliser of the edge they define is precisely
(Hi(Hz2) - K*. Furthermore this is the only edge that this subgroup
stabilises. But (L)Y and (L)Y are also adjacent and H; () Hs - K* also
stabilises this edge so the edges coincide. This coincidence can happen
in two ways. If the ordered pair ((L)Y,(L')Y) is equal to (L,L’) then
Y € H1(H: - K*. On the other hand it is possible that ((L)Y, (L")Y) is
equal to (L', L). In fact, the matrix calculation

0 1 a T 0 7k 0 Tk
et 0 vy 0 1 0 8«
shows that H; () Hz is normalised by the matrix
0 1
7r;(1 0

which does not belong to Hy [| Ha. Therefore

0 1
Ngr, i (Hi [ |Hz) = ((Hy (| Hs) - K7, )-

—1
T 0
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This group stabilises the edge {L, L'} but only the subgroup of index two
(H1 () Hz) - K* maps the the ordered pair (L, L") to itself by the identity,
other matrices interchange the order.

Therefore the Weyl groups of Hy, Hy given by Ngp,x H;/H; are both
isomorphic to K*/O% = Z generated by the scalar matrix 7x. The Weyl
group Ngr,kx (Hi () Hz2)/H1 () Hz is isomorphic to the infinite cyclic group
generated by

0 1

771_(1 0
which contains a subgroup of index two given by (u?) = K*/O% = Z.
Now supose that Z(H; (\Hz2)Z ' C H; then (L)Z = (L)ZH; and the
preceding argument shows that Z € H; - K*. Hence the coset space
H,-K*  H

= X 7
HiNHy HyNH,

I—]1 . . . 1 .
H.Am; 18 in one-one correspondence with P (Ok /(7)) because this

coset is isomorphic to the orbit of the edge LL’ under the action of
Stabgr,x (L) ([115] p.72).

The correspondence between P'(Ok /(7x)) and the set of lattices of
distance one from L is described as follows in ([115] p.72). Let L” C L be
such that L/L" = Ok /(7k) = k. Then we have a short exact sequence

0—k2L"/rxL — L/rxkL2k®dk —k—0

and

which associates to L” a linear subspace in k@& and hence a point in P! (k).
Also, via the left action on lattices, since Hy ) Ha stabilises the edge
through L and L’ we get a bijection

Hy N H\GLyOg « P'(k).

The transpose of this bijection is given explicitly as follows. Suppose, for
a,b,c,d,a,3,7,0 € Ok, that

a b a (g
X = Y =
c d ¥ 6
with X € GLyOk, Y € Hy () Hy. Then
a b a Prg aa+ by afmg + bd
XY = =
c d y ) ca+dy cBrig + dd

and because o, € O} we have a well-defined element

(5)-(5)ere
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depending only on the coset X Hy (| Hz. Hence representatives of this coset
are given by
1 b 0 1
{ } and ,
0 1 -1 0

where b € Ok runs through a set of representatives for k.

4.2. The simplicial complex of the tree

Now we are ready to calculate the simplicial chain complex of the tree
together with its GLy K-action. I am going to transpose to a left action on
the tree by GLo K.

The cellular 1-chain group of the tree, with coefficients in k, is the k-
vector space whose basis consists of the 1-cells of the tree. This is clearly
given by the induced representation

€]
Cl =Cc— InngifK(HlﬂH2)<kT) = k[GLQK] ®k[NGL2K(H1ﬂH2)] kT
where k. is a copy of k on which (H; [ Hz) - K* acts trivially and
0 1

7r;(1 0
acts like —1. Here, as described in Example 1.8, we are depicting the c-
induction as the “crude” algebraic induction in terms of tensor product over
group rings. This is algebraically more convenient and it will emphasise that
individual simplices are far apart, as they are with respect to the distance
function on lattice classes in ([115] pp.69-70).
The 0-cells are given by the induced representation
Co = ¢ — md§E2E (k)

NerL,x Hi
where k has the trivial action. The simplicial differential
d: Cl — CO

is a GLsK-map and so, by Proposition 1.10, is determined by a
Ngr,x(Hy N Hy)-map from k. to Cy. This map is easily seen to be given
by

0 1
d(l) =1 ®Nar,x Hi 1- S Neryx Hi L.
1
T 0
If X e NGLzK(Hl ﬂHg) C NGLQKHl then
0 1
Xd(l) =X ®NGL2KH1 1-X ®NGL2KH1 1= d(l) = d(X . 1)

—1
T 0
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while
0 1 0 1
d(l) = ®NGL2KH1 1-1 ®NGL2KH1 1
et 0 et 0
-
0 1
= d( 1)
7r;(1 0

Since a tree is contractible we have an exact sequence of k[GL2K]-
modules
0—C1 -5 Cy -5k —0
where, for Z € GLy K,

0 1
d(Z ®NGL2K(H1FTH2) )=2Z ONe Ly Hi 1-Z L ONGryxHi 1
T 0

and €(Y ®Ng,,xHy V) = 0.

The above action is not simplicial because the subgroup preserving a
given 1-simplex does not act on it by the identity. For example, {L, L'} is
inverted by

0 1

ﬂ';(l 0
However, it is easy barycentrically to subdivide the simplicial tree by adding
L"”, the midpoint of {L, L'}, and all its GLy K-translates. The stabiliser of
L"is Ngr,kx(H1 () Hz). The result is a one-dimensional simplicial complex
with 1-simplices given by {L, L} and its G Ly K-translates. The stabiliser
of {L,L"} is (Hy1(H2)K* and the resulting GLsK-action is simplicial.
The 0-cells are given by

~ GL. K GLK
Co=c—IndJ2" (k) ®c—IndJe2" o (k)

while the 1-cells are
Cr=c— Indgﬁﬁ{H?)K* (k).
Therefore we have a short exact sequence of k[G Lo K]-modules of the form
0—C -5 C -5k —0
in which

d(g ®(H10H2)K* U) = (g ®NGL2K(H1) v, _g ®NGL2K(H1PIH2) U)
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and
(g1 ONGLyr (Hi) V1,92 ONgr, x (HiNHs) v2) = vy + V3.

4.3. If V is an admissible representation of GLy K as in §3.1 we have
(continuing to use as in §4.2 the “crude” algebraic notation described in
Example 1.8 for c-induction) an isomorphism of G Ly K-representations

¢:c—IndSHE W) @V = ¢ — IndGE 5 (W @ ResGE2 5 (V)
given by ¢((9 @ w) @ v) = g @y (w ® g~tv), if W is finite-dimensional.
This is well-defined because
$((gh @n h™'w) @) = gh@p (W 'w) @h™'g™v) = g@n (we g~ ')
and is a GLyK-map because
go((g@nw) ®v) =gg@n (we g v)=6(¢' (9O w) ® g'v).
We have Ngp,xHi(Hs = (Hy () H2,u) where

0 1 e 0
u= , U= € Z(GLyK) = K*
et 0 0 7
and NGLQKHl = <H17’U,2> = H1 - K*.
The homomorphism

¢ —Tndfr2, e (k) @V

d®1 |

G G
¢ = Ind{2 % )y () @V @ e =% ), (k) @V

transforms under ¢ to

GLyK
c— Ind(H12mH2)K* (V)

vl

GL2K GL2K
c— IndNG;K(Hl)(V) dc— IndNGiQK(HmH2)(V)
given by
'(/)(g ®(H1F1H2)K* ’U) = (g ®NGL2K(H1) v, —9 ®NGL2K(H10H2) U)
because
Y(d((9 D nHY K+ 1) @ gv))
= U(9 Q(H,nH) K+ V)

= (Q ®NGL2K(H1) v, =g ®NGL2K(H10H2) ’U)
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while

P(d @ 1((9 ® (a1, N K+ 1) @ gv))
= o((g O NG Ly (Hr) 1) ® gv, —g @ Nery i (HiNHz) 1) ® gv)

= (g ®NGL2K(H1) v, =g ®NGL2K(H1QH2) ’U).
4.4. For Theorem 2.4 we have bar-monomial resolutions
Wy s (HnH K —— V

in k[(H1NHy) K*], 100N,

€0
WV:*yNG’L2K(H1) Vv

in k[(NGL2K(H1)]’9mOI’1 and

’

€0
WVv*»NGL2K(H1ﬁH2) 4

in k[NGLQK(HlﬂHg)],QmOIL

Note that u? € Z(GL2K) = K* so that all characters we shall meet
are given by ¢(u?) on u?.

Suppose that K* - J C GLyK is one of the three above compact open
modulo the centre subgroups and suppose that M is a Line Bundle in

k[K*.J),pmon. As described in Example 1.11, if M is a Line Bundle then
c— mgLQf(M) is a Line Bundle in (g1, k], ymon.
4.5. Covering 1 by a monomial-morphism
The first objective is to produce a k[G L2 K]-module homomorphism
GLyK
¢ = Indiy i (Wyo,(mmnm) )

Yo |
GL:K
c— mNcigk(lﬁ’l)(VVV’O’NG’“2K(Hl))

GL: K
@C - mNGiQK(HlﬁHQ) (vaovNGL2K(HlnH2))
to commute with the augmentations. That is,

GL:K GL:K GLoK
(mNGizK(Hl) (60) S mNcizx(fhﬂHz)(eg))wO = wm([—[fﬂHz)K* (61)'
We begin by constructing a k[G Ls K]-module homomorphism and then we

sort out the behaviour of Lines under the map.
Start with a Line from ¢ — m(C’VHLffHﬁK* (Wv,0,(t,nH) K +)) With sta-
biliser pair (.J, ¢) where ¢ is a character of .J so that (Z(GL2K), ¢) < (J, ¢).
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This Line will be of the form g ® (g, nm,)k+ L where L is a Line in
Wy o,(a,ns)k+) and g € GL2 K. If 2z € L the action of j € J satisfies

J9 R nH) K+ 2 = 0(1)9 (0 Hy) K+ 2-

Hence g~1Jg C (H; N Hy)K* and acts on L via g*(¢). The (Hy N Hy)K*-

orbit of L spans the Line Bundle isomorphic to ¢ — méf_[}?fz)w (g% (kg))

and, by conjugation in (H; N H2)K*, we may assume that

L=(1®,15,1) Cc— mgﬁ;‘f“‘m (9" (kg))-

Since we need only a representative from the G Ly K-orbit of the Line
we may as well assume that J C (H; N Hy) K* and the Line is generated
by 1 ®p,nm,) K+ (1 ®7 1) so that j € J acts on this line via

JA®mnmyr- (1@ 1)) = 6(J) @ nm) - (1@ 1)

and, by monomial exactness, v =€, (1®; 1) € V(e
Now consider the two terms in

Y(e1(1 @iy (1®5 1) =91 @m,nma) K- V)

=1 ®NGL2K(H1) v—1 ®NGL2K(H1QH2) v.

The action of j € J(Hi()Hz on each of these terms is by multiplica-
tion by ¢(j). Therefore, by naturality of the bar-monomial resolution with

respect to inclusions of subgroups, there exists w € W‘(/(OJ’f,)G)L (M) and
0,NGLy
w' e wi9) such that eg(w) = v, e (w’) = v so that

V,0,NG 1, i (H1NHy)
1®Ng 1, e () €0(W) = 1®Ng o (HinHR) €0 (W) = V(€1 (1@(m, A, e (1©71))).
Set
Yo(1 @ nmyyr- (1@ 1)) = 1 ®@Ng e (i) W — 1 @Ngyp, e (HinH) W'

This defines a k[G L2 K]-module homomorphism vy which commutes with
augmentations. In addition, for all ¢ € GLoK and J C (Hq () H2) K™,

((J,9))
Yolyg Q(H,NH) K Wv,o,(HmH2)K*))

lies in
((4,9)) ((J,9))
g ®NGL2K(H1) WV,O,NGLz;((Hl) Dy ®NGL2K(H10H2) WV,O,NGLQK(HlmHz)’

which guarantees that g is a morphism in jgr,x],¢mon.
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Now, by induction, we construct similar chain k[G Ly K]-module homo-
morphisms for all ¢+ > 0

GL: K
c— Ind(H12mH2)K* (WVJ,(HN"IHz)K*))
(U
GL:K
Cc — InchizK(Hl)(Wv’i)NGL2GI<L$HIé))
2

e — mNchzK(HlmHg)(WV,i,NGLZK(HlﬁHz))

which commute with the differentials and satisfy the condition that

J.¢
Yi(g Q(HyNHy)K* W\(/(,i,(b)l)lﬂHz)K*))

lies in
((7.9)) ((7.9))
g ®NGL2K(H1) WV7i7NcL2K(H1) Dy ®NGL2K(HIQH2) WV7incL2K(H1ﬁH2)'
Therefore the v;’s give a chain map in g1, x],omon.

We start with a Line in c—Ind%22% . (M ;) with i > 1 and, as in the
(H1 ﬂHz)K )

case of 1y, we may assume that this Line has stabiliser pair (J, ¢) with J C

(HiNH3)K*. In a notation analogous to that of the ¢y case, we may assume

that the Line is generated by 1 ®g,nm,)k+ (1 ®s 1). The differential in

Wy« (HinHs) K +) induces a differential in c—m%fffm)[(* (W, (HynHa) E*))

given by
d(1 ®m,nm) K- ®(1®y 1) =1 @, Ny k- @d(1®, 1)

J;
where d(1®; 1) € W‘(/(ai—(bl),)(HlﬂHQ)K*).
Also d(1 ®; 1) lies in the kernel of the differential if ¢« > 2 and of the

augmentation if 4 = 1. Therefore, by induction,

Yi—1(d(1 @, nmy) K- (1@ 1)))
lies in
((7.9)) ((7,9))
L ®Naryu () Wil Nep, () 1 ONary e int) Wy ity Nay e (minmy)-
By the discussion of Lines in ¢ — m(GH(M ) given in Example 1.11 we
have an isomorphism of k-vector spaces

(7)) = ((4:9))
WV,i—l,NGLZK(Hl) — 1 ®Nap,w () WV,i—l,NcLZK(Hl)
given by © — 1 ®ng,, . (m,) © which transforms the differential d into

1®Negp, i (Hy)d- There is an analogous isomorphism for W‘(/(;]’j)l) )]VGL wc (HyNH>)
i—1,NgL,

and also for V(). Therefore, from the monomial exactness of the mono-

mial resolutions, there exists w € W‘(/(;];@)G)L e () and w’ € W‘(/(jﬁg w (HyNH>)
52y 2 B 2
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such that

1®NGL2K(H1)d(w)@:l@NGLQK(HlmHQ)d(w/) = wifl(d(1®(H1ﬂH2)K*®(1®J1)))'
Set

"/}i(l Q(HyNHy) K (1 X 1))) =1 ®NGL2K(H1) w+1 ®NGL2K(H1FTH2) w'.

This defines a k[GLsK]-module homomorphism 1); which commutes with
differentials. In addition, as in the case of ¥y, for all ¢ € GL;K and
JC (HiNH2)K*,

J,
Yilg Q(HyNH2) K> W\(/(,i,((lg)mHg)K*))

lies in

((J,9)) ((4,9))
g ®NGL2K(H1) V,i,NGLQK(Hl) @ g ®NGL2K(H1F|H2) WVJ,NGLZK(HlﬂHz)’

which guarantees that v; is a morphism in gz, K],smon.

REMARK 4.6. (i) Any two constructions of v, in §4.5 will be chain
homotopic as monomial-morphisms because the monomial resolutions of
§4.4 are each unique up to chain homotopy (c.f. Proposition 2.4).

(ii) By the discussion of §4.2 and §4.3 we have a short exact sequence
in gL, K),pmod of the form

¥
0—c— Ind?Hlem};IQ)K* V) —
GL:K GL:K c
c— InchszK(Hl)(V) ®c— Inchizx(HmHz)(V) —V —0

4.7. The monomial resolution of V' in jgr,K],emon
We now consider the chain complex M, — V in which, for i > 0, M,
is given by

GL2 K GL2K
¢ = Ind ) - (Wvio1(mnm) k) © ¢ = Ind 2™ (Wi Ney (1)

®c — @giii{(HmHz) (Wi Nepy e (HiNH))
with differential given by
d(wyi—1, wo,i, wp ;) = (d(wr,i—1), d(wo,i,wp ;) + (—1) i1 (wr,i-1))-
This is a chain complex because

dd(wq,;—1,wo,5)
= (dd(wy,i—1), dd(woi, wh ;) + (1) dips(wri-1) + (=1)" 1P _g(dwy 1))

= (0, (=1)'dvpi—1 (wi,i—1) + (=1)" " ep_ad(w1 ;-1))

which is zero because di; 1 = ¥;_ad, by construction.
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The chain complex of M,’s is augmented by the map induced by the
short exact sequence of Remark 4.6(ii).

PROPOSITION 4.8.

Let J € GL3K be a compact open modulo the centre subgroup con-
taining the centre K*. Then J is conjugate to a subgroup of Hi K* or of
((Hy (N H2)K*,u) or both.

Proof

Since J [ SLoK () K* = O} we see that J (| SLyK is a compact open
subgroup of SLyK. Hence, by well-known properties on the BN-pair for
SLs K with K local (see Chapter Four concerning BN pairs and GL3K;
[4]; [35], [60], [61], [139]), we may assume that J (| SL:K C SLyOk. We
have a homomorphism

v - det : J/(JﬂSLgK)K* — 72

where vy is the valuation on K. If this homomorphism is trivial then
J C H1 K = Ker(vk - det). If this homomorphism is non-trivial we have a
group extension

(J(SLK)K* — J "% 72,

Suppose that (J(SLyK)K* C (Hy () H2)K*. In this case the extension
which pushes out along this inclusion to give an extension

(Hy (VHo) K" — X "5 72,

From the simplicial action we see that X = ((Hy(\Hz2)K*,u). If
(JOSLK)K* ¢ (Hi()H2)K* then pushing out along the inclusion
(JNSL:K)K* C HiK* yields an extension of the form

H K" — X "% 72,

However the action on the tree shows that there is no such X. O

THEOREM 4.9. Monomial exactness for GLy K
For K local and G = GLs K the chain complex of §4.7

M, M, S S M-SV —0

is a monomial resolution in gz, k],emon. That is, for each (J,¢) € Mg,
' *)M’E(be)) L>M§(_J{¢)) N .'.L)M(()(J@)) L yWe)
is an exact sequence of k-vector spaces.

Verification of monomial exactness in the very explicit complex of §4.7
will occupy the rest of this section. However, we pause to record the fact
that Theorem 4.9 implies the validity of Conjecture 3.3 for GLo K.
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COROLLARY 4.10. (Conjecture 3.3 for GL2K )
Conjecture 3.3, asserting the existence of a canonical monomial resolu-
tion in (gL, k],¢mo0n, is valid when n = 2.

Proof

The monomial complex explicitly constructed in §4.7 is isomorphic to
that of §3.1 if one uses the simplicial structure on the Bruhat-Tits building
for GL9 K, corresponding to that given in §4.1. This is because there is one
orbit of 1-cells which is isomorphic to C; in §4.2 and two orbits of 0-cells
whose sum is isomorphic to Co. O

4.11. Some well-known elementary homological algebra
If we have two chain complexes

— A — A — ... — A1 —0

and
.—B,—B; 41— ...— B 1 —0
with a chain map f, between them such that

0—A B, —Vv_—0

is a short exact sequence, consider the mapping cone chain complex N; =
Ai—l D Bl with differential d(ai_l, bl) = (d(ai_l), d(bl) —+ (71)1‘]‘-1'_1(&7;_1)).
We have a short exact sequence of chain complexes

0—>B*—>N*—>N*/B*—>O

for * > 0. Since N;/B; & A;_1 for i > 1 we have a long exact homology
sequence of the form

. — Hy(B) — H;(N) — H;_1(A) -5 H,_1(B) — ...
where 9 = (—1)'fi_; on H;_1(A). If A, B, are exact (not just in positive
dimensions) then we have H;(N,) = 0 for ¢ > 0 while
0— A -2 By — Hy(N,) — 0
yields an isomorphism Hy(N,) 2V induced by
Ny — By — B/d(B1) 2 B_; — V.
4.12. Proof of Theorem 4.9

Consider the chain complex
— M, —M, , —...— My;—V —0.
Each of the M,’s is a Line-bundle with Lines generated by 99, () Ha) K- Ly,

9 ONgp,w(Hy) Lo 0T § NGy, i (HyNH) L{, with L, Lo, L} being Lines in
Wvi1,(m0H) k) Wi N, i (Hy) OF Wi Nop, i (HinH,)> Tespectively.
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A Line of the form g ®(HlﬂHz)K* Li, 9 ®Ngpy(m) Lo or
9 ONep,x(HinHy) Lo has stabiliser of the form g(J',¢")g™" where J' C
(Hy(H2)K*, Ngr,k(H1) or Ngr,x(Hi N Hs), respectively.

Let (J,¢) € Mgr,k,¢ with (K*, ¢) < (J,¢) and J being compact open
modulo the centre K*. This implies that the J-orbit of any 0-simplex or
1-simplex of the (subdivided) tree is finite. For example, if

J = Nop,xHi [\ Ha = ((Hy [ | H2) K™, u)

then the J-orbit of an end-point of the fundamental 1-simplex (prior to
subdivision) consists of the two end-points.
We wish to examine exactness in the middle of

MUy (o)

i Mg
for i > 1.
Consider the inclusions of compact open modulo the centre subgroups:

H\K* = Ngr,x(Hi) > (Hy N Hy)K* < Ng,x(Hy N H)
where
Ner,x(Hy N Hy) = (Hy (| Ha, K*, u)

Since the GLyK-action is transitive on the subdivided tree and since
each the above groups form the set of stabilisers of simplices in the funda-
mental domain, up to G Ly K-conjugation, we must have one of the following
three cases:

Case A: J C (H(H2)K™.

Case B: J C H;K*, but J is not conjugate to a subgroup of
<HlﬂH2,K*7u>.

Case C: J C (Hy () Hz, K*,u), but J is not conjugate to a subgroup
of HiK*.

Proposition 4.8 together with the following result shows that Cases A-C
exhaust the possibilities.

PROPOSITION 4.13.
If J C HiK* and J is conjugate to a subgroup of (H; () Ha, K*,u)
then J is conjugate to a subgroup of (Hy (| Hz)K*.

Proof

Observe that Hy K* ((H;y () Ha, K*,u) stabilises the two ends of the
1-simplex whose stabiliser is (Hy () H2)K*. Pro tem, call this 1-simplex
the canonical fundamental domain. Hence

H,K* ﬂ(H1 ﬂHg,K*,w = (H, ﬂHg)K*.
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Now we may assume, by conjugation if necessary, that
J C (Hy( Ha, K*,u) and that there exists g € GLyK such that gJg=! C
H;K*. Hence J stabilises the end-point, (3, of the canonical fundamental
domain which was introduced during the barycentric subdivision and also
stablises ga where « is the other end of the canonical fundamental do-
main. Since the tree contains no closed loops J stabilises all the 1-simplices
between (8 and ga. In particular J stabilises the canonical fundamental
domain or its neighbour. In the first case

J C H\K*(\(Hy(Ha, K*,u) = (H, [ | Ho)K*
and in the second case

w ' Ju C HiK* (\(Hy (| Ha, K*,u) = (Hy [ | H2)K*.

4.14. Proof of Theorem 4.9 continued
Now let us examine ME(‘W)) in Case A.
We have a short exact sequence of chain complexes

GLyK
0—c— mNgiQK(Hl)(va*:NGLZK(Hl))

1 GLK
@C mNGLzK(HlmH2)(WV7*7NGL2K(H10H2))

— M, — c—IndGra e Wyt (o) k) — 0

and taking the ((J, ¢))-part yields a short exact sequence (because the sum
of all the Lines with a fixed stabiliser pair is a direct summand) of the form

0—c— IndGL2K )(WV,*,NGLQK(Hl))((J,d)))

==Ngr,rx(H1
GL:K
®e - mNGiQK(HlﬂHZ)(WVV*vNGL2K(H1ﬁH2))((J’(b))
— M) — e m&ﬁﬁfz)m (W1, (st 01 ) P — 0.

Let L be a Line in M so that g® g L generates a Line in cfmg]”K(M).
This Line lies in c—mgLQK(M)((J"b)) if and only if g~ 'Jg C H and g~ 'Jg
acts on L via g*(¢). That is, g~ 1jg(v) = ¢(j)v for v € L.

Therefore the left-hand group in the short exact sequence is equal to

(97" Tg,97 ()
®g_1JggNGL2K(H1) g ®NGL2K(H1) WV,i,Nc;ngK(HI)

2]

(97 Tg.97(8)))
@g—nggNGL2K(H1ﬁH2) g ®NGL2K(H1QH2) V,*aNGLQK(HlmHQ)
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while the right-hand group is equal to

—1 *
By-1 19 (K- 9 Ounnm s Wi G e

These direct sums have to be interpreted with care. For example,
that for the right-hand group means that we choose coset representatives
{ga,a € A} then we form the direct sum over the g,’s such that g;'Jg, C
(Hy N Hy)K* of go ®(p,nH,)k+ L where L runs through the Lines of
Ml(_(fii‘]g“’g;(@)). The differential on such a Line maps it by 1 ® d to
Ja ®( HinHz) K+ A(L). Hence the complex is the direct sum of subcomplexes,
one for each g,. As we noted in the discussion of §4.5, by the discussion of
Lines in ¢ — mg{ (M) given in Example 1.11 we have an isomorphism of
k-vector spaces such as

((J,9)) = (97 T9.9%(9)))
WV,i—l,NcL2K(H1) -9 ®NGL2K(H1) WVﬂ'g—lJ\?chzx(Hﬂ

and similarly for the other two monomial resolutions.
Therefore, by  monomial  exactness  of Wy ngp, k()

WV i Nopy i (HinHy) and Wy .1 (g, nm,) K+, We have Hy(M ")) = 0 for
1 > 2 and there is an exact homology sequence of the form

0 — Hy (M) 5 &1 soc (i § @ Enmsyx- VO 7997 @)

—1 *
— Bg-179CNep, i (Hy) 9 ONap,x(Hy) V(e Tg,97(¢))

—1 .
® @ginggNGLgK(HlnHQ) g®NGL2K(H1ﬂH2) Vi Ja.a™(9))

N HO(Mi(J’¢))) —0.

Suppose that g=1Jg C (Hy N Ho)K* but that g ¢ (Hy N Hy)K*. Then
gL # L where L denotes the canonical fundamental domain. On the other
hand J fixes both L and gL. Since the tree has no closed loops this happens
only if J = {1}. A similar argument applies to the other direct sums in the
exact sequence, replacing the 1-simplex L by a vertex. Therefore if J # {1}
then the exact sequence takes the form

0 — Hy(MI9))y — v7d) —, y(1d) g v (d) —, go(M 2Dy — 0.
In addition the map in the centre is given by (v — (v, —v) so that

Vo) if i =0,
Hﬁ.(ﬂ&(i@)) _
0 otherwise.
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When J = {1} the exact sequence becomes

0 — Hy(MWD)y ¢ —ndGEE v

(HlﬁHz)K*
P GLyK GLyK
—c— IndNG;K(Hl)V ®c— IndNG’iQK(HlmHZ)V
N Ho(Mi(J’¢))) —0.
Therefore when J is trivial we also have
V ifi=0,

Hi(M,(k({l}’l))) -
0 otherwise.

In Case B, by a similar argument we find that HZ—(MSJ’@)) = 0 for
i # 0 and

-1 *
HO(MS*(J’@)) = Dg-179CNGLyx (H1) 9 ONaryw (Hy) Vi J9.97 (@),

However, if there exists ¢ € Ngr,rx(H1) such that gJg=t C Ngr,x(Hi)
then J fixes 0 and gf. Therefore J fixes all simplices between 3 and gf3
which include a translate of the canonical fundamental domain L so that J
is subconjugate to (H; () Hz)K*. Therefore there is only one coset in the
above direct sum and Ho(M{((/#)) 2 y(1.),

Therefore in all cases we have

V) if 4 =0,
H; (M) =
0 otherwise.

The proof of Case C is similar but simpler. Arguing as in Case A we
have an isomorphism

@ CL2K (97" 9,97 ()
ginggNGLZK(HlnHZ)g Ngrox (HiNHz2) "' Vix,Ngr, Kk (HiNHz2)

=, (o)

Now J must contain an element of the coset (Hy[)Hz2)K*u denoted by
zu, say. If g7'zug lies in Ngr,x(H1 N Ha) it sends the (pre-subdivision)
fundamental simplex of the into itself (switching endpoints) and does the
same to the image on the original fundamental simplex under g=!. It is
easy to see, either algebraically or from the self-normalising properties of the
simplex-stablisers in the simplicially subdivided tree, that this can happen
if and only if g € Ngr,x(Hi N Hy). Therefore

((J,9)) = ((J,9))
Ve, Nopy i (HiNHz) — M.
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which implies monomial exactness in Case C and completes the proof of
Theorem 4.9. O

REMARK 4.15. In the construction of the monomial resolution for
GLyK we were able to use any covering of ¥ because they are all chain
homotopic in the monomial category. However, this would be insufficient
for GL,K when n > 3 since the result is unlikely to be a chain com-
plex. In fact, the obvious construction of a “differential” d like that of
§4.7 would merely result in a composition dd which was chain homotopic
to zero. The problem arises because the Bruhat-Tits building is no longer
1-dimensional. This obstacle is what necessitated the construction of the
natural bar-monomial resolution, in order to enable the construction of a
double complex in §3.1.

4.16. Some subgroups of GLy K
Let K be a p-adic local field with valuation vg : K* — Z. We have
homomorphisms

det : GLoK — K* and vk - det : GLo K — 7Z.

Following ([115] p.75) we may define subgroups of GLyK denoted by
SLyK, GLyK° and GLy KT by

SLyK = Ker(det), GLyK° = Ker(vg - det),

GLyK+ = Ker(vg - det modulo 2)

so that
SLyK € GL.K® ¢ GL.K* € GLoK.

As explained in ([115] pp.78/79) and in terms of Bruhat-Tits buildings
in ([115] p.91) (i.e. BN-pairs [35] p.107) each of the first three groups
acts transitively on the vertices of the tree and act on a 1-simplex between
adjacent vertices simplicially (i.e. any element sending the 1-simplex to
itself does so point-wise). Therefore these subgroups act simplicially on the
tree and one may perform the constructions of §3.1 and §4.7 without having
to perform a barycentric subdivision.

In fact the analogues of Theorem 4.9 and Corollary 4.10 are true for
admissible representations of these subgroups.

5. Monomial resolution and wx-adic levels

5.1. Asin §2.1 let K be a p-adic local field with valuation ring Ok and
7k a generator of the maximal ideal of Ok. Let V be a (left) admissible
k-representation of GLoK with central character ¢. For 1 < m let Ug
denote the subgroup of GLy K given by B

UR ={X € GLyOk | X =1 (modulo 7}¢)}.
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Assume that mg is the least integer such that the central character ¢ is
trivial on U so that

V= U VEUR.$)

m>mg

For each m > mg the k-vector space V(KUR9) is a finite-dimensional

representation of the finite modulo the centre quotient group K*Ug' /UR.

THEOREM 5.2.

In the notation of §5.1 and Theorem 4.9

() *

MSK Un,9)) . V(K*.Um@

is a monomial resolution in kKU /Up],6 O

(ii) When k is an algebraically closed field of characteristic zero the
monomial resolution of part (i), which is unique up to chain homotopy in
kKU U], g0, contains in its chain homotopy class a monomial reso-
lution which is finitely generated and of finite length.

Proof

Part (i) follows from the fact that M, — V — 0 is a monomial
resolution of V. The proof of part (ii) is given in Chapter One §6. O

5.3. e-factors and L-functions

If V is an admissible representation of GLyK and M, — V is a
monomial resolution as in Theorem 4.9 one may possibly construct e-factors
for V' by some sort of Euler characteristic obtained by applying to each
Line an “integral”, made from character values, which in the finite case
specialises to the Kondo-Gauss sums. These integrals respect induction
from one compact, open modulo the centre subgroup to another.

I have not pursued this topic very deeply in this monograph. In the
case of GLy K the Kondo-style Gauss sum is described in Chapter Six §1.
In Chapter Six §2 and §3 I give briefly a number of constructions and
questions concerning the local L-function of V' and the Tate-style local
function equation.

I am assuming an analogue of the result concerning wild e-factors mod-
ulo p-power roots of unity [73] holds for all but a finite set of Lines with the
result that a well-defined e-factor modulo p-power roots of unity is defined
by a finite product of Kondo-style Gauss sums. Here I ought to mention
that I slightly disagree with a fundamental result in [73] (see [129] or Chap-
ter Eleven, Appendix IT) so the epsilon factor I propose may only be well
defined up to £1 times a p-power root of unity.

I have yet to develop fully the approach of Tate’s thesis to each Line,
properly developing Chapter Six §2, in an attempt to get the L-functions
of [66].
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These methods should apply to GL, K, since Conjecture 3.3 holds.

6. Galois invariant admissibles for GLy, K

6.1. Let k& be an algebraically closed field. Suppose that K is a p-
adic local field and p : GLoK — GL(V) is a irreducible admissible k-
representation. Let K/F be a finite Galois extension and suppose that
z*(p) is equivalent to p for each z € Gal(K/F'). Therefore for z € Gal(K/F)
there exists X, € GL(V) such that

Xop(9) X" = p(2(9))

for all g € GLo K. Therefore if z, 2, € Gal(K/F) replacing g by z1(g) gives
Xep(21(9) X2 = p(221(9))
and so
Xeop(21(9) X! = Xo X, p(9) X5 X = Koz p(9) X2

By Schur’s Lemma Xz_llXZ_IXZZ1 is a k*-valued scalar matrix and so
flz,) =X "X X,

is a function from Gal(K/F) x Gal(K/F) to k*. In fact, f is a 2-cocycle.
That is, using commutativity of k,

df (z, 21, 22)
= f(21,22) f (221, 22) "' f2, 2122) f(2,21) 1

= nglelXZl% (nglXilemm)ilXil X;1X22122 (Xzilleilem)il

4\ Z122

= (Xz_le_lXz2122)_1Xz_21Xz_11X21Z2X_1 Xz_lXZZ122 (Xz_lle_lXZZ1)_1

zZz1 Z1Z22

=X X X, XXX, L, XL XX L (XXX )

ZZ1Z22 Z122

=X X XXX L, (XXX )

zZZ122

=X X (XXX )T XXX,

ZZ1Z22

= X X X XX, XX X,

22122 zz1
=1.

The 2-cocycle f defined a cohomology class in [f] € H?(Gal(K/F);k*),
where Gal(K/F) acts trivially on k*. In Proposition 6.2 we shall show that
there exists a finite Galois extension E/F containing K such that

[f] € Ker(H?*(Gal(K/F); k*) — H?*(Gal(E/F); k*)).
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Assuming Proposition 6.2 for the moment, this implies that the function
£ Gal(E/F) x Gal(E/F) — Gal(K/F) x Gal(K/F) — k*
is a coboundary f’ = dF, where F is a function from Gal(E/F) to k*. In
other words, for z,z; € Gal(E/F),
X'X'X., = fl(2,21) = dF(2,21) = F(21)F(221) 7' F(z1).

Therefore z — X, F(z) is a homomorphism from Gal(E/F) to GL(V), since
the image of F' is central.

Recall that the semi-direct product Gal(E/F) o« GL2 K is given by the
set Gal(E/F) x GLy K with the product defined by

(h1,91) - (h2,92) = (h1h2, g1h1(g2)).
Define a map
p: Gal(E/F) x GLyK — GL(V)
by (2,9) — p(g) X F(2).
Therefore
p((hihz, g1hi(g2)))

= p(g171(92)) X,y F'(h1ha)

= p(91)p(h1(92)) X, ny F'(h1h2)

= p(91) X1, p(92) X5, Xy F(h1) X, F (h2)
= p(91) Xn, F'(h1)p(g2) X, F(h2)

= p((h1,91))p((h2, 92))
so that
p:Gal(E/F) x GLsK — GL(V)
is a k-representation of the semi-direct product, which is irreducible and

admissible since it extends p.

Any two such extensions differ by twisting via a homomorphism
Gal(E/F) — k*.

PROPOSITION 6.2.

In §6.1 for any cohomology class [f] € H%(Gal(K/F);k*) there ex-
ists a finite Galois extension containing K such that the image of [f] in
H?(Gal(E/F); k*) is trivial.

1t would be notationally more satisfying to be able to construct 5 on Gal(K/F) o
GL2K but, even in the case of finite fields this is not always possible (see Chapter Eight,
Theorem 3.11; [117] Theorem 1, p.406).
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Proof

Recall ([112] pp101-102) that the Galois cohomology group of F' with
coefficients in k* is defined as the direct limit

H'(F;k*) = lim H'(Gal(E/F); (k*)9*(®/F)) = lim H'(Gal(E/F); k*)
E/F E/F

where E/F runs through finite Galois extensions of F, since the groups act
trivially on k*. Since k is algebraically closed the quotient k*/Tors(k*) is
uniquely divisible and so H*(Gal(E/F); k*/Tors(k*)) = 0 for i > 0, since
the Galois group is finite. If p is the characteristic of k then Tors(k*) =
Q/Z[1/p] and it is isomorphic to Q/Z if k has characteristic zero. The for-
mer is a direct summand of the latter so that the vanishing of H?(F;Q/Z)
implies that of H2(F;Q/Z[1/p]). Therefore, from the long exact cohomol-
ogy sequences, we have isomorphisms

H'(F;Q/Z[1/p]) = H'(F; k")
if char(k) = p and
H'(F;Q/Z) = H'(F; k")
if char(k) = 0.

To prove that there groups vanish when ¢ = 2 it will suffice to choose
a prime [ and show that the direct limit

lim H?(F;Z/l') = 0.

t

By Tate duality ([137] p.289) there is an isomorphism
H?(F;2/1") = H(F; ),

the Galois invariants of the If-th roots of unity. Hence for t large enough
HO(F; ) is isomorphic to the I-power roots of unity in F, which is inde-
pendent of t. The inclusion map of Z/I* into Z/I**! corresponds to the i-th
power map, which is nilpotent of the I-power roots of unity in F', which
implies the result. O

6.3. The action of Gal(E/F) o« GLyK on the tree

The Galois action of Gal(K/F') on K @ K preserves the lattices L =
Ok ® Ok and L' = Og & ng Ok and their stabilisers, H; and Hy of §4.1,
under the tree-action. Therefore the Galois action of Gal(E/F), acting
via Gal(K/F), fixes the canonical fundamental domain on the tree and
the semi-direct product acts on the tree of GL; K, extending the action of
GL; K.

The central character ¢ is fixed by the Galois action.
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Recall from §4.2 the cell complex of the simplicially subdivided tree.
The G L, K-normalisers of stabilisers are given by

Ngr,xHy = H K*, Ngp,xkHs = H K™,

Near,xkHi(He = (H1 (H2, K*, u).
The Galois group Gal(E/F’) preserves each of these normalisers. Setting
G = Gal(E/F) «x GLy K, the 0-cells are given by

Co=c— Indgal(E/F)ancLzK(Hl) (k) ®c— Indgal(E/F)mNcLzK(HlﬂHg)(k)

while the 1-cells are

Q1 =Cc— Indgal(E/F)m(HlﬂHz)K* (k).
Therefore we have a short exact sequence of k[G Lo K]-modules of the form
in which

d(9 ®Gal(E) Fyo(HiNH)K* V)

=(g QGal(E/F)xNgL,x (H1) Vs =9 @Gal(E/F)xNaryx (HiNHs) v)
and

(g ®Gal(E/F)xNgLyrx (Hi) V1592 @Gal(E/F)xNap,x (HiNHz) v2)

= V1 + V3.

If V is the admissible representation of G given by 5 we have an iso-
morphism analogous to that of §4.3.

¢~’ = Indgal(E/F)o(H(W) @V —c— Indgal(E/F)ocH(W ® ReSngK(V))

given by ¢((¢g @ w)®v) = g®y (w® g~ '), if W is finite-dimensional and
H is one of (H1~ﬂ HQ)K*, NGLQK(HI) or NGLQK(Hl n HQ)
As in §4.3 ¢ transforms d ® 1 to

c— Indgal(E/F)tx(HlﬁHQ)K* (‘7)
U
c— Indgal(E/F)ocNGLzK(Hl) (V)®c— Indgal(E/F)ocNGLzK(HlﬂHg) (V)
given by

V(g ®Qal(B/F)x(HiNHy)K* V)

= (g QGal(E/F)xNgry i (Hi) Vs =9 @Gal(E/F)xNery i (HiNHz) v).
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Next we define an analogue of the central character
¢:Gal(E/F) o K* — k*
by é(g, z) = ¢(z) for g € Gal(E/F),z € K*. This is a well-defined charac-

ter since ¢ is Galois-invariant.

We define Mg 5 to be the partially ordered set of pairs (J,¢) where
J C G contains the centre Z(G) = Z(Gal(E/K)) x K*, is compact open
modulo the centre and where ¢ extends é

As in §4.4 we have bar-monomial resolutions
Ly

WV,*,Gal(E/F)u(HlﬁHg)K*)

in k[Gal(E/F)oc(H1NHz) K *],$ 11O,

WV,*,Gal(E/F)O(NcLQK(Hl) —V

in k[Gal(E/F)oc(NaL, (Hy)),¢TOD and

WV,*,Gal(E/F)ochLQK(H10H2)

in k[Gal(E/F)uNchK(HlﬂHz)]émon'
Following §4.5 we may construct a ,, smon chain map {t; [ i = 0}

covering QZJZ

e
¢ —IndGai(e/myoc(int) K (Wi s Gal(B) Fyoc (11 H2) )

(R

G
c— @Gal(E/F)cxNGLQK(Hl) (WV,*,Gal(E/F)mNGL2K(H1))

G
@S¢ — IndGai(s) FyocNe 1y i (0 H) Wi Gal(B/ F)ocNe Ly x (Hin Hz))-

Replacing each of (Hy N Ho)K*, Ngr,x(H1) or Nar,x (H1 N Hy) by
its semi-direct product with Gal(E/F'), the analogue of the construction in
§4.7 produces a candidate for a monomial resolution of V'

M, S V.
Explicitly M ; 1s given by
G
c— mGal(E/F)u(HlﬁHg)K* (WV,i—l,Gal(E/F)ax(HlﬂHg)K*))

el
®c— mgal(E/F)o(NcLZK(Hl)(WV,i7Gal(E/F)O<NGL2K(Hl))

G
S mGal(E/F)<><Nc;L2K(HmHz)(Wf/,z‘,Gal(E/F)ocNGL2K(HlmHz))
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with differential given, as in §4.7, by
d(w1 -1, wo,i, wh ;) = (d(wri—1), d(wo i, wp ;) + (*1)%1'—1(101,2'—1))
To establish exactness in the middle of

TR v SN v C)

for ¢ > 1 it suffices, as in §4.12, to consider J C G which is a subgroup
of Gal(E/F) o< HiK*, since Gal(E/F) « H; is a maximal compact open
subgroup to which all others are G-conjugate.

Since the Galois group acts trivially on the simplices of the tree the
argument of Proposition 4.13 shows that we have just two cases:

Case A: J C Gal(E/F) «x (Hy (| H2)K*.

Case B: J C Gal(E/F) x H1K*, but J is not G-conjugate to a sub-
group of either Gal(E/F) « (Hy () Ha, K*,u) or Gal(E/F)  (Hy () H2) K*.

The analogue of the argument of §4.14 establishes the following result.

THEOREM 6.4. Monomial resolution for for 1%
Let K, G and M, be as in §6.3. Then

M-S, S S S T — 0

is a monomial resolution in K[G), gon. That is, for each (J, ¢) € MG@

. ME(J#’)) N ME(;Q@)) N o 4, M(()(Jﬁé)) L yWe) g
is an exact sequence of k-vector spaces. ~
In k(G0N the monomial resolution of V is unique up to chain ho-

motopy.

6.5. Some Galois descent yoga

Take p and form the monomial resolution of V as in Theorem 6.4.
Quotient out the monomial complex by the Lines whose stabiliser group is
not sub-conjugate in the semi-direct product to Gal(E/F) x GLoF. This
is a monomial complex for the semi-direct product which originates, via
induction, with Gal(E/F) x GLyF.

In one case of finite general linear groups this yoga is equivalent to
Shintani descent. See [130], which is included for completeness as Appendix
L

QUESTION 6.6. How is the Galois base-change yoga of §6.5 (and its ana-
logues for GL, K with n > 3) related to Galois base change for admissible
representations of GL,, of local fields in the sense of [7] and [91]?
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REMARK 6.7. The following section contains some after-thoughts on
the Galois base-change yoga (aka the descent Galois construction), which
were added later in light of the existence of the bar-monomial resolution.

7. A descent construction - a folly in the monomial landscape

7.1. The descent construction®

Let G be a finite group acting on the left on a group H. Form the
semi-direct product G o< H (as in Chapter Two §6). Let B denote the set
of subgroups J C G o< H such that zJz"! ¢ G x HS for all z € G < H.

Suppose that ¢ is a character of G oc H and that M, M’ are objects and
that f: M — M’ is a morphism in the monomial category k(G ocH],$MON.
Set ;

M(B) = > M) C
JEB, (J,A)EMy(GocH)

Then we have f(M(B)) C M'(B). Hence Mg = M/M(B) is also an object
in k[GocH],pmon such that Mé(‘]’)‘)) =0 for all J € B.
There is an isomorphism in k[GocH] 00N between Mp and the sum of

Lines in M whose stabiliser is (H', ¢') with H’ subconjugate to G x HY.
A morphism f induces a morphism

fB:MB—7MIB

which is functorial in the sense that (f.f")s = fgfs and 1p = 1a,.
Hence we have a functorial ring homomorphism

Endk[GmH,@mon (M) - Endk[G(XH,Q]mon(MB)'

ExAMPLE 7.2. The construction of §7.1 applies, for example, to the
case when G is a local Galois group and H = GL,K as mentioned in
§6.5 and §6.6. I first considered it in connection with the Shintani descent
example which occupies Appendix I. That appendix was written several
years before I discovered the bar-monomial resolution. This section arose
since the bar-monomial resolution sheds a little more light - resulting in a
some slightly more specific questions and problems, which will be described
later in this section.

7.3. The descent construction applied to a monomial resolution

2To an 18th century English aristocrat a folly meant some extravagant, pointless
construction typically tucked away somewhere on his estate amid the rolling country-
side of his Lancelot “Capability” Brown (1716-1783) or Humphry Repton (1752-1818)
designed horticulture. Every chap had to have one - a grotto, a tower, a fake lake or
bridge and so on. The reader who has noticed this footnote will immediately get the gist
of the useage of the term in relation to this section!
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For simplicity, suppose in §7.1 that H is finite modulo the centre and
that V is a finite-dimensional k-representation which extends to a repre-
sentation V of G ox H with central character ¢.

Suppose that B

On— Op—
C— M, == M, ==

XMy -V —0
IS & pjgocH],pMon-resolution of V.

Since V, up to twists by one dimensional characters of G, is deter-
mined by V' and since monomial resolutions commute with twists by one-
dimensional characters we have a chain complex

On—1 On—2 2]
. — n,B_’Mn—l,B—>---—O>MO,B—>O

N p[gocH],gmon which depends, up to twists by one-dimensional characters
of G and up to chain homotopy in y[gom),¢mon, only on V.

Recall from Chapter One 3.5 that we have a functor J giving a full
embedding

J k[GocH],p MO — funth(k[G(xH])gmon,k mod)

defined by J(M) = Homk[GKmeon(—,M). In addition, let S €xqoch],¢
mon be the finite (G « H, Q)—Lfne Bundle over k given by

S = Bg)eMy (ot mdT* (ky),
which was introduced in Chapter One §4.2. As in Chapter One §4.1 we
define Ag = Homk[clyquon(S, S), the ring of endomorphisms on S under
composition. B
Then, in the notation of Chapter One §4.1, we have functors

by : funth(k[GO(H]@mon,k mod) — mod 4,

and
Vs :moda, — functy(xguH),omon,; mod),
which are inverse equivalences of categories. In fact, the natural transfor-
mations 77 and € of Chapter One §4.1 are isomorphisms of functors when
M=S5.
Applying ®g - J to the monomial complex

8n71 an—2 0
— M, — My_15 — ... —°>M0)B—>O

yields a chain complex in mod 4, of the form

s Bg(T (M) 22 0s(T (M 1)) 2= 2 05(T (Mo ) — 0.

Up to chain homotopy in the module category mod 4, this complex de-
pends only on V. Therefore, up to chain homotopy in the module category
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mod 4., we may compute this chain complex from the bar-monomial res-
olution of V.

7.4. ®g(J (M, p)) for the bar-monomial resolution
Recall from Chapter One §5.5 that in degree ¢ the bar-monomial reso-
lution of V' has the form

M;,s @ S = Hom, ) ,moa(V(S), V) @k AG' @4 S
so that
(MZ'}S R S)B = Homk[chH],med(V(S)7 V) R A?z Qr SB.

Therefore in degree i we have

J(M;,s @k S)B)

= Hom, g ,moa(V(5), V) @1 AT’ @ Homy ) ,mon(—, S)

and

Dg(T (M5 @k S)B))

= Hom, g 1 ,moa(V(5), V) @1 AF’ @ Hom, ) mon(S, Si).

Since monomial morphisms only increase Line stabilisers we have an
isomorphism of 4g-modules of the form

Homk[Go(H],fmon(S7 Sp) = Homk[cum.gmon(s& Sp) = Asys.

Therefore, by Chapter One, Theorem 5.4 we have established the fol-
lowing result.

THEOREM 7.5.
In the situation of §7.1, §7.3 and §7.4 the homology of the chain complex
®g(J (M, B)), which depends only on V' is given by

Hi(®5(T (M. 5)))

= Tor’y (Hom, ) ymoa(V(S), V), Asy)

ExAMPLE 7.6. In Chapter Ten, Appendix I studies Shintani descent
from Galois invariant complex irreducible representations of GLsF, to irre-
ducibles of GLyFs = Dg, the dihedral group of order six. In this situation
there are two interesting (that is, of dimension larger than one) which are
G LyF4-invariant. These are v4 and v5 of dimensions 4 and 5 respectively.
Let 74 and D5 denote the extensions of these representations to the semi-
direct product GLsF4 o< GLoF,4. They factor through GLyFy o PGLoFy.

By Chapter One, Theorem 6.3 there is a finite length monomial reso-
lution in y[c,«@LoF,),emon for each ;. Therefore such a monomial reso-
lution has a well-defined Euler characteristic in the free abelian group of
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isomorphism classes of objects in y(c,«ar.F,),¢mon. This Euler character-
istic may be computed without constructing a monomial resolution, using
the Explicit Brauer Induction formula, and this was done for 74, and 75 in
Chapter Ten, Appendix I §6.

The notation of the formulae is explained in the tables of Appendix I
§6.

Explicitly we have a r[c,«aL,F,),omon resolution of the form
0— M;y ®N;y — M; 4 1O Nijy—1 — ... — Mg ® Njop — 7; — 0

in which the M; ;’s and N; ;’s are objects in y[c,oqr,F,),omon. The cal-
culations of Chapter Ten, Appendix I §6 imply that for i = 4,5 there are
isomorphisms in y(c,«@r,F,),omon of the forms

Do<an<t Mi2n = Bo<onti<t Mioant1
and

@o<anzt Ns2n ® Ind {221 (1) @ Ind G2 (k)

B (k) © Indi 5575 (1) @ Indi 35+ (k)

SInd{ET"™ (1) @ Ind G =" (kye)

2 Go<onti<e Nognr © Ind 22 (ky) @ Ind(25 2 (ky2)

BIdi 4 (1) @ IS (1) @ Indi o k)

CoxGLyF CoxGL3F CooxGLyF
®lnd 573 * (k) © Ind G 3™ (ko) @ Ind (2757 03 (ko)

Ind (5™ (k) @ Indg 2 (k)
and

Bo<an<t Naon B mgi“(}m“ (ke)

CoxG CoxG
©Ind (208" (k) @ Ind( 25 637 (ki)

= @o<onti<t Nson+1 @ mﬁiﬁﬁ“(h)

IndeS D" (k) © Indgi 5,7 (ko) ® Ind ™25 (ko)

BV () © I35 63 (ko) @ Ind X EH ().
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Appying the descent construction of §7.3 we obtain a chain complexes
for i = 4,5 in y[cyocaL,F,),omon of the form
0 — M;is®N;uyg — M1 18O N;4—1p— ... — M;os® N;jop — 0
where
Bo<an<t Nsons & IndZ2*21 (k) @ Ind 52> 2" (ky)

CoxG CoxG CoxG
@nd( 27" (1) © Ind(2 > FF™ (kr) & Ind (T35 (1)

= Go<anti<t Nooni1s ® Ind{E2NT0200 (1) @ Ind (25 63" (ko)
@Ind(2% S 3™ (krp) @ Ind (3" (1) @ Ind (273" (ky)
and

@o<on<t Na2ns © IHdCzO(GLZM(kqﬁ)

©lnd (208" (k) © Ind( 255 37 (k)

CoxG
= Go<anti<t N5 20418 © Indczox(pfzm(kf)
®Ind@2 570" (k) ® Ind (25 3™ (krg).
From Euler characteristic equations such as these one can sometimes

deduce a little about the homology groups of Theorem 7.5. In this example
I believe that one can deduce that some of the odd degree homology groups

TorZZJr1 (Homk[Gc(H].’fm(,d(V(S)7 V), Asy)

are non-trivial for both V =y, and V = vs.
The following result is immediate.

LEMMA 7.7.

Let ¥ be a character of the form G «x H — G %, k* in which the first
map is the canonical surjection. Then the construction of §7.3 commutes
with twisting by

ky @ My = ky @k (My5)
in k[GocH], g TIOTL.

In particular, applied to a monomial resolution M, — V the mono-
mial complex M, 5 depends only on V, up to twists by one dimensional
characters of G and up to monomial chain homotopy.

I shall close this section with some (rather pointless® related questions.)
31 give my sincere apologies for these questions to the readers, should there be any.

These are the sort of out-of-touch ramblings which one might expect from a mathemat-
ically isolated, dillettante retiree!
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QUESTION 7.8. Let K be a local field and suppose that V is an irre-
ducible admissible representation of GL, K with central character ¢. Let

F/K be a finite Galois extension and suppose that Vi is an irreducible
admissible representation of the semi-direct product Gal(F/K) « GL,F
whose Galois base-change of Resgilil;/ K)O(GL"F(VF), in the analogous sense
to that of Shintani descent (in Chapter Ten, Appendix I §4), is V.

Therefore, by Chapter Two §6, there is a monomial resolution
M*7F — VF — 0.

Can the monomial complexes { M, r} be chosen coherently? That is, in
what sense can they be chosen to form an inverse system? Can the mono-
mial complexes of §7.3 {(M. r)g} be chosen to form an inverse system?

QUESTION 7.9. The monomial complexes in the family {(M, r)g} are
all “induced from” Gal(F/K) x GL,K C Gal(F/K) x GL,F. Supposing
a fairly strongly affirmative answer to Question 7.8 we would have an in-
verse system of monomial complexes induced from Gal(F'/K) x GL, K and
depending only on V', up to one-dimensional Galois twists.

Is it possible to use this structure to associate to V' a Galois represen-
tation of Gal(K /K), modulo one-dimensional twists Galois twists, in some
sort of “dual pair” [75] relation?

REMARK 7.10. Galois descent, Functoriality and functoriality

Let L/K be a Galois extension of local fields. Suppose that V is an
admissible representation of GL, L with central character ¢.

Suppose that V is irreducible then Galois base changei(aka Galois de-
scent) may be characterised in terms of character values ([91] Chapter Two)
which is analogous to the finite field case of Shintani descent described in
(Chapter Eight, Appendix I, §4). It may also be characterised in a manner
which extends immediately to the global case in terms of the L-group and
the Principle of Functoriality ([91] Chapter One). However, although it
sounds like it, the Principle of Functoriality is not functorial. It is inter
alia a bijection between sets of irreducible admissible representation with a
functorial-like behaviour. For the local GL, L it was established for cyclic
extensions L/K (and hence for nilpotent extensions, presumably) in [7].

It seems to me that Galois descent should ideally aim to feature a sheaf
of representations on the poset of local Galois groups. In the spirit of this
monograph, an equivalent aim would be a sheaf of monomial complexes on
the poset of local Galois groups similar to the one I constructed in Chapter
Four on the Bruhat-Tits building.

Allow me to illustrate what I have in mind by an example. Suppose that
we have Galois base change admissible representations of all nilpotent sub-
groups of Gal(L/K). Let us take the example of the case when Gal(L/K)
is isomorphic to one of the icosahedral, tetrahedral or octahedral groups.



7. A DESCENT CONSTRUCTION - A FOLLY IN THE MONOMIAL LANDSCAPET71

Each of these has a 2-dimensional irreducible complex representation which
which is not a monomial representation. Using this representation the group
Gal(L/K) acts simplicially on U(Q,(C)/NU(ZC)TQ, the coset space of the
normaliser of the maximal torus in the 2 x 2 unitary group. The homology
group H*(U(2, (C)/NU(Q’C)TQ; Q) is isomorphic to the rational homology of
a point and the stabiliser of each simplex is a proper, nilpotent subgroup
of Gal(L/K) [122]. If the base-change data for the stabiliser of each sim-
plex were functorial for inclusions we would have a sheaf of representations
on U(2,C)/Ny2,c)T? and would be able to form a double complex whose
terms were admissible representations of GL, K. The total complex of this
double complex probably would not have homology concentrated in degree
zero, but the same construction with U(2,C)/NU<27C)T2 replaced by the
tom Dieck-Baum-Connes space (see Chapter Thirteen, Appendix IV) with
respect to the family of nilpotent subgroups of Gal(L/K) definitely would.
This non-zero homology group should be the candidate for the Galois de-
scent of V.

One can see just where functoriality is missing in the “descent” corre-
spondences involving finite groups. If S is a finite group acting on the finite
group G then there is a canonical correspondence due to Glauberman [65]
between complex irreducible representations of G fixed by the action of §
and complex irreducibles of G, the subgroup of S-fixed elements in G. Let
this correspondence be denoted by V — GI(V'). Extend this map to set of
isomorphism classes of representations. How is this to extend functorially
to maps between representations? For example, when S is cyclic of order
p, which is prime, then GI(V) is the unique irreducible irreducible of G**
in Res&s (V) whose multiplicity is congruent to 1 modulo p ([5] Lemma
3.3). Given a map between S-invariant representations of G it is by no
means clear how to map Glauberman correspondents because, despite hav-
ing copies of GI(V) contained in V', because the multiplicities prevent a
characterisation of GI(V') as a subspace of V.

Consider the finite group example of Chapter Ten, Appendix I. Here
the Shintani correspondence [117] is denoted by V — Sh(V). There are
three Gal(IF4/Fs)-invariant irreducible complex representations of G Loy
denoted by 1, vy, vs where v; is i-dimensional. Perhaps we can characterise
Sh(v;) as a subspace of v; and thereby extend the correspondence to mor-
phisms? Each v; extends, uniquely up to one-dimensional twists by Galois
characters, to an irreducible representation 7; of the semi-direct product
Gal(Fy/F3) o< GLyF4. We have Sh(vy) = v, the unique two-dimensional
irreducible of GLsFy = Dg. The results of Chapter Ten, Appendix I, §2
and §3 imply that

Gal(Fs/F2)xGLyFy |~
ResGZlEFj?Fi%?GLzEz(VAL) =(1+71)@x+TQV
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where 7 and x are the non-trivial one-dimensional characters of Gal(F4/F2)
and Dg respectively. This leads one to hope that Sh(v;) can be given
by a quotient of the restriction of ; by a subrepresentation of the form
Indgizlz(g;‘/FQ)XGLlez (W). However, if the formulae of Chapter Ten, Appen-
dix I are correct, we have Sh(vs) = x but, rather disappointingly,

Gal(Fa/F2)xGLoFy |
RGSGaIEFZ]Fz;xGLzﬁ(VS) =(1l+7)v+1el.

Too bad!

8. A curiosity - or dihedral voodoo

8.1. In this section, merely out of curiosity, I am going to apply the
descent construction of §7.3 to the case of a cyclic group of order two acting
on a dihedral 2-group. To my knowledge there is nothing known in this case
which might be considered an analogue of the Shintani descent correspon-
dence of [117] or the Glauberman correspondence of [65]. Of course, I am
not going to get anything interesting when the generator is merely acting
via an inner automorphism. Fortunately, a theorem of Gaschutz states that
every p-group has an outer automorphism. Therefore I propose to take Co
acting via an involutory outer automorphism of a dihedral 2-group.

The formulae become quite complicated so I shall restrict to the exam-
ple of C5 acting on Dg by an outer automorphism which becomes inner in
Dqg. 1 strongly believe that the descent construction is rather interesting
in each of the other dihedral cases, too.

In this example the representations will be defined over an algebraically
closed field of characteristic different from two. In this case Dg has a unique
2-dimensional irreducible v which is fixed by the involution. The subgroup
of fixed points is the central C5 so that any interesting descent construction
should send v to the non-trivial character of the centre. On the other
hand there are two extension 7 of v to the semi-direct product of Cy with
Dy differing by a one-dimensional twist which commutes with the descent
construction. Therefore the descent construction should give us - by some
sort, of yoga - a representation of the product of Cy with the centre of Dg.
If x2 is the non-trivial character of the form and x; of the latter then the
outcome

X1®X1X2 = (18 X2) @ X1
would be quite satisfactory!

8.2. The group (z,y,t)
Write the dihedral group Dg in the form

Ds = (z,y | ' =1=4" yry=2°).
An involutory outer automorphism of Dg denoted by

\: Dg —» Dg
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is defined by the formula \(y) = zy, \(z) = 23.

Define a group G to be the semi-direct product of order sixteen in
which the outer automorphism A has become the inner automorphism of

conjugation by ¢
G=(z,yt|zt=1=y*=12 yoy = 23, tyt = zy, tat = ).

The two-dimensional irreducible of Dg is v = Indz 3 (¢) where ¢ is the

character defined by ¢(z) = v/—1.
The action of Dg on v extends to a representation © of G by the action

t(1 @) 1) =&y Oy 1, ty Dy 1) = & @y 1

where &g = L\/‘/{T

In terms of 2 x 2 matrices U is given by

0 & V-1 0 0 1
t= ;T = s Y=

& 0 0 —v-1 10

In G we have tyty = xyy = x so that (ty) is cyclic of order eight
containing x so that y and ty generate G and from the matrices one sees

that
G=(ty,y| ty)®=1=y"y(ty)y = (ty)") = D1e.

Write
Dig=(X,Y | X8=1=Y2YXY =X")

wherre Y = ¢, X = ty in the previous notation.

8.3. Subgroups of D1g and characters on them

We have eight elements of order two X*Y € D for 0 < i < 7 which fall
into two conjugacy classes represented by ¥ and XY since X XY X! =
X2y,

Up to conjugation the subgroups of Dig are given by the following
table.

H | Order | Generators | Number in conjugacy class
Dqs 16 XY 1
Dy 8 X2Y 1
Cg 8 X 1
C,y 4 X2 1
Vay 4 (X%Y) 4
Cy 2 X1 1
Cc} 2 Y 4
{1} 1 1 1
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The following table gives the one-dimensional characters of the subgroups
up to conjugation (denoted by ~).

H H formulae
D1 1, A1, Ag, A g M(X)=-1
M (Y) = Ao (X), Aa(Y) = —1
Dsg 1, X1, X2, X1X2 X1(X?) = =1, x2(Y) = —1
x1(Y) =1=x2(X?)
CS 1a¢~¢77¢2w¢67¢3N¢57¢4 ¢(X):€8
Cy 1,a ~ a3, a? a(X?)=+—-1
Vy 1, X1, X25 X1X2 X1(X1) = —1,x2(Y) = -1
Xi(Y) =1=xa2(X*)
Cy 1,7 (XY =-1
C} 1,7 (YV)=-1
{1} 1 -

If H is a subgroup of D1g the H-abelian part of  is the sum of the subspaces
1) as 4 runs through H.

In the notation of the above table, the representation of Dg given by
v = Indg}‘\)(a) is equal to the restriction of 7 = Ind&?(qﬁ) S0 we may
calculate a monomial resolution of 7 and apply the descent yoga to it, out
of curiosity.

The following table gives, up to conjugation, the H-abelian parts of o.

H | H — abelian part of v
D¢ 0

Dg 0

Cs o+97

Cy a+a®

Vy X1+ Xix2

CQ 2.7

C; 1+7

{1} 2cot 1
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8.4. A monomial resolution of U

The Line bundle m&? (¢) has two Lines one with stabiliser pair (Cs, ¢)

and one with stabiliser pair (Cg, ¢7). Hence the isomorphism of represen-

tations ¢ : m&‘; (¢) — v yields isomorphisms

m&g(@((cm)) =, 5(Cs.9)

o

Ind 73 (¢)((C:9D) =, (Cad)
@@;g(@((%a)) =, 5(Cua)

@&?(@((04,&3)) =, 5(Caa)

BB (0@ =, 5

m&?(@(({l}’l)) =, p{1pn

However, for the other non-zero cases of abelian parts have zero image from
Ind 35 (¢) ().

Next consider the maps of representations

fi:IndP* (1) —
and
fa 1 Indp*® (X1 %) — 7

given by

fil®y, 1) =1Qc, 1+ Y ®c. 1, f2(1®y,1) =1®c, 1 - Y ®¢, 1.

These formulae define linear maps because X4(1®¢, 1£Y ®¢, 1) = —(1®¢,
1Y ®c 1) and Y(1®cy 1 £ Y ®cy 1) = (Y Q@ 1 £ 1 @y 1).
Consider the map of representations

e=1+ fi+ fa: My =Ind ¥ (¢) ® Indp' (%1) © Indy** (V1 X2) — 7

which satisfies
Mé(H,w)) =, pH)

for H = Dsg, Ds, D}, Cs, Cy and is surjective for all other (H,1)’s.
Next observe that

Mé(v4’)21)) _ ﬁ(V4,)21)

and
Mé(%&l)&)) _ ﬁ(V4,)21)22)

are also isomorphisms.
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Consider
My = MY @™ — 50 = 5

whose kernel is a C[Dj] of complex dimension eight and containing
1@, 1+Y @, 1,—10y, 1,0) and (1@c, 1 - Y ®c, 1,0, —1 @y, 1).
Notice that
e(1®cg 1,(—1/2)1 ®v, 1,(-1/2)1 ®y, 1)

=1®c, 1+ (-1/2) (1R, 1 + Y ®cy 1) + (—1/2)(1 ®cy 1 = Y ®¢, 1)

=0
and
(I+Y)(1®ce 1, (—1/2)10v,1, (—1/2)10y,1) = (1Qc: 1+Y ®¢c, 1, —1®y, 1, 0)
and
(1-Y)(1®ce 1, (—1/2)10v,1, (-1/2)10v,1) = (1®c 1-Y ®c4 1,0, —1®y, 1).
Define
d: M, = m@;a (1) — Ker(Mé(c2,r)) N D(CQ,T))

d1®c, 1) = (1®cs 1,(—1/2)1 @y, 1,(—1/2)1 ®@y, 1).
Hence we have a candidate for a monomial resolution
0— M; — My — v —0.
We must verify the exactness of each of the sequences of vector spaces
0 M1<(H,w>> . Mé(H,w)) L pHY)

When H = D4, Dg this is a sequence of zeroes. The right-hand map
is always surjective. When H = Cg, C4, V; we have Ml((H’w)) = 0 and the
right-hand map is an isomorphism. When H = Cs, {1} the complex is equal
to the entire candidate monomial resolution which is exact by surjectivity
of the right-hand map and a dimension count. When (H, ) = (C4,1) or
(H,¢) = (C4,7) the left-hand vector space is trivial and the right-hand
map is a surjection of one-dimensional spaces and hence an isomorphism.

8.5. Applying the descent construction

Now let us apply the descent yoga. The subgroup Dét> = (X% XY)
which is conjugate to Vj therefore, equivalently, I shall apply the yoga to
V4 to receive

0 — 1dZy(r)
where 0 is given by
(1 ®c, 1) = ((=1/2)1 0y, 1,(=1/2)1 @y, 1).

2 mdD (%1) © IndD* (71 %2) — 0
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Therefore mg;ﬁ (7)((H)) is trivial unless H contains X* and (X *) =
—1 but in that case the other term is zero, too. For (Cy,7) we find
that 9((¢27)) is an isomorphism and so is 9({1H1). For (Vy,«a) with
«a = X1, X1X2 we obtain a chain complex

0—0—V,—0
where V,, is one-dimensional spanned by 1 ®y;, 1 in the appropriate sum-

mand.
Hence the complexes

0 —s mgje (T)((Hyu)) BN m%ﬁ(fﬁ)((H’“)) @m%e (21)22)((117#)) — 50

are all exact except when H = V4 and p = X1, x1X2 in which case the
homology is V,, in dimension zero.
Hence if P((H) = ZMEH PUHm) and P, is the monomial complex
produced by the descent construction then
X1 ©xaxe if H=Vy,i=0,
Hi( pi(H ))) _
0 otherwise.

QUESTION 8.6. Is the outcome of §8.5 the result of something system-
atic or just a black magical coincidence?

REMARK 8.7. (i) The descent construction complex P, of §8.5 is not
a k[V4]-monomial resolution of X1 @ X1 X2 because

0 Pl((Cz,T)) = PS(CZ’T)) — (1 ® 215(2)((0277)) =92.7—0
is not exact.
However a monomial resolution is easily found and takes the form
0— P — Py ®Indf: (1) — (1@ x1X2) — 0.

(ii) The descent construction applied to G x H C G o H yields a
monomial complex Mg and an abelian representation

(GxHP)) _ ((GxHT X))
M = . My
AeGXHE

which is naturally a complex of representations of the normaliser Ngog G X
HE.

This happens in the example of §8.5 where the normaliser of V}; in Dyg
is Dg and X1 + X1X2 is the restriction of the irreducible representation v of
Dg.
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8.8. The descent construction for v; of Chapter Ten, Appendiz I revis-
ited

The subgroups of Dg and their characters up to conjugation (denoted
on characters by ~) are given in the following table.

’ H ‘ generators ‘ H ‘
Dg AC 1,9
Cs C 1¢~ ¢?
02 A 1, 12
{1} 1 1

A monomial resolution for v = Indgf(qﬁ) over an algebraically closed
field of characteristic different from 2 is

M,: 0— IndPs(1

ndf (1) -5 Ind2? (¢) © Ind 22 (1) & Ind 22 (1) = v — 0

where p is the non-trivial character and the differentials are given by
I(lonyl) = (1®c 1,-(1/2) ®c, 1, =(1/2) ©c, 1),
€(1®c, 1,0,0)) =1®¢, 1,
€0,1®c,1,0) =1®¢, 1 + A®c, 1
€0,0,1®c,1)=1Q¢c, 1 —AR®c, 1

The Euler characteristics of M) in R (Dg) are given by

X)) 0
(M ((Cs))) b+ ¢
X(M((Cz))) 1+p
X(M(({l}))) 9

From the calculations of Chapter Ten, Appendix I §6 we have ag(74)
and ag(75) in Ry (Gal(Fy/F3) o« PGLsFy,), which are the Euler charac-
teristics of the monomial resolutions of 74 and s respectively. Apply-
ing the descent construction relative to Gal(IF4/F3) x GLoFs = Cy x Dg
we obtain the M (B) monomial complexes whose Euler characteristics in
R, (Gal(Fy/Fy) x PGLyF,) are obtained by applying the descent con-
struction term-by-term to the ag(7;)’s.

Write Desc, x pg (7;) for the descent construction monomial complexes
and write x(Desc,xp, (73)) € R4 (Gal(Fy/F2) ox PGLoFy4) for their Euler
characteristics.
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From Chapter Ten, Appendix I §6 we have the formulae:
Desc, x pg (ac(74))
= (Cy x Dg,7)% + (C2 x Dg, $)¢ + ({(0,1),C), 7)€
—(C2,9)9 = ({(0,1),4),1)¢ = ({(0,1), C), 1)
and
x(Desc, x pg(aG (75)))
= (((0,1),4,C), )9 + ({(0,1), C),9)¢ + (((0,1),C), 7$)“
~(C5,0)9 = (C2,9)° = (((0: 1)), ) = ({(0,1)), 1)

+({1}’ 1)G - (<(07 1)’ A>7 1)G + (<(U7 1)a A>7 (b)G

From the tables of Chapter Ten, Appendix I §11 we obtain the following
tables of Euler characteristics of (—)((/})) data. The notation for subgroups
is that of Chapter Ten, Appendix I §11 but the notation for characters of
Dg is that of the table beginning this subsection and 7 (resp. ¢’) is the
non-trivial character of Gal(F4/F2) (resp. C%) as in Chapter Ten, Appendix
L

J DeSCQXDe (aG(D‘l))((J))

Dg 1+
Cy x Cy 1—T+T(¢+¢2)
02 X Cz T+ T

Cs o+ @2

CQ —2;1,

c; 1—5¢/

m ~70

J DGSC2><D6 ((lg(175))((‘]))

Ds 1
CoxCs| 1+ (14+71)(9+¢%)
Cy x Oy T+ T

Cy 1

Cg —2/1

Cl “12— ¢

m —50
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QUESTION 8.9. Is the outcome of §8.8 the result of something system-
atic or just another black magical coincidence? More precisely?, does the
comparison of the Cs-row of the (—)((/) data suggest the Shintani cor-
respondence Sh(v4) = v and the combination of the C5/Cy-rows suggest
Sh(V5) = /J?

4This question is reminiscent of the punch-line of the joke which starts “What is
the definition of an optimist?”



CHAPTER 3

Automorphic representations

One encounters the profound relation between automorphic represen-
tations and modular forms in [[51], [62], [67], [80]], for example. The
topic is a breath-taking mathematical story of local-global flavour which
has proved so important in number theory and arithmetic-algebraic geom-
etry. Having already introduced monomial resolutions in the admissible
local case, in this chapter I shall give a brief sketch of their introduction
for global automorphic representations via the Tensor Product Theorem.

In §1 we recapitulate automorphic representations of G Lo as manifested
in terms of the (U(gl2C), Koo) X GL2A f;,-modules of ([67] Vol I). Most im-
portantly §1 describes the tensor product theorem which enables one to con-
struct automorphic representations from local admissible representations
together with some Archimedean data. In §2 the tensor product theorem
for local monomial resolutions is proved. This guarantees, in Theorem 2.5,
the existence of a monomial resolution for any (U(gl2C), Kog) X GLaA pip-
module. §3 recalls how modular forms and their Hecke operators enter into
the theory of (U(gloC), Ks) X GL2Af;n-modules. Monomial resolutions
(local or global) of V' give important “resolutions” of the subspaces V(H.¢),
In §4 we recall from [62] how, in the case of automorphic representations,
the V(H:9)’s include, inter alia, the all-important spaces of classical modular
forms.

1. Automorphic representations of GLyAg

1.1. In this section I am going to recall from ([67] Vol. I) what an
irreducible automorphic representation is and how they are constructed by
the tensor product theorem. I am only going to do this for GLyAg since I
can then get all the technical details from ([67] Vol. I) with the minimum
of technical elaborations which are needed for the case of a general number
field (see [51], [62], [80]). In this chapter representations will be defined
over the complex numbers.

My objective is to describe how the analogue of the tensor product
theorem works in terms of monomial resolutions.

81
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1.2. Adéles and idéles for GL1 and G Lo
The ring of adeles of Q is given by

Ag = {(200, 2, 23,... ,Tp,...) | To € R,2, € Qp, p prime, x, € Z, p.p.}
with ring operations performed coordinatewise ([67] Vol. I p.7). The mul-
tiplicative group of idéles is given by
A = {(Too, 2,23, .. ,Tp,...) | oo € R*, ), € Qp, pprime, x, € Z; p.p.}.
Set

App ={(0,22,... ,2p,...) € Ag}
and

Abip = {(L,m2, ... 2y, ) € Ag )
The topology on Ag, which makes it into a locally compact topological ring,
has a basis of of open sets given by taking any finite set of places containing

oo and taking U as any open set in the product topology of R x Hpes Qp
and forming

O=Ux H Ly,.
PES
The topology on Ag, which makes it into a locally compact topological
group under coordinatewise multiplication, is given by taking U’ as any
open set in R* x [] ¢ Q and forming

o=Ux]][ z
pgS

Note that the topology on the ideles is not the subspace topology in-
duced from the adeles.

The rationals embed diagonally into the adeles and the non-zero ratio-
nals embeds diagonally into the ideles.

PROPOSITION 1.3. Adélic fundamental domain ([67] Vol. I p.10)
A fundamental domain for Q\Ag is

D=100,1)x][] z

so that
Ag = U 8+ D  (disjoint union).
BeQ

PROPOSITION 1.4. Idélic fundamental domain ([67] Vol. I p.11)
A fundamental domain for Q*\A?@ is

D' =(0,00) x [ z;
P
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so that
AH = U aD’  (disjoint union).
aceQ*
1.5. The adélic GLy - GLyAg
The adelic GLy for the rationals consists of

{(9007927 <o+ 9py .- ) |goo € GL;R, gp € GL2Qp; p prime, gp € GL2Zp P'Zl}

with coordinatewise multiplication. There is a diagonal embedding of
GL,Q
into GLaAg. We also have

GLQAon = {(I,gg, sy 9ps - ) S GLQAQ}

PROPOSITION 1.6. Adélic GLy fundamental domain ([67] Vol. I p.109
and p. 111)

Let Do be a fundamental domain for GLyZ\GLsR. Then a funda-
mental domain for GL,Q\GL2Ag is

Do x [ GL2Z,.

p prime

Every element of GL3Ag may be uniquely written in the form

yOO xOO Too O
7 (( ( 0k
0 1 0 7re
with v € GLoQ, —1/2 < 25 < 0, Yoo > 0, 22 + 9% > 1, 1o > 0 and
k€ OR-TT) e GLoZy.

DEFINITION 1.7. Unitary Hecke character of Ay (167] Vol. I p.40)
A Hecke character of Ag is a continuous homomorphism

w:Q"\Ag — C*.
A Hecke character is unitary if all its values have absolute value 1. The
following four properties characterise a unitary Hecke operator:
(i) wlgg') =w(g)w(g’) for all g,g" € A,
(i) w(vg) =w(g) forally € Q*, g € Ag ,
(iii) w is continuous at (1,1,1,...,1,...) and
(iv) |w|c =1.
DEFINITION 1.8. Automorphic forms on GLi and GLo (167] Vol. I
p.40 and pp.117-119)
Fix a unitary Hecke character w as in Definition 1.7. An automorphic
form on GL1Ag = A@ is a function
(b : GLlAQ — C
such that
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(i) #(vg) =¢(g) for all vy € Q*, g € Ay,

(i) 6(z9) = w()(g) for all g, = € A,

(iii) ¢ is of moderate growth. In other words, for each
(goos 925+ sGpy---) € Ag there exists positive constants C' and M such
that

|6(tgocs 925+ Gps---)c < C(1 + \t|oo)M.

The space of automorphic forms on GL;Agq is a one-dimensional complex
vector space. The condition (ii) just means that ¢ is a Hecke character of
moderate growth but when we come to GLs the analogue of (ii) will have
some more significance.

An automorphic form for GLs is a function

(b . GLQQ\GLQA@ — C

which is smooth, of moderate growth, right- K-finite and Z (U (gls))-finite.

Here K is the maximal compact adelic subgroup of GL2Ag, both it
and K-finiteness are defined below.

The action on the ¢’s of the universal enveloping algebras (see Defini-
tion 1.9) of the Lie algebras glsR and g¢l»C is given in terms of differential
operators D. If Z(U(gls)) is the centre of the universal enveloping algebra
then a smooth ¢ is Z(U(glz))-finite if the set

{D¢(g) | D € Z2(U(gl2))}

spans a finite-dimensional vector space.
A function ¢ is smooth if for every gy € GL2Ag there exists an open
set U C G'LyAg containing gp and a smooth function

#Y : GLyR — C
such that ¢(g) = ¢% (g0 ) for all g € U.

a b
Let g = € GLyAg be given by adeles
c d
= (Goo, @2, ... ,Qp,...), b= (boo,b2,... ,bp,...), ¢ = (Co0,C2y .. ,Cpy...)
and d = (deo, d2, ... ,dp,...). Define a norm function by
gl = H max{|av|vv‘bv|v»|6v‘v7|dv|vv|avdv _bvcv|;1}~

v<oo
Then ¢ has moderate growth if there exist constants C, B > 0 such that
6(g)lc < C|lg||” for all g € GLyAq.
Let K = OsR - Hp prime GL»Z, be, as above, the maximal compact
subgroup of GLyAg. Then ¢ is right- K-finite if the set of right K-translates
of ¢ given by the functions

{g — ¢(gk), k € K}
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generates a finite-dimensional subspace of the space of all functions
GL,Q\GLyAg — C.

DEFINITION 1.9. The universal enveloping algebra of gla ([67] Vol. I
p.112-117)

The real Lie algebra glsR is the real vector space of 2 X 2 matrices with
real entries. The Lie bracket is given by the commutator [, 5] = af — Ba.
The universal enveloping algebra U (glaR) is an associative R-algebra which
contains glsR and in which the Lie bracket and the algebra product “o” are
compatible in the sense that [«, 5] = a0 8 — o «. The universal algebra

is constructed as a quotient of the tensor algebra
U(glaR) = T'(glaR) /{[e, ] —a®@ 8 — B ® a for all a, 8 € glaR}.

If A is an R-algebra and ¢ : glsR — A is a linear map such that
o([or, B]) = p(a)-d(B) — p(B) - p(a) € A for all a, 5 € glaR then there exists

a unique R-algebra homomorphism
@ :U(gleR) — A
extending ¢.

One of the most important applications of this universal property is
to give an isomorphism between the enveloping algebra and an algebra of
differential operators.

Let a € glsR be a 2 x 2 real matrix and let F': GLsR — C be a
smooth function. The differential operator D, acts on functions such as F’
by the formula

0 0
(DaF)(g) = 5 F(g - exp(ta))li=o = 7-F(g9+tg - a)li=0
ot ot
where exp(ta) =1+, tkk%‘,k
The differential operators satisfy, as usual,

(Da(c1 By + c2F2))(g9) = c1Da(F1)(g) + c2Da(F2)(g)

(Do (Fy - F2))(9) = (Da(F1))(9) - F2(9) + F1(g) - (Da(F2))(9)

for all smooth functions Fi, Fy, constants c1,co € C and matrices g €
GLsR.

Under the product given by composition, written D, o Dg, the differen-
tial operators generate an associative R-algebra denoted by DZ consisting of
R-linear combinations of finitely iterated compositions Dy, 0Dy, 0...0D,, .

PROPOSITION 1.10. ([67] Vol. I Proposition 4.5.2 p.113)
Let aq,as € glsR and 71,72 € R. Then

(1) DT1a1+T2a2 = rlDal + TQDag and
(H) Dq, 0 Doy — Do, © Do,y :D[al,ag]'
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1.11. ([67] Vol. I Proposition 4.5.2 p.113)

Let V = C*°(GLyR), the space of smooth complex-valued functions on
GLsR. Then the linear map « — D, extends, via the universal property
of Definition 1.9 and Proposition 1.10, to an R-algebra homomorphism

§: U(gloR) — End(V)

such that 0(a)) = D, for each 2 x 2 matrix a.
The algebra homomorphism ¢ is injective ([67] Vol. T Lemma 4.5.4
p.114) and therefore yields an isomorphism

§ : U(gl,R) — DE.

If a, 8 € gloR then a++/—18 € gloC is a general element and defining
D, . /=153 = Da + v—1Dg we obtain a C-algebra of differential operators
on C*°(GLsR) and an isomorphism

§ : U(gl,C) —> DA.

DEFINITION 1.12. (U(gl2C), Koo )-modules

Following ([67] p.102) let K, = SO3(R), the special orthogonal group
of 2 x 2 orthogonal matrices with determinant equal to one. A
(U(gl2C), Koo )-module is a complex vector space V' together with actions

g : U(gloC) — End(V)

K., : Koo — GL(V)

such that for all v € V the subspace spanned by {mx__ (k)(v) | k € K} is
finite-dimensional and

7"-g(l)a) Ko (k") = TK (k) ) Trg(Dkflak)'

We also require that

y(Da)(0) =l (mic_ (exp) ) - 0~ v)

for all v € V and « in the Lie algebra of K, is contained in gloC. Note
that the limit is defined, without the topology, because mx_ (exp)(ta)) - v
remains within a finite-dimensional subspace.

We shall denote the pair (mg,7k.) by 7 and call (m,V) a
(U(gl2C), Koo )-module.

The condition that the subspace spanned by {7k _ (k)(v) | k € K}
is finite-dimensional for each v € V can be replaced by the equivalent
condition, which is more explicit, that for all v € V there exist integers
M < N and complex numbers ¢; and vectors v; € V with M <[ < N such
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that v = Z]]\V/I v and

cos(f)  sin(9)

(o) = V7T

T ( v

—sin(0) cos(0)
forall M <[ < N and 6 € R.

1.13. Equivalent formulation of (U(gl2C), Koo)-modules

We have an inclusion Ko, = SO2(R) C O2(R) into the orthogonal
group of 2 x 2 real matrices. The latter acts on gloC by conjugation,
k-z = kzk™!, on 2 x 2 matrices with complex entries. This gives, by
universality, an algebra automorphism

®y, : U(gl,C) — U(gl,C)

for each k € K.
We may form the twisted tensor algebra

U(gloC)@rR[K
whose multiplication is given, for k, k1 € Koo, X, X1 € U(gl2C), by
(X k) (X1 k)= @k;l(X)Xl ® kky.
From Definition 1.12 we have the composition identity
oo (k™) - 7y (Da) - Moo (k) = mg(Dg-1a1) = mg(@p-1(Da))-
Since the D,’s generate the enveloping algebra we have
Too (k1) g (X) « Moo (k) = g (Pp-1 (X))

for all X € U(gl2C).
Let X ® k act on V' by the map 7o (k) - mg(X). This action makes V'
into a left module over the twisted tensor algebra U (gloC)@rR[K ] via

(X ®k) v =mo(k)(mg(X)(v)).
This action makes sense because

Too(k) - mg(X) - oo (k1) - g (X1)
= Moo (k) - Moo (k1) - oo (k1 1) - g (X) - Moo (K1) - g (X1)
= Too (k1) 'ﬂ'g(q)k;l(X)) - mg(X1)

= Foo(kkl) . Wg(q)kfl(X)Xl)
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so that
(X@k) - (X1®k1) )

= Too (kk1) (g (@)1 (X) X1) (v))

= ((I)kl—l(X)Xl X kkl) -,

as required.

Therefore a (U(gl2C), Koo)-module is equivalent to a left
U(gloC)@rR[K o] module, which satisfies the additional conditions of Def-
inition 1.12.

DEFINITION 1.14. (U(gl2C), Koo) X GLoA i, -modules

Let GL2A 4y, denote the finite adelic GLo as defined in §1.4. Define a
(U(gl2C), Koo) X GLaAg-module to be a complex vector space V' with ac-
tions:

g : U(gloC) — End(V)
K., Koo — GL(V)

Tfin - GLQAfZ‘n — GL(V)
satisfying the relations

Tpin(apin)Tg(Da) = Tg(Da)T pin(afin)

Trin(pin) T, (k) = Tr o ()T pin(agin).-

If we let @ = (my,mK_),Tfin) then we refer to the pair (7,V) as a
(U(gl2C), Koo) X GLoA pi-module.

DEFINITION 1.15. Smooth (U(gloC), K) X GL2A fin-modules

Let V be a (U(gl2C), Koo) X GL2Af;n-module as in Definition 1.14.
We say that V' is smooth if every v € V is fixed by some compact, open
subgroup of GLaA ;. The (U(gloC), Koo) X GL2A fin-module V is said to
be irreducible if it is non-zero and has no proper non-zero subspace which
is preserved by the actions 7y, Tx__, Tfin.

1.16. The space of adélic automorphic forms A,(GL2Ag)

Fix a unitary Hecke character as in Definition 1.7. Let A, (GL2Ag)
denote the complex vector space of all adelic automorphic forms for GL2Ag,
as defined in Definition 1.8.

We shall now examine three linear actions which make sense on the
space of all functions on GLyAq. In fact, these three actions preserve all
the conditions of Definition 1.8 and therefore give well-defined actions on

Au(GLoAg).
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Note that there is also a natural action of GLsR by right translation
on the vector space of all functions on GLsR. This action does not preserve
the space A, (GL2Ag)!

Right translation by the finite adeles

Define an action
Tfin : GLaA i, — GL(AL(GLaAg))
by
(mrin(arin)(0))(9) = (g - agin)
where ¢ € A, (GL2Aq), g € GLaAg and ayin € GLaAfy.
Right translation by O2(R)

Consider k € Ko = O2(R) as embedded in GLyAg by inclusion into
the Archimedean factor. There we define

(T (F)(0))(9) = ¢(gk).

Action of glsC by differential operators

If D is a differential operator as in §1.11 then we define an action by

(mg1,¢(D)(#))(9) = Dp(g)-

With these actions the vector space A,(GL2Ag) is a smooth
(U(gl2C), Koo) X GL2A f;-module in the sense of Definition 1.15 ([67] Vol.
I Lemma 5.1.7 p.157).

The notion of an intertwining map of (U(gl2C), Koo ) X GLoA f;n,-modules
is defined in ([67] Vol. I Lemma 5.1.7 p.159) in such a manner that quo-
tients of these are again (U(gloC), Ko) X G LA ¢i,-modules.

One can then define an automorphic representation with central char-
acter w as a smooth (U(gloC), K ) x GL2A f;,-module which is isomorphic
to a subquotient of A, (GL2Ag).

1.17. Infinite tensor products of local representations

Let {V, }v<oo be a family of vector spaces indexed by the rational primes
and co. Let S be a finite set of primes including co. For v € S'let £2 € V,, be
a choice of non-zero vector. The restricted tensor product of the V,’s with
respect to the £0’s is the space of all finite linear combinations of vectors

§:® &v

v<o0

where £ € V,, and &, = £0 for all but finitely many v’s.
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Consider a (U(gl2C), Koo) X GL2A pn-module as in Definition 1.14. It
is a complex vector space together with actions

g : U(gloC) — End(V)
K., Koo — GL(V)

Tfin * GLgAfin — GL(V)

The tensor product theorem ([67] Vol. 1§10.8 pp.406-413) yields an isomor-
phism with a (U(gl2C), Koo ) X GL2A f;,-module constructed on a restricted
infinite tensor product. In order to define such a (U (gl2C), Koo ) X GLoA ¢ip-
module we require the following data:

(i) a (U(gl2C), Ks)-module (7eo, Voo ),
(ii) a local representation (mp,V,) of GL2Q, for each prime p,
(iii) a finite set of primes S containing oo,

(iv) a distinguished, non-zero vector fg €V, for p ¢ S which is fixed
by GL3Zy,.

DEFINITION 1.18. Unramified local representations

Fix a prime p. A representation (7, V) of GLyQ, is called unramified if
the subspace of GL2Z,-fixed points is non-zero ([67] Vol. I Definition 6.2.1
p. 192).

The local components of a (U(gloC), Koo) X GL2Afin-module are un-
ramified at all but a finite set of primes. This is related to condition (iv)
of §1.17 by the following crucial result.

THEOREM 1.19. ([67] Vol. I Theorem 10.6.12 pp. 400-402)
Let (m, V) be an unramified admissible irreducible representation of
GL2Q, then

dime (VEE22r) = 1.

In the notation of §2.2 the G LyZ,-fixed points of V' would be denoted by
V ((GL2Zp,1))

1.20. Infinite tensor products of local representations (continued)

Let (oo, Vo) be a (U(gl2C), K )-module. Let S be a finite set of
primes not containing co. For each p ¢ S let (mp,V,) be a representation
of GL,Q, such that Vi*'"*** £ 0. Choose a non-zero &, € V' **"" for each

p & S. Set V equal to the restricted tensor product

V=) V.

v<00
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Define actions:
my : U(gloC) — End(V)

7TIKOO : Koo — GL(V)

ﬂ.;‘in : GLQAfm — GL(V)
by
71-_:;(l))(® &) = (Trg(D)(Uoo) 02y (®v<oo &),

T ()@ &) = (Moo (k) (Vo0) ® (<o &0)s
W}m(afin)(® £0) =6 ® (®U<Oo (7 (ay)(&))-

Observe that if T is the set consisting of oo and all the primes such that
ap € GLyZ, then T is finite and for all p ¢ S|JT we have

mp(ap)(&p) = Wp(ap)(fg) = f;())
so that the action ﬂ}in preserves the restricted product V.

THEOREM 1.21. Tensor product theorem ([67] Vol. I Theorem 10.8.2
pp. 407)

Let (m, V) denote an irreducible admissible (U(gloC), Koo) X GLoA fip-
module. Let {q1,... ,qmn} be the finite set of primes where 7 is ramified.

Let S = {00,q1,... ,qm}. Then there exists

(i) an irreducible admissible (U(gl2C), K )-module (7oo, Vo),

(i) an irreducible admissible representation (m,, V,) of GL2Q, for each
finite prime p,

(iii) a non-zero vector vg € V};GLQZ’J for each prime p € S such that

/
=@

v<oo

The factors are unique ([67] Vol. I Theorem 10.8.12 pp. 412).

2. Tensor products of monomial resolutions

2.1. Let p be a rational prime and let (mp,V,) be an irreducible ad-
missible complex representations of GL2Q,,. Denote the central character
of (mp, V) by P, Q; — C*. Let {(m,V)) | p prime} be a family of
such representations such that {QP | p prime} induces a Hecke character
w: Q"\Af — C*, as in Definition 1.7.

Let S = {q1,... ,qm} be a finite set of primes. Assume, in addition,
that for each p € S the central character Qp is trivial when restricted to
Q; N GL2Zy and

V(GLaZy 1) _ Vi@;emm@p)
P
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is non-zero and hence one-dimensional by Theorem 1.19.
As in Theorem 4.9 let

d d d e
.— M(p)i — M(p)i-1 — ... — M(p)o — V, — 0
be a monomial resolution in ¢(gr,q,],¢, MON.
That is, for each (J,¢) € MGL2Q:¢

= ME)U) L M) ) L M) v

is an exact sequence of complex vector spaces.

2.2. The unramified vectors f

If (mp,Vp) is an unramified representatlon in §2.1 for p ¢ S then

QG L2Zp.¢ )
dlmC(V( o Py=1

generated by a vector denoted by
large enough,

p, say. In the notation of §2.1, if m is

V;@éGLzZm?p) — V() GO UG8,
In the bar-monomial resolution for V,,(m) we have My, () 0,G(m+r) We find

(Q,GL 2Lp9 ) .
a canonical summand Vj, @ SG(m+r) Where Sg(m4r) is the as-

sociated monomial module endomorphism ring used in the construction of
the bar-monomial resolution (see Theorem 5.6 and §2.1). Therefore we
have a canonical vector §2 = 52 ® 1 where 1 is the identity monomial en-

domorphism of Indggmirg(cép) C SG(m+r)- When 7 is large the vector §g

is independent of r and defines §2 € WVWO,Q;GLzZp-

Hence we obtain
0 0 GL2Q
gp =§, ®Q;GL.z, 1 € MQ;CQ;LZZP(WVP,O,Q;GLQZP%

which is a summand of M, in the monomial resolution of V,, as in §4.7.
Qg GLzszﬁ )

Note that the subspace <§O> is one of the Lines in M, and
that the augmentation sends f to fg .
=p
DEFINITION 2.3. Infinite monomial tensor products
For ¢ > 0 define a ¢jgr,4;;,],»mon-Line Bundle M by the degree ¢

component of the graded restricted tensor product of the family
{M(p)« | p prime} with respect to the fo’s That is, following §1.17, M _ is

the space of all finite linear comblnatlons of vectors

p prime
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where { € M(p);, and >_, i, = i. When & is non-zero then all but finitely
=p

many of the i,’s must be zero and of these all but finitely many must satisfy

£, =<
The c(¢L,4;:,],wmon-Lines of M are defined to be the one dimensional

subspaces generated by the £’s Where each 5 generated a Line in M(p);,.

Finally we have to define the adelic poset M(GL2Af4y,,w). This is the
set of pairs (H, ¢) where ¢ is a continuous complex-valued character and

H=]] H,
p

is a compact, open modulo the centre subgroup of GL2Af;, given by the
product over p of compact, open modulo the centre subgroups of
Hy, C GLQ,.

Restricting the subgroups in M(GL2A f;,,,w) to adelic products ensures
that the stabiliser pair of the Line

p prime
is in M(GL2Af;,,w). It also ensures that the graded tensor product of
the differentials in the local monomial resolutions gives a c(gr,a ,,] o MON-
morphism for all 7 > 1

M*}le

The augmentations induce a c(gr,a,,,]wMmod-morphism of the form
Q v
p prime

THEOREM 2.4. Monomial resolution for GLaA ¢y,
In the situation of §2.1, §2.2 and Definition 2.3 let

V= ®; prime Vp- Then the chain complex

—M -y S LM SV —0
is a monomial resolution in C[GLaA i) wMON. That is, for each
(J,0) € M(GL2Afin,w)
N M((J $) _2, M((J¢>)) N M((J¢ S, ye)

=i—1

is an exact sequence of complex vector spaces.

Proof
Take (J,¢) € M(GL2Afin,w) where J = [[, Jp. Then ¢ = [[, ¢,
and M E(J’qﬁ)) is the degree i component of the restricted product of the
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M (p)iu”’%)). In the case of a finite tensor product of chain complexes over
a field the Kiinneth formula [132] states that the homology of the tensor
product chain complex is the (graded) tensor product of the homology of
the constituent complexes. Since any vector in the restricted tensor product
chain complex lies in a finite tensor product the Kiinneth formula applies
to show that the complex M E(J"‘b)) is exact in every degree except zero

)

where its homology is the restricted tensor product of the Vp(‘]p’d)” ’s, which

is V{9) because J is a product of the Jp’s. O

THEOREM 2.5. Monomial resolution for (U(gl2C), Koo) X GL2A fip,

Let (m, V) denote an irreducible admissible (U(gloC), Koo) X GL2oA fip-
module. Let {q1,... ,¢mn} be the finite set of primes where 7 is ramified.

Let S = {00,q1,... ,qm}. Then there exists

(i) a unique irreducible admissible (U (gl2C), Ko )-module (7oo, Vo),

(ii) a unique irreducible admissible representation (mp,V,) of GL2Q,
for each finite prime p,

(iii) a monomial resolution in ¢igr,a,,,]wMON

M = & V,
P

prime

such that there is an isomorphism of (U(gl2C), Koo) X GL2A f;n-modules

/

V.o &)V

p prime

and a (U(gl2C), K) X GL2A f;n-monomial resolution

’

Ve ®M Ve ® Q) V2V

p prime

That is, for each (J, ¢) € M(GL2A fin,w)

> Voo ® M{F9D) 1ody, ®£§S’f’” ¢

1ody, ®£B(J’¢)) 1%y @vthe 0

is an exact sequence of complex vector spaces. The (U(gloC), Ko) X
GL>A pin-module structures are given by the formulae of §1.20.

Proof

This follows from the Kiinneth formula [132] together with Theorem
2.4 and Theorem 1.21. O
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3. Maass forms and their adelic lifts

DEFINITION 3.1. Automorphic functions of integral weight k

Let I" be a subgroup of finite index in SLsZ. For a non-negative integer
k an automorphic function of weight k& and character ¢ : ' — C is a
smooth, complex-valued function f of moderate growth ([67] Definition
3.3.3; see also [51] §11) on the upper half-plane H which satisfies

fyz) = v(y)(ez + d)* f(2)

a b

d
weight k and character ¢ is denoted by Ay, (T).

Fixing an integer N > 1 define the subgroup I'o(N) by

To(N) = {( . Z ) € SLyZ | ¢ =0 (modulo N)}.

where v = . The vector space of all automorphic functions of

If x is a Dirichlet character of conductor N then

(e n) =

gives a well-defined character. Hence we have Ay (T'o(V)).
A Maass form is said to have level N if it is a Maass form for I'o(M)
but not for any I'o(N) with M < N.

DEFINITION 3.2. Adeélic lifts of even weight zero, level one Maass forms

For an integer k the weight k Laplace operator is given by
82
2
Then Ag maps Ay (To(N)) to itself ([67] Lemma 3.5.4).
Let H denote the upper half-plane envisioned as

H = GLyR/Os(R) - R*

) o2 B
Ak:—y ( +87y2)+\/—1k‘y%

d c/—1+d”
unique representative of the form

by sending X = < (CI b ) to X - /—1 = &1+ Every point in ‘H has a

1 =z y O
g =
0 1 0 1
with z,y € R and y > 0.
Let v be a complex number then an even weight zero Maass form of
type v for SLyZ is a non-zero smooth function f € £2(SLoZ\'H) such that
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Yy x
(i) f(yg) = f(g) for all y € SLoZ, g = eH,
0 1
(i) A(f) = Af(f) =v(l=v)f,
x
(i) fi £( g)dx =0 for all g € GLy(R),
0 1
Yy —x y Yy T
(iv) f( )= f( ) for all € H.
0 1 0 1 0 1

By the coset space description of H we may consider a Maass form f
as a function

f : GLQR — C
such that
f(vgkz) = f(9)
for 7 € SL57,9 € GLoR, k € Os(R) = Koo, 2 = ( ¢ ’

From Proposition 1.6 we know that every element g € GLyAg may be
uniquely written in the form

Yo Lo Too 0
v (( - ( Ao I 0) k
0 1 0 re
with v € GL2Q, —1/2 < 260 <0, Yoo > 0, 22, + 3% > 1, 750 > 0 and
ke OR - Hp prime GLQZP.
The adelic lift of an even weight zero Maass form f is the function

fadetic : GLaAg — C

given by

Yo Lo

faderic(9) = f(( ).
0 1

DEFINITION 3.3. Adeélic lifts of odd weight zero, level one Maass forms

There is a similar construction for odd forms to that of Definition 3.2.
Let v be a complex number then an odd weight zero Maass form of
type v for SLsZ is a non-zero smooth function f € £2(SLyZ\H) such that
Yy
(i) f(yg) = f(g) for all v € SLoZ, g = € H,

0 1
(ii) A(f) =Ao(f) =v(1=v)f,
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1 =z
(iii) fol f( g)dz =0 for all g € GL2(R),
0 1
y -z y y x
(iv) f( )= —f( ) for all € H.
0 1 0 1 0 1

By the coset space description of H we may consider a Maass form f
as a function

f : GLQR —C
such that
fvgkz) = f(9)
for 7 € SLyZ.g € GLsR, k € Os(R) = Kooz = ( ¢

From Proposition 1.6 we know that every element g € GLyAg may be
uniquely written in the form

yOO xoo Too 0
7 (( ( Ik
0 1 0 7o

with v € GL2Q, —1/2 < 2o <0, Yoo > 0, 22, + 3% > 1, 7o > 0 and
k€ OsR - Hp prime GLQZP.
The adelic lift of an odd weight zero Maass form f is the function

fadetic : GLaAg — C

given by
Yoo Teo
faaetic(g) = f(( Ydet(koo)-
0 1
In both the even and odd case the adélic lift is an adelic cusp form in
the sense of ([67] Definition 4.7.7).

DEFINITION 3.4. Adélic lifts of Maass forms with arbitrary weight, level
and character

This is similar but quite involved, dealing with prime power level first.
Details are given in ([67] §4.12 pp.136-140).

3.5. Explicit realisation of a (U(glaC), Ko )-module
This material comes from ([67] pp.161-166). A convenient basis for
glg(C is

7= X = LY =  H =
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As in Definition 1.9 we have associated differential operators Dz, Dx, Dy,
Dpg and in terms of the coordinates

1 =z y 0 r 0 cos(0)  sin(0)
g:
0 1 0 1 0 r —sin(0) cos(0)
we have
7] 0
DZ = 7’&, DH = %

In ([67] Lemma 5.2.4) the relations for a (U(gl2C), Ko )-module are
verified. The operators

R=(Dx +V—=1Dy)/2, L = (Dx — V—~1Dy)/2

are called the raising and lowering operators because they correspond with
the classical raising and lowering operations on Maass forms which raise or
lower the weight by 2.

EXAMPLE 3.6. The (U(gl2C), Ko )-module associated to a Maass form

Let N, k € Z with N > 1 and let x (modulo N) be a Dirichlet character.
Fix a Maass form f of type v, weight k and character x for I'g(NN). Consider
fadetic as in Definitions 3.2 and 3.3 and define a vector space

M
Vi = {3 aR™ fugetic(g- k1) | M =0,1,2,3,... m; € Z,¢; € C}.
=1

Here g € GL2(Ag) and

1 0 10

kl:(koo,la 5 7)
0 1 0 1

with koo € O2(R) = Ko. The formulae referred to in §3.5 show that V;
is a (U(gl2C), Ko )-module.

3.7. Central characters and Hecke operators

(i) If f is an automorphic form of weight k, level N and character
X (modulo N) then the adelic lift fuqeic is an adelic automorphic form
whose central character is the idelic lift of the Dirichlet character y, which
is denoted by X;qeric and is given by the formula of ([67] Definition 2.1.7).

(ii) Hecke operators may be defined on spaces of adélic automorphic
forms, by means of sums over suitable adeélic double cosets ([51] §11), which
correspond to the classical Hecke operators under the adelic lift.
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4. VH¥) and spaces of modular forms

4.1. The following consists of extracts from [62]. Let I' denote a con-
gruence subgroup of SLsZ. That is, I' contains a subgroup of the form

a b
I'(N)={ €SLZ|a—1=d—1=b=c=0 (modulo N)}
c d

for some positive integer N. An important example is given by Hecke’s
group

a b
To(N) ={ € SLyZ | ¢ =0 (modulo N)}.
c d

Let GL3 R denote the group of 2x 2 real matrices with positive determinant.
The matrix

a b
g= € GLIR
c d
_ az+b
acts on the complex upper half plane by g(z) = oz

If k£ is a positive integer define

j(g.2) = (cz + d)det(g)~"/* and flig), (2) = f(9(2))i(g,2) 7"

The map f +— fljg, defines an operator on the complex-valued functions
on the upper half plane, {z € C | Im(z) > 0}. In fact, it defines a right
T'-action on such f’s, as the following calculation shows. Let

a b a v
g= and ¢’ =
c d d d
so that
aa' +bc  ab + bd
99’ =
ca' +dcd b +dd
Therefore

Fliggne (2) = f(9g'(2))((ca’ + dc’)z + b’ + dd')"*det(gg")*/.
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On the other hand
(flign )19 (2)

= flig (¢'(2))i(g', 2) 7"
= f(99'(2))i(9.9'(2))*i(g',2)F
= f(g99'(2))det(g)"/2det(g")*/?(cZtl + d)~F(c'z + d') "

ot d’
= fligg (2)-

Two points 21,25 are called I'-equivalent if there exists g € I" such that
g(z1) = 29; i.e. they belong to the same I'-orbit. A fundamental domain F'
for the I'-action on the upper half-plane is a connected open subset which
intersects each I'-orbit at most once and every z is I'-equivalent to a point
in the closure of F. A point s € R|Joo is called a cusp of T" if there exists
an element of the parabolic form

a b
g= el
0 d

such that g(s) = s. If H* denotes the union of the upper half-plane and
the cusps then I' also acts on H* and the resulting quotient space possesses
a natural Hausdorff topology and a complex structure such that T\H* is a
compact Riemann surface. The cusps we shall consider are various rational
points on the real line together with co = /—10o0.

DEFINITION 4.2. A complex-valued function f(z) is called a
I'-automorphic form of weight & if it is defined on the upper half plane,
{#z € C | Im(z) > 0} and satisfies:

(i) automorphy flig, = f for all y €T

(ii) f is holomorphic in {z € C | Im(z) > 0}.

(iii) f is holomorphic at every cusp of T'.

The space of such functions is denoted by My (T"). If I' = T'(N) then
My, (T'(N)) is often called modular forms of level N.

If ¢ is a character of (Z/N)* then My(N,1)) is the space of functions
which satisfy conditions (ii) and (iii) as well as

FEEE) = va) e+ d)F ),

which is condition (i) if ¢ = 1.

4.3. Regularity at a cusp
Suppose that s is a cusp of I'. Therefore exists 0 € SLsZ such that
o(00) = s. The matrix o exists because z — 1/z maps points near /—1oo
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to close to the origin and this maps close to b/d so all rational points on
the real axis are in the SLoZ-orbit of co. Therefore, by §4.2(i), f|), is
invariant under p = o~y o if y(s) = s. Let I'y denote the group of ¥’s
fixing s. We have the translation z + z + 1 and each p in 0 'T'yo is
translation by some h; since ¢~ 'I';o fixes co. Let h be the smallest such
translation and suppose k is even then

Flione (2 +h) = flio1, (2)

from which it follows that
fs(C) = f|[0]k(z)

where ( = e2mV=1z/ h which is called the local uniformising variable at s.
Then f,(¢) is well-defined in |¢| < 1 and is holomorphic in the punctured
unit disc, by condition (ii). The meaning of condition (iii) is that f(¢) is
holomorphic at { = 0 for every cusp s.

When £ is odd and

-1 0
el
0 -1
then My (T) = 0. If we assume that —1 & T then if 0~ !T'yo is generated by
-1 —h
0 -1

then
fliole (2 +R) = = fli51, (2)

so that the variable for regularity at s should be { = e™
¢ = e27r\/jlz/h.

—1z/h rather than

4.4. Fourier expansion al a cusp

Suppose that f lies in M (). Since f is regular at the cusp s implies
that fS(C) = flio]. (2) has a Taylor series at ¢ = 0. This series yields an
expansion

f|[a]k(z) _ Z an627r\/jlnz/h'

n=0
The series converges absolutely and uniformly on compact subsets and is
called the Fourier expansion of f at the cusp s.
If T is Hecke’s group I'g(N) then the Fourier expansion at co of any
f € Mp(To(N)) will have the form

f(z)= Z anezﬂ\/jlm.

n=0
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DEFINITION 4.5. A T-automorphic form is a cusp form if it vanishes
at every cusp of I'. In other words, the Fourier coefficient ay = 0 at each
cusp. The cusp forms of weight k& will be denoted by Si(I') and we set

Sk(F7w) = Sk(r) ka(Fvw)

4.6. The following is an adelic explicit description of the classical mod-
ular forms in terms of automorphic functions on GLyAg. It is taken from
([51] §11.1) which is, in turn, a version of the description in ([62] Prop.
3.1). After we have recalled this then, in §4.7 et seq we shall recall the more
general setting involving Maass forms as in §3.1-§3.3.

Temporarily we shall write Gg = GL2Q, Gy = GL2Ag, G = GL3R
and Gy = GLaAyg;,. Put HE = C — R and let

a 0
Uso = SO2R - { | a € R*}.
0 a

U is the stabiliser of i = v/—1 in the action on the upper half-plane since

cos(0)  sin(0) cos(0)i + sin(6)

—sin(0) cos(0) t) = —sin(0)i + cos(0) = (=) =1.

Identify Go/Use with HT via the map gUs, ~ g(i). Define j' (closely
related to the function j which was introduced earlier)

§' Goo x HF — C

by the formula
a b
7'( ,2) =cz +d.
c d
Let Sy, de the space of functions ¢ : Ggo\Gx — C such that:
(i) ¢(gu) = ¢(g) for all w lying in some compact open subgroup U.
(i) B(guoe) = J(Uoo, ) Fdet(uos)d(g) for all Uy € Us, g € Ga.
(iii) For all g € G4 the map H* — C given, for h € Go, by

hi — ¢(gh)j’ (h, )" (det(h)) ™"

is holomorphic.
(iv) ¢ is slowly increasing in the sense that for every ¢ > 0 and every
compact subset K C Gy there exist constants A, B satisfying

a 0
|o( h) < Allal|®
0 1

for all h € K,a € A* with ||a|| > c.
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(v) ¢ is cuspidal in the sense that for all g € Gy
1 =z

/ o g)dz =0,
s\ o 1

where dz is a non-trivial Haar measure.

The space Sj, is a Gy-module via the action given by right transla-
tion.For every compact open subgroup U let Si(U) = S,iU’l), the fixed
points of U. Hence Sy, is the union of the Si(U)’s.

For N > 0 define subgroups

a b
Uo(N):{ €Gf|CEN~Afm}
c d
and
a b
Ul(N):{ EGf|C,d—1€N~Afm}.
c d

For ¢ € Si(U1(N)) define a function fg by the formula
fo(hi) = ¢(h)j' (h,i)" (det(h)) "
for h € GLIR. Then ¢ — f, defined an isomorphism
Sp(U1(N)) = Si(T1(N)).
Morover, if € is a mod N Dirichlet character then
SN = Gy (T (N), ).

4.7. Now we shall consider some results from ([67] p.170 and pp.176-
177). Given an automorphic representation of GLyAg we may restrict it to
GL3A¢;,. Suppose we have an integer M = Hp p/» define compact open
subgroups of GLA ¢, as follows:

* *
Ko(M) ={k = (1,kay... ,kp,...) | kp= (mod p’7)}
0 =
and
1 =
Ki(M)={k=1,ka,... ,kp,...) | kp= (mod pfr)}
0 1

so that Ky(M) C Ko(M). Hence every continuous character of
Ko(M)/K1(M) inflates to give a continuous character of Ky(M) which
is trivial on Kj(M).
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PROPOSITION 4.8.
Given a smooth representation (7, V) of GL2Af;, there exists an inte-
ger M =], p/» and a continuous character A of Ko(M), which is trivial

on K (M), such that V(M)A £ [0},

REMARK 4.9. In Proposition 4.8 the character A need not necessarily be
an idélic lift of a classical Dirichlet character as in ([67] §4.12). However,
when A is such a lift and when V is the restriction of an automorphic
representation, then the space V(M)A would be isomorphic to a space
of newforms, as in §4.6.

4.10. Proof of Proposition 4.8
Let v; € V' be non-zero. Then v, is fixed by a compact open subgroup
K’ and for some N we must have K(N) C K’ where

10
Ki(M)={k=(1,ka,... . kp,...) | kp= (mod pfr)}
0 1
for N = prfp. Set
N o\
vg = (i pin( ))vs.
0 1
Now
N o\! N 0
Ki(N?) C K(N)
0 1 0 1

so that m(k)ve = vg for all k € K;(N?).
Now there is an isomorphism Ko(M)/K(M) 2 Z/M)* x Z/M)* ([67]
p.171). Now let A run through the characters of this finite abelian group.

Define

1

~T W ZA(Q)_lﬂ-(g)(UQ) c V(Ko (M),A)

where g runs through Ko(N?)/K;(N?). Well-known properties of charac-
ters of finite groups ([126]) yield the relation

Vg = E U
A

so that at least one vy is non-zero. O

REMARK 4.11. Let V be an irreducible cuspidal automorphic represen-
tation, as defined in ([67] §5.1.14), which is a subspace of the space of all
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cuspidal automorphic forms with central character w. Set

cos(f)  sin(#)
Vi={veV |rr_( Jo=eV=1% all § € R}.
—sin(6) cos(6)

Then V is an admissible (U(gloC), Koo) X GL2Af;,-module.

K(N),1
yEELD)

In particular, the spaces of newforms and hence the sub-

K(N),\
AGLIEN

spaces are all finite-dimensional.






CHAPTER 4

GL,K mn general

In this chapter I shall verify Conjecture 3.3 for GL, K for all n > 2
where K is a p-adic local field. For GLy K this was accomplished (in Chap-
ter Two, Theorem 4.9 and Corollary 4.10) by means of explicit formulae, in
order to introduce the ideas of the general proof gradually. In this chapter
I shall adopt a similar gradual approach, going into considerable detail in
the GL3K case before giving the general case.

For GL; K the proof of Chapter Two Conjecture 3.3 was accomplished
by constructing a double complex in gr,K],¢mon using several
bar-monomial resolutions together with a simplicial action on the tree for
GLyK. For GLy K, by some low-dimensional good fortune, the construc-
tion of the differential in the double complex was made particularly easy
(see the introduction to Chapter Two). For GL,K with n > 3 we have
to use in a crucial way the naturality of the bar-monomial resolutions in
order to apply the construction of the monomial complex given in Chapter
Two §3. This requires a simplicial action on a space Y which, for GL, K
with n > 2, we take to be the Bruhat-Tits building. Such buildings are
constructed from BN-pairs.

In §1 we recall the definition and properties of BN-pairs. In §2 we
recall the association of a building to a BN-pair with particular emphasis
on SLoK,GLy K, SL3K and GL3K when K is a p-adic local field. In §3 we
verify Chapter Two Conjecture 3.3 for all GL,, K using the contractibility
properties of the Bruhat-Tits building, which are explained in detail in
several GL3 K examples in §2.

As explained in §2.11 the Bruhat-Tits building for GL, K is a factor of
the Baum-Connes space EGL,K and from this the crucial contractibility
properties follow. Here I should point out that Chapter Eleven, Appendix
IV explains the construction of E(G,C) for any locally p-adic Lie group and
the family C of compact open modulo the centre subgroups. This simplicial
G-space has all the contractibility properties required for the verification of
the analogue of Chapter Two, Conjecture 3.3 for all admissible representa-
tions of G with a fixed choice of central character ¢. I leave to the reader
the mustering of all the details for that verification!

107
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1. BN-pairs

1.1. We shall start by recalling the theory of BN-pairs and their build-
ings in order to examine closely the cases of SL, K and GL, K forn = 2,3.
More complete accounts of this topic are to be found in [4] and [35] . See
also [11], [60] and [61].

DEFINITION 1.2. ([35] p.107)

Let G be a group with subgroups B and N. This is a BN-pair if

() G=(B,N),

(i) T=BNON<N,

(iii) W = N/T = (S) for some set S such that the following conditions
hold:

(BN1): C(s)C(w) C C(w)JC(sw) for all s € S,w € W, where
C(w) = BwB which depends only on the coset of w € N/T since T C B
and 7T is normal in N.

(BN2): sBs™1 ¢ B forall s € S.

The terminology is: (G, B, N, S) is a Tits system and W is the Weyl
group. A special subgroup of W, W’ C W, is one of the form W' = (S")
with S’ a subset of S.

PRroOPOSITION 1.3. ([35] p.107)

Assume that S consists of elements of order two and that (BN1) holds.
Then

(a) BUUC(s) is a subgroup of G for every s € S.
(b) BW'B is a subgroup of G for every special subgroup W/ C W.
(¢) As aset G is the disjoint union of the C'(w) as w runs through W.

(d) C(s)C(w) = C(sw) if I(sw) > I(w) where l(w), the length of
w € W ([35] p.34), is the minimal d such that w = $1s5...54 with s; € S.

Proof

Clearly, taking W’ = {1, s} we have (b) implies (a). To prove (b) we
shall show that C(w)C(w’") € BW'B for w,w’ € W”. Write w = s1...54
with s; € 8" and W' = (5’). When d = 1 the axiom (BN1) implies that
C(w)C(w") € BW’'B. By induction on d we shall show that

C(w)C(w') C U C(s{'s5...sqw')
=0,1

which implies (b) since s7's5*...siw’ € W’. Equivalently we may show
that
wBw' C U Bs{'ss? ... s§w'B.

€4 =071
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By induction

wBw' = s1(s3...sq4Bw')
C 51(Ue,—01 BsS .- s4'w'B)

- UQ_:Q1 Bs3 ...sfw'BU (Uel:o’1 Bsys3 ...sfw'B)

as required.

To prove (c) we first observe that BW B is a subgroup of G which
contains both B and N so that it must be equal to G. To complete the
proof of (¢) we must show that C(w) = C(w') implies that w = w’ € W.
Assume that d = l(w") < I(w) then we proof (c¢) by induction on d. If
d = 0 then w’ =1 and so C(w) = B. Therefore the image of w € W in
W = N/T = N/(BN N) is trivial, as required. Now suppose that d > 0
and write w’ = sw” with s € S and l(w”) = d — 1. The condition BwB =
Bw’'B implies that w'B C BwB and so w”B C sBwB and therefore, by
(BN1), C(w") € C(w)|JC(sw). Therefore, since C(w”) is the double
B-coset of a single element either C'(w”) = C(w) or C(w"”) = C(sw). By
induction this implies that either w”’ = w or w” = sw. If w”’ = w then
l(w) = l(w") < d < l(w) which is a contradiction. Hence w” = sw and
w' = sw” = ssw = w, as required.

Finally we shall prove (d) by induction on /(w). If [(w) = 0 then w =1
and the result is obvious. Suppose that I(w) > 0 and write w = w't with
t € Sand l(v) = l(w) — 1. If C(s)C(w) # C(sw) then (BN1) implies
that sBw intersects BwB and so sBw' intersects BwBt. From (BN1)
we have tBw~! C Bw !B|JBtw !B and taking inverses we obtain an
inclusion BwBt C BwB|J BwtB. Therefore sBw’ meets C(w)|JC(wt) =
C(w)JCw").

Assume for the moment that [(sw) > I(w) then we must have [(sw’) >
I(w") for if not

[(sw) =1(sw't) <l(sw')+1<l(w)+1=1(w).

Therefore, by induction, C(s)C(w') = C(sw’) and the proof of (c) shows
that either C'(sw’) = C(w) or C(sw’) = C(w’). Hence, by (c), either
sw’ = w or sw’ = w’. The latter is impossible since s has order two and so
is non-trivial. However, sw’ = w implies that I(sw) = l(w") < l(w), which is
also impossible. The only possibility remaining is that C'(s)C(w) = C(sw),
which proves (d). O

PROPOSITION 1.4. ([35] p.108)

Assume that S consists of elements of order two and that both (BN1)
and (BN2) hold. If Proposition 1.3(a) and (d) hold then, for all s € S,w €
w,

C(s)C(w) = C(w) U C(sw)
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if I(sw) < l(w).

Proof

By (BN1) C(s)C(s) € BlJC(s). Since C(s)C(s) is closed under
left and right B-multiplication and each of B and C(s) are generated by
any of their elements under left and right B-multiplication we must have
C(s)C(s) = B or C(s)C(s) = BUJC(s), because C(s)C(s) contains B.
Since C(s)C(s) = B implies sBs~! = sBs C B, contradicting (BN2), we
have C(s)C(s) = BJC(s). If I(sw) < l(w) then I(s - sw) = I(w) > I(sw)
so, replacing w by sw in §1.3(d), we obtain

C(s)C(sw) = C(ssw) = C(w).

Multiplying by C(s) we obtain

C(s)Cw) = C(s)C(s)C(sw)
= (BUC(s))C(sw)
= C(sw)|JC(s)C(sw)

= C(sw)|JC(w),
by Proposition 1.3(d). O
DEFINITION 1.5. Cozeter systems
Suppose that W is a group and that S is a subset of W whose elements
each have order two and which satisfy W = (S). The pair (W, 5) is called

a Coxeter system ([35] pp. 46-53) if, for all w € W,s,t € S satisfying
l(sw) = l(w) + 1 = l(wt), either [(swt) = l(w) + 2 or swt = w.

PROPOSITION 1.6. ([35] p.109)
Assume that S consists of elements of order two and that Proposition
1.3(c),(d) and Proposition 1.4 hold then (W, S) is a Coxeter system.

Proof

Suppose that I(sw) = l[(w) + 1 = l(wt) and that I(swt) < I(w) + 2.
Then we have, by Proposition 1.4,

C(s)C(wt) = C(wt) UC’(swt)

which must be a disjoint union, by Proposition 1.3(c). By Proposition
1.3(d) we have C(wt) = C(w)C(t) so that C(s)C(w)C(t) is the disjoint
union of C'(wt) and C(swt). By Proposition 1.3(d) we have C(s)C(w) =
C(sw).

By Proposition 1.4, if I(sw) < I(w), we have

C(s)C(w) = C(w) U C(sw)
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and taking inverses we find
C(w™HO(s) =C(w™) UC(w !

Replacing w™! by sw and s by ¢ we obtain, since length is preserved under
taking inverses,

C(sw)C(t) = C(sw) U C(swt)

since I(swt) < l(w) + 1 = I(sw). Combining all this we have that the
disjoint union of C(sw) and C(swt) equals the disjoint union of C'(wt) and
C(swt). Hence C(sw) = C(wt). Therefore sw = wt, by Proposition 1.3(c).
O

PROPOSITION 1.7. ([35] p.109)
If (BN1) and (BN2) hold then every s € S has order two.

Proof

By (BN1) we have sBs™' C C(s)C(s™!) € BJC(s™'). Hence
(BN2) implies that C(s)C(s™!) meets C(s™!) and so, by left and right
multiplication by B, we must have C(s~!) C C(s)C (s’l). Also B C
C(5)C(s71) so we must have C(s)C(s7!) = B|JC(s7!) and the union
is a disjoint union, since each of B and C(s™!) is generated by any of its
elements by left and right multiplication by B.

Taking inverses shows that C(s)C(s™!) is the disjoint union of B and
C(s). Therefore C(s71) = C(s) and so C(s)C(s) is the disjoint union of
C(s) and B. By (BN1) with w = s we have C(s)C(s) C C(s)|JC(s?).
Since C(s)C(s) is the disjoint union of two double cosets we must have
C(s)C(s) equals the disjoint union of C'(s) and C(s?). Therefore C(s) # B
and C(s?) = B so that s ¢ B but s> € B which implies that s has order
twoin W =N/BNN. DO

DEFINITION 1.8. ([35] p.110)

Let (G, B, N, S) be a Tits system as in §1.2. For S’ C S let W' denote
the special subgroup of W given by W’ = (S’). Then a special subgroup
of G is a subgroup of the form BW'B, which is a subgroup by Proposition
1.3(b). When S’ = S then W’ = G, which for the moment will be allowed
as a special subgroup. However, when we come to the building of a BN-pair
in Definition 2.2 we shall only use the proper special subgroups.

It is shown in ([35] §1D and §2B) that the map S’ — BW'B is a
bijection of posets from the poset of subsets of S to that of special subgroups

of G.

PROPOSITION 1.9. ([35] p.110)

Let w € W with l(w) = d and w = s7...84 for s; € S. Then the
subgroup of G generated by C(w) contains the C(s;) for i« = 1,...,d.
Moreover this subgroup is generated by B and wBw ™
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Proof

Since the subgroup generated by C(w) contains w and B we have in-
clusions
(B,wBw™') C (C(w)) C(C(s1),...,C(sq))-
Therefore the result will follow if we establish the inclusions
C(s;) € P = (B,wBw™1) for each i. Since I(syw) < I(w) we know, by
Proposition 1.4 (proof), that sy Bw meets BwB so s; B meets BwBw™!
which implies that C(s;) € P. Hence P also contains s;wBw~!s; and

applying the induction hypothesis to s;w shows that P contains each of
C(sg,...,C(sq). O

THEOREM 1.10. ([35] p.110)
The special subgroups of G are precisely the subgroups containing B.

Proof

Clearly each special subgroup contains B. Conversely suppose that P
is a subgroup containing B. Therefore P is the union of double cosets and
so P = BW'’'B where W’ is the subset of W defined by

W' ={weW | C(w) C P}

Since C(w™1) = C(w)™! and C(ww') C C(w)C(w') we see that W' is a
subgroup of W. By Proposition 1.9 W' contains, for each of its elements
w, the generators s € S which occur in any minimal decomposition of
w. Hence W’ is a special subgroup of W generated by S’ = W/(\S and
therefore P is a special subgroup of G. O

ProposITION 1.11. ([35] p.111)
The set S consists of all non-trivial elements w € W such that B | C'(w)
is a subgroup of G.

Proof
Any s € S satisfies the condition that B|JC(s) is a subgroup of G, by
Proposition 1.3(a). Conversely, if w € W and B|JC(w) = P is a subgroup

then it is a special subgroup, by Theorem 1.10. The proof of Theorem 1.10
shows that W/ =W S and

W' ={w eW | C(w') C P}.
Since C'(w) € P we have w € W’ C S, as required. O

ExampLE 1.12. SL,, and GL,K for a p-adic local field

Let G = GL,K with n > 2 and K a p-adic local field. Let B denote the
inverse image of the upper triangular subgroup under the homomorphism
GL,Ox — GL,Ok/(7k). Let N denote the subgroup of monomial ma-
trices in GL, K; that is, the matrices which have precisely one non-zero
entry in each row and column.
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When G = SL,K we set B = B(\SL,K and N = N SL,K. We
are going to construct a BN-pair from this example, following ([35] pp.128-
138).

PRrROPOSITION 1.13. ([35] p.129)
Let G = SL,K,GL, K as in Example 1.12. Then G is generated by N
and the elementary matrices in SL,,Ok,GL, Ok, respectively.

Proof

Let X = (x;;) be a matrix in G. Choose a matrix entry x;; such
that the valuation vg (z; ;) is minimal. Then pivot to clear out every other
non-zero entry in the i-th row and j-th column. This can be done using
elementary matrices in SL,,Ok. Now ignore the i-th row and j-th column
and repeat the process to eventually produce a monomial matrix, which
will be in SL, K if X was. O

COROLLARY 1.14. ([35] p.130)
Let G = SL,K,GL, K as in Example 1.12. Then G is generated by N
and B.

Proof

The subgroup B contains all the upper triangular matrices in
G GL,Ok and N contains all the permutation matrices. Therefore the
group generated by B and N contains N and all the elementary matrices
in G GL,Ok, respectively. O

1.15. The BN-pair of SL, K when K 1is a p-adic local field
Continuing with G = SL,K,GL,K as in Example 1.12 we set T" =
BN and W = N/T. Therefore T is the subgroup of diagonal matrices
in GNGL,Ok. If Tk is the subgroup of all the diagonal matrices in G
then the quotient group N/Tk is isomorphic to the symmetric group, %,,,
in both cases. Therefore there is a split surjection from W/T to ¥,, whose
kernel consists of (K*/O% )™ = Z™ where m = n — 1 if G = SL,K and
m=nif G=GL,K.
Therefore W/T is given isomorphic to the semi-direct product W/T 2
Y X 2™,
When n =2 and G = SLy K we have W 2 ¥y « Z which is generated
by
0 -1 0 -7
81 = and sy =
1 0 TK 0
so in this case we shall set S = {s1, s2}.
With this definition (SLo K, B, N, S) is a Tits system ([35] pp131-132).
When n > 3 take S = {s1,892,...,8,} where s; for 1 <i <n —1 are
the involutions given by matrices made using the first and the (i + 1)-th
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elements in the standard basis for K™ in the same manner as the first and
second standard basis elements were used to construct s; for SLy K. Define
S, to be the matrix

1 00 ... —mg
0 10 ... 0
Sp =
0 0 ... 0

Then S = {s1, 82,...,8n} generates W and (SL,K, B, N, S) is a Tits sys-
tem ([35] pp135-137).

2. Buildings and BN-pairs

2.1. The building associated to a BN-pair

A Coxeter complex is a simplicial complex associated to a pair (W, .S)
where S is a set of generators for a group W, each of order 2. The cosets
of the form w(S") with w € W and S’ C S form a poset under inclusion.
The poset with the same objects but the opposite ordering is a simplicial
complex which is called the Coxeter complex associated to (W, S). More
generally a Coxeter complex will mean any simplicial complex which is
simplicially isomorphic to the Coxeter complex associated to (W, S).

A building ([35] p.76) is a simplicial complex A which is the union of
subcomplexes ¥ called apartments which satisfy the following axioms:

(B0O) Each apartment ¥ is a Coxeter complex.

(B1) For any two simplices A, B € A there is an apartment containing
both of them.

(B2) If ¥ and ¥’ are two apartments containing simplices A, B € A

then there is a simplicial isomorphism ¥ I % fixing A and B pointwise.
In particular, any two apartments are isomorphic.

Let (G, B, N, S) be a Tits system. Consider the poset of left cosets gP
for ¢ € G and P a proper special subgroup as in Definition 1.8 endowed
with the opposite partial ordering to that given by inclusion. The build-
ing associated to this BN-pair consists of the simplicial complex given by
this oppositely ordered poset of cosets of proper special subgroups!. It is
denoted by A(G, B).

IThe example in §2.2 of how the building for SLo K gives rise to the tree for GL2 K,
when K is a local field, illustrates the fact that only proper special subgroups are used
to construct the building.
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The subgroup N is used to define the apartments of A(G, B). The
fundamental apartment ¥ C A(G, B) is defined to be the subcomplex whose
vertices are the special cosets of the form wP with w € W. Since every
special subgroup contains B this is the set of vertices wP with a coset
representative in V. Define the set A of apartments to consist of all G-
translates of the fundamental apartment.

In a BN-pair every special subgroup is its own normaliser and no two
special subgroups are conjugate ([35] p.111). Furthermore A(G, B) is a
(thick) building with apartment system A on which the G-action is (type-
preserving® and) strongly transitive ([35] p.112).

A maximal element of an apartment is called a chamber.

Since there is a bijection between cosets of proper special subgroups
gP and their conjugates gPg~! the building is also describeable as the
simplicial complex given by the oppositely ordered poset of conjugates of
proper special subgroups of G.

2.2. The building associated to SL, K when K is a p-adic local field

The building A associated to SL,K is the tree of classes of lattices
when n = 2. Similarly ([35] p.137) the building of SL, K is made from
lattices in K™. The fundamental chamber is the simplex with vertices

(e1, .. €4, TK€11,... ,TKeEy) for 1 <14 < n and {e;} the standard basis.
The resulting building is not spherical and therefore is contractible ([35]
p.94).

The action of SL,, K extends to an action of GL, K which, as in the
case of n = 2, does not preserve type but a mild barycentric subdivision

renders the G L, K-action simplicial.
Let us look in detail at the cases of SLyK and SLs3K.

EXAMPLE 2.3. SLoK and GLyK when K is a local field
‘We have

a B
B:{ ‘Oé,ﬁ,"}/,(SEOK7 ad*ﬂKﬂfY:l}gSLQOK
Ty O
and
0 -1 0 —77;(1
W%CQO(Z:<81: , 89 = >
1 0 TK 0

Consider the group Bs;B. Since B contains the upper triangular sub-
group of SLyOk and BsyBs1 B C Bsi; B we must have the lower triangular

2By way of example the type of a vertex in the tree for GL2 of a local field is the
distance (mod 2) from the vertex to the vertex represented by the lattice Ox & Ok . In
general we shall not need the notion of type or of “thickness” here.
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subgroup of SLoOk also contained in Bs;B. Suppose that

uw v

€ SLyOx

and consider the equation
ac+cB  Ba 7t

cat a ta1
a pf a 0
0 at ¢ a !
u v
w oz
If 2 =0 then
0 -1 U v vl 0
1 0 v=b 0 u v
so that
u v
EleB.
v 0

Otherwise we have

21+ ow) org™

m —m
W 2T
a avm™ a 0
—1 m —1
0 « QuTE  a
and )
—1._m —-m —m
2R (1 +vw) vk T 0
wTR 2" 0 g
u v
w oz

since 1 = uz — vw so that u = 2~ 1(1 + vw).
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So far then any X € SLyOg lies in

—1 m

Tr 0
BSlB
0 TK
for some m > 0. If m = 0 then X € Bs;B. If m > 0 then
u v
X =
w oz

and z € Ogm}. Since uz — 1 = vw we have v, w € O} so that

1 0 u v U v

—z/v 1 Wz w—zu/v 0

which lies in Bs1B as does the left-hand matrix so X € Bs;B in this
remaining case, too. Hence we have SLoOg C Bsi;B C SLyOk.

Hence we have verified that Bsi B = SLoOg. Next we shall determine
the identity of BsyB.

We begin by observing that if a,b,c,d € Ok and 1 = ad — bc then

a byt
X = e SLoK
CTTK d
and
d  —brgt
X! = € SLyK
—CTTK a

is a matrix of the same form so that these matrices form a subgroup of
SLyK because, if a’,b/,c/,d' € Og and 1 =d'd —b'¢,

a brgt ad Vgt
CTK d i d
aa’ + bc ab' Tt + bd'Tt
- ac' g +dc' Tk cb + dd’

Pro tem let us denote this subgroup by H so that B C H,ss € H and
therefore BsoB C H. We shall establish the reverse inclusion.
Suppose that a,b,c,d € Ok and 1 = ad — bc and that

a b7r;{1
X = € H.
CT ) d
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If b = 0 then X € B and B lies inside every special subgroup so X € BsyB.
If d = d'wx with d' € Ok then

0 —7rl_(1 c d’ a bﬂl_(l
= = X.
TK 0 —anmg —b CTTK d

It remains to consider X when d € Oj,. Applying the same computation
to X! shows that X € BsyB unless a € O}, too.
In soBsy C BsyB we have

0 -7t —-d 0 -7t
TK 0 brx —a TK 0

—b aﬂ';(l 0 —7T;<1
- —drg Tk TK 0

a bﬂ'l_(l
B dri.  d

Then
a b7r;(1 d —bﬂ';(l
dri.  d —cmg a
1 0

d(dn% —crg) 1+4b(c— k)

which is in B and hence in BsyB. Therefore we have Y,Y’ € BsyB such
that Y X! =Y’ and therefore X € Bs,B, as required.

The only other special subgroup is B itself and we have B = SLyOk (| H.
The building of SL; K is the opposite poset of the set of SL,K-conjugates
of B,H,SLOk.

From §2.1 we know that each of B, H,SLsOk is its own normaliser
and since SLo K = BN the conjugates of these groups are contained in the
sets gBg™', gSLyOkg™!, gHg™ ! as g varies through coset representatives
of W = N/BN N. The elements of W are represented by the matrices

g 0 0 —mg"
(ss2)™ = , s1(s7s2)" =

—m m
0 7y Ty 0
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for m € Z. 1t is clear that the distinct conjugates of B are precisely
-1

e 0 e 0
B ;
0 7" 0 7"
—m —m \ —1
0 -—mg 0 -—mx
B
T 0 TR 0

as m runs through the integers. Explicitly these subgroups have the fol-

lowing forms.
For a, 8,7,0 € Ok and 1 = ad — Bymx we have

0 —m" a f 0 T
TR 0 yrg 0 - 0
—’yﬁ{m —om" 0 T
:( o} B - 0
0 —’y7r}{2m
i ( omr
and
T 0 a f T 0
( 0 7" Y 0 0 TR
ar@  BrR e 0
B yre ™ SmE™ 0 7
o Bram
B ’yﬂ}(_Qm )

Therefore we have

(sis2)™B(sis2)™™

« pram
:{ |Ol7ﬂ,")/,§€0[(, 12&5—5777-}(}

—
|
N
3
(o2
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and

s1(s352)" B(sisy) ™5y !

) ffm}(_Qm
:{ |Oé,6,’}/,(5EOK,1:a6_6'Y7TK}
—ﬁﬂ%(m o

Similarly the distinct conjugates of SLoOk are contained (with some
repetition) in the set

(5359) ™ SLyO (s355) ™™ USl(S?Sg)msLQOK(S?SQ)_mSII
which are explicitly given by
(S?Sg)mSLQOK(S‘;’Sg)_m

« pBram

:{ |Oé,,8,’Y,6€OK, 120[57/67}
771_}—(2m 5

and
81(S?SQ)WSLQOK(S?SQ)_"IS;I

) 7,771_[—(2171
:{ |a76a7a660K71:a(s_67}
—ﬁw%}" o

However when m = 0 we have 515[120]{51_1 = SLsOk and also for £ a
representative of an element in the residue field Ok /(7x) then

1 0

&1

lies in SLoOk — B so that SLoOg contains |Ok /(7wk)| + 1 conjugates of
B, which agrees with the number of edges out of a vertex in the tree (see
Chapter Two §4.1).

For H we have a similar assertion (with some repetition) and

(s3s2)™H (s3s2)™™

o ﬂﬂ'%(m_l
= |a7677a5€OK71:a6_67}
7#}(_2"‘ 0



2. BUILDINGS AND BN-PAIRS 121

and

s1(s3s2) ™ H (s3s5) "™y !

0 —’y7r}{2m
= 5 1 ‘a,ﬂ,7,560K7 ].ZOZ(S—ﬁ’Y}
—Br" e

Since, in GLy K, we have

T 0 Tk 0
H= SLyO
0

—_

0 1

one finds that H also contains |Ox/(7k)| + 1 conjugates of B.

We see that SLyOf is the stabiliser of the lattice Ox & Ok (as column
vectors with left multiplication by G. Also H is the stabiliser of O @7 Ok
since

a  Brgt U au + (v
YK 1) VT uYT K + 0Tk

The inclusion of lattices is opposite to the inclusion of stabilisers so
the building may be equivalently described in terms of SLyK-translates
of lattices.The action extends to GLyK but only gives exactly the same
simplicial complex if we use lattices up to homothety (i.e. multiplication
by K*-scalars) in which case we obtain the G Lo K-action on the barycentric
subdivision of the tree which we used to make the monomial resolution.

EXAMPLE 2.4. SL3K and GL3K when K is a local field

a b c
B={X=| drg e f | a,b,c,de, f,g,h,i € O} C SL3Ok

gt hmg @
and
WY x(Za7Z).
The generators of the symmetric group X3 in W are represented by
0 -1 0 1 0 0
s1 = 1 0 O and s9 = 0 0 -1

0 0 1 0 1 0
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and the third member of the set S is
0 0 —7g'
S3 = 0 1 0
mx O 0
The special subgroups are
B, B{s1)B, B(s3)B, B(s3)B, B(s1,s2)B, B(s1,83)B, B(s2, s3)B.

Arguing as in the SLyK case we find that B(sq, s9)B = SL3Ok. These
groups are related to the stabilisers of lattices in K3. For example the
lattice of column vectors

(07

LIZ{ ﬁ |aa677€OK}
Y

is stabilised under left multiplication by B(s1,s2)B. The lattice

(07

L2:{ ﬁ |Oé,6,'}/GOK}
TK"Y

is stabilised by B(s1)B and B(s3)B because

a b ¢ 0 -1 0 a’ v d
a
dT('K (& f 1 0 0 d/’/TK e’ f’ 6
TKY
TKg Trh 7 0 0 1 g wxh' §
a b c 0 -1 0

ada+bB+driy
=| drx e f 1 0 0 drga+ep+ f'mry
g a+h' B+ j TRy

Tkg Trh j 0 0 1
a b c
o aa +bB" + e
= | drg e f 8" = drngad” +eB" + frgy"
TrY" g’ +mhB’ + jrgy”

TKg Trh j
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and

0 0 -7y
« -
0 1 0 16 = 16}
TKY TRQ
TK 0 0

Therefore B(s1, s3)B is the stabiliser of the above lattice.
Similarly B(sz, s3)B is the stabiliser of the lattice

[0
L3:{ WKﬁ |a7ﬂ77€OK}'
TK"Y

These facts are sketchily mentioned in ([35] p.137).
The incidence condition on two lattices L, L’ which implies they define
a 1-simplex in the building is 7x L € L’ C L. We have incidence relations

gLy C Ly C Ly
mxLli C L3y C Ly

Lo C Ly C Ly

and the fundamental simplex in the building for SL3K is as shown below,
with stabilisers adjacent to the simplex which they stabilise.
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B(s9)B B (s1)B
Ly B(s1,s3)B
Bl(s2,53)B B(s3)B L
Consider the matrix
0 -1 0 1 0 0 0 -7 0
W=|1 0 0 0 7z 0 |=]l1 o0 o0
0 0 1 0 0 1 0 0 1
Therefore
e 0 -7 0 a -5
W\ Brx | =] 1 0 0 Brix | = !
YK 0 0 1 YK YTK

so that W(L3) = Ly. Similarly

-1

1K 1K
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and
« —ﬂw%l
Wi B8 |= a
v g
Therefore
—ﬁﬂ';(l
W(L2) ={ el | o, 8,7 € O} =Ly
YTK
and
_Bﬂ';{l
W(L1) =A{ ! | o, 8,7 € Ok} = 7' Ls.
Y

‘We have incidence relations
7'(']((7'('}_(1[43) = L3 g L1 g 7TI_(1L3

7TK(7T;{1L3) =1L3C Ly C 71';(1[/3

Tr(m'Ly) = Ly C Ly C 7w L

so that {Ls, 75 L3, L4} is a 2-simplex in the building and W maps the
fundamental simplex to it simplicially.

The action by SL3K preserves the type of a lattice. This is the valua-
tion (modulo 3) of the determinant whose columns are an Ok-basis for the
lattice. Hence we find that

[ lattice | type mod 3 |

Ly 0
Lo 1
Ls 2
Ly 0
7T;(1L3 2

This means that W(Ly, Lo, L3) = (75" L3, L4, L) acts like (0,1,2)
(2,0,1) on types.

The action by SL3K on the building, whose vertices are represented by
lattices (or by their stabilisers) is simplicial. This action extends to GLs K
if we represent vertices by the homothety classes of lattices but the action
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is not simplicial, because U rotates the fundamental simplex. However
the GLsK-action becomes simplicial if we barycentrically subdivide the
fundamental simplex and all its translates by adding the centroid as a 0-
simplex and the three 1-simplices given by the lines from the vertices to
the centroid. All these added simplices are stabilised only by K* - B.

The calculation

«Q 0 7r;(1 0 « ,67'(;{1
Ul g =0 0 7r;(1 6| = fwri_(l
v 1 0 0 ~y a

shows that
U(Ly) = 7' La, U(Ly) = 7' Ls, U(L3) = Ly.

Therefore U? = n3* and (uU)? = 7.

In ([140] p.48) the building of GLsK is described as a plane trian-
gulated by equilateral triangles®. This description agrees with the above
analysis. The action by U rotates the entire plane through 27 /3 fixing only
the barycentre of the fundamental simplex.

Ly  (B{s1,s2)B)K*
(B(s2) BYK™ B(s1)B)K*
(BK*,U)
L (B(s1,s3)B)K*
(B<Sg,83>B)K* (B<S3>B)K* Lo

3This is actually only one apartment. Tits says that the building itself is obtained
by ”ramifying along every edge” of the triangulated plane. My thanks to Gerry Cliff for
correcting me on this point.
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Now we examine how U conjugates these stabilisers. We have

0 75" 0 a b ¢ 0 0 1
UxXu-1t = 0 O 7r;<1 drg e f k. 0 O
1 0 0 grxg  hmg 4 0 wmxg O
d emg' frgt 0 0 1
=g h irg T 0 0
a b c 0 7 O
e f d
= | hrg i g

so that UBU ™! = B.

Also
0 7" 0 0 -1 0 0 0 1
UssUP =0 0 =g 1 0 0 T 0 0
1 0 0 0 0 1 0 7x O
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so that Us;U~! € s3B() Bss. In addition

0 7 O 0 0 —7gt 0 0 1
UssU™' =0 0 7g 0 1 0 T 0 0
1 0 0 7k O 0 0 wng O
0 7" 0 0 0 1
=11 o 0 T 0 0
0 0 -—mg 0 7w 0
1 0 0
=10 0 1
0 -1 0

so that UszU ™! € s, B[ Bss.

Now let me describe what one gets from the action of GL3K on homo-
thety classes of lattices. The normaliser in Ngp,xk BK* = (BK*,U) and
Ner,xk BK*/BK* is a cyclic group of order three generated by the image
of U. Let A : Ngr,xk BK* — k* be the resulting character of order three.

The non-simplicially subdivided building gives an exact sequence of
admissibles

0 — ¢ — Ind{ ) (k) — ¢ = Ind g2y . (k)

— c—IndG2" o (k) — k — 0.

When we make the simplicial subdivision we obtain

0 — c—Tnd 25 (k) — ¢ — Ind§Re" (k) & ¢ — Ind el . (k)
— e —IndG2" o (k) @ ¢ — Ind{52% ) (k) — k — 0.
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Next we take four bar-monomial resolutions of restrictions of V':

€
Wy e.Br» — V
€1
Wy . B(si)BK* — V

€0
Wy s, B(s1,s2)BEK* — V

!
€0
Wy Br=uy — V.

By analogy with the G Lo K case we construct monomial morphisms of chain
complexes 1) which cover, via the augmentations of the monomial resolu-
tions onto V, the 3-term complex obtained from the simplicial subdivision
complex by replacing the k’s by V's.

¢~ IndZ2" (W pre-)

(A

c— Indg%(:’*K(WV,*,BK*) Dc— Indg%;f)(BK* (WV,*,B<51>BK*)

A

C — Il’ldgf;f;ﬂBK* (WV,*,B<51,52)BK*) Dc— Ind<GBLI3(I*<7U> (WV,*,(BK*,U>)‘

In a manner similar to the GLy K case we obtain the total complex of
this double complex which gives a candidate for a G L3K-monomial resolu-
tion of V

M, SV —0

in which, for ¢ > 0, M, is given by

C — Indglf(ﬂK(W\/’i_QvBK* )EB

C — Indg%ﬁ (WV,i—l,BK*) D c— Indgfff){BK* (WV,ifl,B(SﬁBK* )@

GL3K GL3K
¢ —Indg 2% s (Wi B sy s0)Bce) @ ¢ = Ind 53 1 (Wi (i 0))-
Now we work towards monomial exactness for GL3 K.
Let (J,¢) € MarLy K, satisty (K*,¢) < (J,¢) with J being compact
open modulo the centre K*. We wish to examine exactness in the middle
of

MO, y(Fen _ p (o)

for ¢ > 1. A Line of M, is given by one of the following types ¢ ® g~ L2,
9 ®BK- L1, 9 ®p(s)Br+ L1, 9 @B(s1,s2)BK* Lo ot g @K+ vy Ly Here
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Ly, Ly, LY, Lo, Ly are Lines in Wy; 2 pr+, Wvi—1,Bx+, Wv,i—1,B(s1)BE*>
Wy.i B(s1,s2)BE+ OF Wy i (B~ Uy respectively.

The stabiliser pair of the above five types of Lines has the form
g(J',¢Yg~! where J' C BK* J C BK* J C B(s;)BK",
J' C B(s1,82)BK* or J' C (BK*,U) respectively.

Consider the inclusions

(BK*,U) > BK* < B(s1)BK* < B(sy, s5) BK*.

ProposITION 2.5. If J C B(sy, s2)BK™* is conjugate to a subgroup
of (BK*,U) then J is conjugate to a subgroup of BK™*.

Proof

The following works for all n > 2.

(BK*,U) is not subconjugate to B(sy,s2) BK* = GL3Ox K* because
the valuation of the determinant of any matrix in the latter is congruent to
zero modulo 3 but for any conjugate of U this is 1 (modulo 3). O

2.6. Example 2./ continued
Up to GL3sK-conjugation we have one of the following four mutually
exclusive (by Proposition 2.5) cases:

Case A: J C BK*.

Case B: J C B{(s;)BK* but J is not conjugate to a subgroup of
(BK*,U).

Case C: J C B(sy,$2)BK* but J is not conjugate to a subgroup of
either (BK*,U) or B(s1)BK*.

Case D: J C (BK*,U) but J is not conjugate to a subgroup of
B(s1,s2) BK*.

REMARK 2.7. The four cases in §2.6 exhaust all possibilities provided
that every compact open modulo the centre subgroup of GL3 K is conjugate
to a subgroup of at least one simplex stabiliser in the Bruhat-Tits building.
For now we shall assume that this condition holds.

In fact, I am going to illustrate the verification only in Case A. To make
matters even more tedious, I am going to do the verification by comput-
ing the spectral sequence of the double-complex M, in “slow motion”. I
hope that proceeding in this manner will gradually introduce the technical
homotopy theoretic properties of the building which make the verification
work.

The final general proof will then be a sort of short “reprise” which ex-
perts would understand without the preparatory examination of the GLo K
and GL3K situations.
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2.8. Monomial exactness in Case A
If J C BK* then ME(J’¢)) for ¢ > 0 is equal to

¢ — IndZ 2" (Wy,s—0, i+ ) (/)

@e — IndGEK Wy, ) g ) (19D

Ls

(Slz)(BK* (WV,i—l,B(sl)BK* )((J’d’))

G
®c — IndB

GL3sK

J,
Gk mre Wi Blay saypice ) (09D

@®c — Ind

GL3K

®c — ndGEN | (W mic ) P9

As in the GLyK-case this is equal to

—IJ *
Dg-179cBK* 9 OBK- W‘(/Eig_ZBg}g*(@))

71(] *
Dg-179CBKR* 9 OBK~ W‘(/Ez_gil’g}g*(@))

—lJ , *
© Dg-179CB(s1)BK* 9 ®B(s1)BK* W&f_l,éﬂflf?;&

71J , *
Bg-179CB(s1,52)BE* J OB(s1,52) BK* W‘%ZB(sf,i)(g)f)f)*

—1 *
Dg-119c(BK*U) 9 (BK=U) Wx(/EfABﬁ]f,JU()qb)))'

Recall the the chain complex (M, d) is the admissible monomial double
complex and (M {/?) d) is a sub-double complex. The differential is given
by the formula d = dy + d where dy comes from the simplicial structure
of the building Y and d complex from the differentials in the various bar-
monomial resolutions which were used in Chapter Two §3.1 to construct
(M, d).

We want to evaluate the homology groups H,, (M ,(k(J’¢)), d) for m > 0,
expecting to discover that this is zero unless m = 0 in which case it is V(9.
The homology of a double-complex may be computed using a spectral se-
quence. This spectral sequence is derived from a filtration F™M i(J,¢))_
Explicitly the filtration is defined by

FQME(J’@) =C2,—2®C1i-18Cy;
F1ME(J7¢)) =Cli-1®Co,

FOM((J’¢)) — COAi

)
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where

—lJ , *
Cojimo = ®y-174cBK* § OBK W‘(/E;{J_Zglg*(@))

71‘] , *
Cli-1=®y-19cBK* § OBK~ W‘(/Ef_l 513*‘@))

)

—1J , *
D Dg-179CB(s1)BE* 9 OB(s1) BK* W&ilﬁélf?}c)*

~17g.g"
CO,i = 69g—lJggB(sl,sz)BK”‘ g ®B<S1,32>BK* W\(/(,?,B<sf,§2>(g)l<))*

71J *
© Bg-179c(BK*U) 9 O(BE*U) Wx(/(,f,<BKgi?U(>¢)))~

This filtration is increasing with n so that
0= P10  pop(e) — pip (7))
c 2y o) — pap ()

and d(Fank(Jﬂi’))) g FnMi(;LlQS))
The first step in the spectral sequence computation is to define

EO

n,i—n

— FnM((J’¢))/Fn71M((J7¢))
and to compute the differential induced by d
dO : Eg x—n 7 E’?L x—n—1

and the homology groups

0 0
E1 _ Ker(En,ifn En,ifnfl)
n,g—n 0 0
Im(En,i«Flfn En,ifn)

Since dy(F”MZ(-(J’qﬁ))) - F"’1M§(_J1’¢)) the differential d° is equal to
that induced by d, the differential in the various bar-monomial resolutions.
Therefore the only possibly non-zero d°-differentials which we must calcu-
late are

=~ 97" J9.9"(®
EY; 2= ®y174cBK- 9 OBK- W&fi’_zgg*‘ "

L d

~ —1J , *
ESi 5= @y 1gcnie 9 @pie Wit g i,
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~ 71J , *
EY; = ®g1y9cBKe 9 OBK- Wéff,l,ggf"””

(g7 " Jg.9% (o
© Dg-179CB(s1)BK* 9 OB(s1)BK* W\/Eg—l,f:’](zl)(B)lp*

L d

~ 71‘] , *
EY; 2= ®g1 9K 9 OBK- W‘(/Ef_lg}?*(@))

“1Jg,9"
D Dg-179CB(s1)BE* J OB(s1)BK~ W\(/Eig—2,Bg(g1)(?I)<)*
and
~ “Ig,9% (¢
Eg,i = ©g-179CB(s1,52) BK* 9 ©B(s1,52) BK* Wx(/fig,B@f,gz)(B)l)()*

—1J , *
Og-179c(BK*U) 9 O(BK*U) W&i(B;*?U@))

L d

~ (g7 9,97 (4)))
Eg,ifl = Dg-179CB(s1,52) BK* 9 ©B(s1,52) BK* WV,ig—l,Bg(gl,sz)BK*

_1J , *
Byt s9c(50) 9 D(BK-0) W T ).

Since d° is induced by d the argument used in the GL, K cases shows
that the only possibly non-zero E! ._ ’s are

n,i—n
-1 *
E} o=@y yycpr- g®pg- VI 19979,

E%,o > ®y-179cBK* § OBK* Ve " J9,97(9)
-1 *
® Bg-179CB(s1)BE- 9 OB(sy)BK= VI 7990
and

—1 *
E§ o= @®g179CB(s1,50)BK* J OB (s1,50) 5K VI 7997 (#)
—1 *
Bg-179c(BK*U) 9 O(BK+v) VI 7997 (@),
The next step in the spectral sequence computation is to compute the
differentials induced by dy in the chain complex of E},’ ¢S

d d
0— E}, 5 Efy—5 Ejo— 0.

The homology group at E , is denoted by EZ .

Consider the group Ezl,o. In the picture of the subdivided fundamental
simplex in Example 2.4 the upper right 2-simplex has stabiliser BK* and
every other 2-simplex in the building Y is a translate of this one. Hence
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the summands in E21,0 are in bijective correspondence with the 2-simplices
of Y which are fixed by J. On the summand corresponding to the coset
representative g the map g Qpg+ w — g K+ gw combine to give an
isomorphism

B30 2 Co(Y k) @ VI

where C;(Z; k) denotes the i-dimensional simplicial chains with coefficients
in k of a simplicial complex Z. Similar remarks hold for Ej , and Ej,
and the complex (E} ;,dy) is identified with the complex (C.(Y7; k) ®p
V(J’¢), dy ®1).

By Proposition 2.12 the subcomplex Y7 is non-empty and contractible
for each compact open modulo K* subgroup J. Therefore the groups Eg_q
are all zero except for E? .

In a general spectral Sequence calculation one inductively has differen-
tials of the form d" : E} | — Ep_ g4r—1 for r > 2 satisfying d"d" = 0 from
which one calculates the homology at Ej , which gives E;fgl. For a given
pair (p, q) the groups E; , stabilise as r increases to give E;%,. The family
Ex,,—, form the associated graded group to a filtration on the homology,
in this case, H,,(M i(‘] ) d), which the spectral sequence “calculates”.

In our case the spectral sequence stabilises at Ef* and the filtration in
the homology has only one step so that

Vo) i m =0,
Hin (M), d) =

2k

0 otherwise

which establishes monomial exactness for M, — V.
Before proceeding to Proposition 2.12 we shall pause for two of the
simplest examples of the pair (J, ¢).

EXAMPLE 2.9. (J,¢) = (K*,¢)
The group MZ-((K ) 5 equal to

(K*,9))
Bg-1k+gcBK* 9 OBK* Wy o pBKs

(K™,9))
Dy-1KkgCBK* § OBK* Wv,i—l,TBK*

((K*,¢))
D Bg-1K+gCB(s1)BK* 9 DB(s1)BK* Wy i 1 Bls)yBK

(K*,9))
Dg-1K*gCB(s1,52) BK* 9 OB(s1,52)BK* Wy 55, s2)BIc-

(K*.8))
Dg-1k+gc(BK+U) 9 OBK*U) Wy (Bre Uy
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Taking the homology using the internal d-differentials first we see that the
Ei,*—term of the spectral sequence of the double-complex is isomorphic to
the chain complex

0 — ¢ = Ind§2 (V) — c— dGR5 (V) @ c - nd G735, . (V)

—c— Indgé’i},{sg)BK* (V)®c— Indféf{{f’m (V) —0.

In turn this is equal to

0— c—mdSEX k) oV

— c—IndGR (k) ® V @ c— IndG 2V . (k) @V

— c—IndGf o (k) @V @ e—Tndf2 ) (k) @ V — 0.

(s1,52
The homology of this is just V = VE2) in dimension zero because

0 — ¢ —Inde" (k) — ¢ — Ind§e" (k) @ ¢ — Ind (e, . (k)

— e —IndG2" e (k) @ ¢ = Ind{52% ) (k) — 0.

is the simplicial chain complex of the building Y, which equals the fixed
points Y& and which is contractible.

ExaMPLE 2.10. (J,¢) = ((K*,U), ¢)

Here we must have ¢(U)3 = ¢(mx) 2.

Write ¢ for the barycentre of the original fundamental simplex and
observe that U fixes 6 and no other vertex. This is because there are
precisely two vertex orbits, that of 6 and that of any one of the three
vertices of the original fundamental simplex (a triangle). Therefore Y is
a point in this example.

The group MZ-((<K*’U>’¢)) is equal to

—1 K*,U , * ¢>
W‘(/gg_27<BK* 19:9”(#)))

Dg-1(k*,U)gCBK* § OBK*

“1K* Udg.g"
©g-1((K*,U)gCBK* 9§ ®BK* W\(/(,ig—l,(BK’* J9.97(0))

—1 K*,U , *
D Dg-1(kU)gCB(s1)BE* I OB(s1)BK~ Wéff,1f3<sl>gg}§’* 2

-1 K*,U , * ¢
Byt (K 000 (os 02 B 9 DB (ans 51 Wil pion g iits

-1 K*,U , *
Byt (k0 V)9 (BE-0) 9 Omr0) Wis e oy 29 @V
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which is simply isomorphic to

(((K™,U),9))
WV,i,(BK*,U) J
which immediately establishes the monomial exactness for the pair

(K™, U), ).

2.11. Buildings, extended buildings and EG

Let Y denote the building associated to SL, K when K is a p-adic local
field, which was described in §2.2. The building of SL, K is the simplicial
complex whose vertices are lattices in K™ ([35] p.137). The fundamental
chamber is the simplex with vertices (e1, ... , €, Tk€it1,... ,Txey,) for 1 <
i <n and {e;} the standard basis. The resulting building is not spherical
and therefore is contractible ([35] p.94).

The action of SL,K on Y is simplicial extends to an action of GL, K
which, as in the case of n = 2, where the vertices are now thought of as
homothety classes of lattices. This extended action does not preserve type
but a mild barycentric subdivision renders the GL, K-action simplicial.
Let Y also denote this simplicial GL,, K-space. Since the central K* acts
trivially Y is also a building for the projective linear group PGL, K.

If one lets GL,,K act on the real line R where X € GL, K acts via
translation by vg (det(X)) the product Y x R is denoted by EGL,K, a
space which is central to the classification of spaces with proper GL, K-
actions ([13], [100], [11]).

PropoOSITION 2.12.

In the notation of §2.11 let J C GL, K be a compact open modulo the
centre subgroup. Then, after a suitable simplicial subdivision if necessary,
the fixed point subcomplex Y is non-empty and contractible.

Proof

In order to show that Y is non-empty subcomplex it suffices to con-
sider the J’s which are maximal in the poset of conjugacy classes of compact
open modulo the centre subgroups. This is a finite set of “ends”. For each
such J we have only to show that there is a J-fixed point in Y which, by
subdivision, we may assume is a vertex. Then Y’ will be a non-empty sub-
complex. Since the set of “ends” is finite only a finite number of simplicial
subdivisions is necessary.

The existence of a J-fixed point is an immediate consequence of the
Bruhat-Tits fixed point theorem for groups acting on CAT(0) spaces ([4],
[139], [140]). Alternatively, from the proper GL, K-actions point of view,
if Y/ were empty then one easily finds that EGL, K does not classify all
GL, K-spaces with proper actions.

The groups GL,K,SL,K, PGL,K are locally compact topological
groups. Suppose that G is a locally compact topological group and that F
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is a family of subgroups which is closed under conjugation and passage to
subgroups. The space EG is the universal space in the sense of [100] (see
also [13] p.7 Remark 2.5) for G-CW-complexes having stabilisers which lie
in F. This universal space always exists and for J € F the fixed point
subspace EG” is contractible. When G = SL,K and F is the family of
compact subgroups then ESL,K =Y. When G = GL,K and F is the
family of compact subgroups then EGL,K =Y x R with the action de-
scribed in §2.11. If J C GL, K* contains K* and is compact open modulo
K then we may write J = K*H where H is compact open. Then EGL, K
is contractible. Therefore the image of EGL, K under projection onto Y
is also contractible but this is Y7 =Y/, O

REMARK 2.13. In §2.6 I delineated four cases of stabiliser group and
in §2.8 showed how to prove monomial exactness in Case A. In fact, by the
contractibility part of Proposition 2.12, it is clear that the argument applies
also to Cases B-D. There remained the question whether for all the pairs
(J, ¢) under consideration the subcomplex Y was non-empty.The fixed-
point part of Proposition 2.12 takes care of this problem. By a suitable
simplicial subdivision we may assume that every compact open modulo the
centre stabilises a simplex of Y. In the GL3K example the subdivision
may introduce some new simplex stabilisers which do not occur in Cases
A-D (actually this does not happen) but the argument illustrated in Case
A works in all cases for all GL,, K. I shall give the complete verification of
Chapter Two, Conjecture 3.3 in the next section.

3. Verification of Chapter Two, Conjecture 3.3

3.1. We begin this section by recapitulating the situation of Chapter
Two, §3. We are studying (left) admissible k-representations of GL, K with
central character ¢. Here K continues to be a p-adic local field. As usual
k is an algebraically closed field of arbitrary characteristic. If V' is such an
admissible k-representation.

Let Y be the simplicial complex upon which GL, K acts simplicially
given by a simplicial subdivision of the Bruhat-Tits building of GL,, K (§2.2;
for more details [4], [11], [35], [36], [37], [60], [61], [139], [140]).

We shall assume that Y has been chosen according to Proposition 2.12,
namely such that for every compact open modulo the centre subgroup J C
GL, K the fixed point subcomplex Y is non-empty and contractible.

For each simplex o of Y, by Chapter Two, Theorem 2.4, we have a
k[H,],¢on-bar monomial resolution of V'

WV,*,H,, — V — 0.
Form the graded k-vector space which in degree m is equal to

Mm = @a+n:m WV,a,Hgn
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which is a double complex with two commuting differentials dy and d.
The differential dy comes from the simplicial structure of Y together with
the natural chain maps between bar-monomial resolutions. Explicitly, for
2z € Wy a,m1,n, it is given by

dy (z) = > Ao 10" ity (1)
on—1 face of o”

If d denotes any of the differentials in the bar-monomial resolutions the
total differential d : M,, — M, _; when m = o + n is given by

d(z) = dy () + (=1)"don (2)

and dd = 0.

Finally M, has an obvious structure of a gL, k],¢mon-Line Bundle
since the GL, K-action permutes the summands Wy, p_,, each of which
is a pp,.),pmon-Line Bundle.

We are now ready to complete the verification of Chapter Two, Conjec-
ture 3.3 in general having, by way of illustration and introduction, verified
the case n = 2 in Chapter Two §§4.1-4.15 and sketched the verification for
n = 3 in Example 2.4 and §2.8.

THEOREM 3.2. (Verification of Chapter Two, Conjecture 3.3)

(i) IfY is the Bruhat-Tits building for GL,, K, suitably subdivided to
make the GL,, K-action simplicial as in §3.1, then (M, d) is a chain complex
in yqr, K],pmon equipped with a canonical augmentation homomorphism

in Gz, x),pmod of the form M, —— V.

(ii) For n > 2
is a monomial resolution in k[GL, K], TON. That is, for each (H,¢) €
Mear, k6

s M) e 4, L () £ e g

is an exact sequence of k-vector spaces.

Proof

Part (i) is established in Chapter Two, Theorem 3.2.

For part (ii) we begin by choosing G L,, K-orbit representatives of the
g-dimensional simplices {c | a € A(q)} for each ¢ > 0. Recall that YV
is finite-dimensional. Let H,s = stabgr,x(0%), which is compact open
modulo the centre K*.

By naturality of the bar-monomial resolutions the monomial complex
given by the direct sum of the Wy, g as o varies through the GL,, K-orbit
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of o is isomorphic to

¢~ Ind7" (W, )-

o

Therefore
M, =®q Baca(g) ¢~ mgf;K(WV’**q,Hag)'

As in the case n = 3 in Example 2.4 and §2.8, for (H,¢) € Mcgr, Kk, We
have B
27 ((H0)

ELEI

=9y DacA(g) €— mgL;K(WV7*,q7HUq )((Hv¢))

>~ ~lHg,g*
= ®B¢ Baca(g) @g—nggHag g®HGZL W\(/Ezfq,ﬁqg (4)))).

Define a decreasing filtration on M SH 4) by
FPMI(_(H@)) = @<, C;

=]
where
—lH , *
Cji-j = Daca() Dg-1mg<u ; 9OH ; W\(/f?—j,Hi]g @n,

In the spectral sequence associated to this filtration we have

H, — H, ~
Eg,ifp — FPME( ¢))/Fp 1M£( #)) o~ Cp,ifgr
The differential d° : E); , — EJ;  , is induced by the internal differen-

tial of the Wy ._g, H,, s and by monomial exactness of these resolution we
find that, as in the GLy; K andGL3K examples, the homology E;,S vanishes
unless s = 0. Furthermore, as explained in the GL3 K example,

-1 *
E;,O >~ DacA(p) ®971H9§H<7£ g®Hag V(9" Heg.g"(8)) o CP(YH; k) . v (H.9)
and d' : E} ; — E} | ; may be identified with dy ® 1. The contractibility
of YH implies that, in the spectral sequence,

VUL it (pr) = (0,0)
Ey. =
0 otherwise.

This established part (ii) and completes the proof. O

REMARK 3.3. Results analogous to Theorem 3.2 are true for the groups
SL,K c GL,K° c GL,K™,

which were defined in Chapter Two, §4.16, and for PGL, K. The details
are left to the reader.






CHAPTER 5

Monomaal resolutions and Deligne
representations

The Langlands correspondence for GL,, K when K is a p-adic local field
concerns a canonical bijection between n-dimensional semi-simple Deligne
representations and irreducible smooth complex representations of GL, K.
This correspondence is characterised in terms of local L-functions and e-
factors of these two types of representations (see, for example, [40] Chapter
Eight). Deligne representations are finite-dimensional representations of the
Weil group Wk together with a nilpotent operator satisfying certain prop-
erties. The importance of Deligne representations lies in the result that, if
[ is different from p, the category of finite-dimensional representations of
Wy over Q is isomorphic to a category of Deligne representations of Wy
over the complex numbers (see Theorem 1.8).

In §1 we recall the definition and properties of Deligne representations
of the Weil group. In §2 we define what is meant by a Deligne representa-
tion. In Conjecture 2.4 we describe the bar-monomial resolution resolution
for a finite-dimensional Deligne representation (p,V,n). The verification
of Conjecture 2.4 should be straightforward but for the time being, out of
laziness, I shall leave it unproved.

1. Weil groups and representations

1.1. Galois and Weil groups

The material of this section is a sketch of ([40] Chapter 7).

Let K be a p-adic local field in characteristic zero with residue field
k = O /Px. Choose an algebraic closure K. Then

Gal(K/K) = lim Gal(E/K)
where the limit runs over finite Galois subextensions E/K of K/K. We
have an extension of groups
{1} — I — Cal(K/K) — Z — {1}

where the inertia group Zy = Gal(K/ KOQ where K, is the unique max-
imal unramified extension of K lying in K. For each integer n such that
HCF(p,n) =1 then is a unique cyclic extension of K., of degree n given
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by E, = K (71'}(/”) so that F., is the maximal tamely ramified extension
of K with
to : Gal(Ewo/Koo) — [[ Zi-
I#p

Let ®x denote the geometric Frobenius - that is, the inverse of the lift
of x + =l on residue fields. Then to(Prg®%') = |kl 'to(g) for g €
Gal(Fw/K). For this choice of geometric Frobenius the Weil group is the
locally profinite group in the centre of the subextension

{1} — Ix — Wk — Z = (k) — {1}

Hence the Weil group is the dense subgroup of the Galois group generated
by Frobenius elements and the inertia group is an open subgroup. Sending
a geometric Frobenius to 1 yields vg : W — Z and we define

||| = q_”K(I) for all x € Wk, q = |k|.

For each finite extension E/K we set Wg = Wk [ Gal(K/E), it is
open and of finite index in Wpg. It is isomorphic to the Weil group of
E and ([40] p.183) this system of Weil groups enjoys all the well-known
properties of absolute Galois groups.

We consider representations over an algebraically closed field &k of char-
acteristic zero.

Since Gal(K/K) is profinite any smooth representation is semisim-
ple. This not true for the Weil group which is locally profinite and has
Z as a quotient. However an irreducible smooth representation of Wy is
finite-dimensional. Therefore a smooth irreducible Weil representation is
semi-simple with finite image when restricted to the inertia subgroup - the
subtleties come from the geometric Frobenius elements.

Smooth irreducible Galois representations restrict to smooth irreducible
Weil representations and two such are equivalent if and only if they restrict
to give equivalent Weil representations.

An irreducible smooth Weil representation has finite image if and only if
it is the restriction of a Galois representation if and only if its determinantal
character has finite order ([40] p.184).

If E/K is a finite separable extension then a smooth representation
p of Wy is semisimple if and only if Resg,x(p) is a semisimple smooth
representation of Wg. Conversely a smooth representation p of Wg is
semisimple if and only if Indg,k (p) is a semisimple smooth representation
of WK.

Let G2*(K) denote the set of isomorphism classes of semisimple smooth
representations of Wy of dimension n. We have induction and restriction
maps between these sets. A smooth finite-dimensional representation p of
Wi is semisimple if and only if ® k() is semisimple for every element x
([40] pp.185-6). GY(K) is the set isomorphism classes of irreducible smooth
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Weil representations of dimension n. The L-function extends to G5°(K) via
Artin’s Euler factor definition and the e-factors extend also ([40] Chapter
7, §30). The L-function is therefore invariant under induction ([40] p.189).

Local class field theory yields the reciprocity map ax : Wxg — K*
with commutative diagrams featuring restriction, the norm and the Ver-
lagerung.

1.2. Deligne representations

A Deligne representation of Wk is a triple (p, V,n) in which (p,V)
is a finite-dimensional smooth Weil representation and n € End,(V) is a
nilpotent endomorphism satisfying p(z)np(z)~! = [|z||n. We call (p, V,n)
semisimple if and only if (p, V') is semisimple. Write G,,(K) for the equiva-
lence classes of n-dimensional semisimple Deligne representation of the Weil
group so that we have

Gn(K) C G*(K) C Gu(K).

We have analogues of the usual constructions of operations on repre-
sentations:

(p,V,n)V = (p¥,VV,—n") (contragredients),
(plﬂ Vlanl) & (an ‘/25112) = (pl ®p2,V1 & ‘/2; 1 Xng +n; ® 1)7

(p1,V1,n1) ® (p2, V2, n2) = (p1 @ p2, V1 ® Vo, n; © ny).

Ker(n) carries a Weil representation and the L-functions and e-factors
are extended to Deligne representations via this.

ExXAMPLE 1.3. Sp(n)

Let V = k™ and definite n(vg,v1,... ,0n—1) = (0,09, v1,... ,0p_2) and
po(z)(vo,v1, ... s vn_1) = (vo,||z||vL, |2][?v2, .., ||z||*"*v,—1). Then we
set p(x) = ||z]||*=™/2pg(2). The triple (p,k™, n) is a semisimple Deligne
representation denoted by Sp(n).

A semisimple Deligne representation of Wy is indecomposable if it
cannot be written as the direct sum of two non-zero Deligne representations.
The indecomposable semisimple Deligne representations are precisely those
of the form p ® Sp(n) for some p € G2(K).

1.4. l-adic representations

Let [ be a prime different from p. Let G be a locally profinite group
and let C be a field of characteristic zero. A C-representation 7 : G —
Aute (V) is defined to be smooth if Stabg(v) is an open subgroup of G for
every v € V. Smooth representations form a category Repo(G). An iso-
morphism of fields gives, by extension of scalars, an equivalence of smooth
representation categories. For example an isomorphism of the form Q; = C.
Similarly there is an equivalence of categories of Deligne representations.
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If n is a nilpotent endomorphism then exp(n) = 1+ Z;‘;l rj‘—f is a
unipotent automorphism and if u is such then log(u) = Y777 (—1)3'*1‘]‘%!7
is a nilpotent endomorphism.

Consider V' a d-dimensional Q,-vector space. The valuation Q, —
QU{oo} gives a metric on Q, — which is not complete. Hence GL4(Q,) has
an entry-by-entry topology. A representation 7 : G — Aut(V) = GL4(Q))
is continuous if, viewed as a homomorphism to invertible matrices, it is
continuous in this topology. A smooth representation of G on V is always
continuous but not conversely.

We have t : Ty — Z; given by mapping to Gal(Fw /K ) then com-

posing with
to: Gal(Bo/Kso) — [[ 2
l#p

and finally projecting to the [-adic coordinate. If P is the wild ramification
group then we have a short exact sequence

0 — Py — Ker(t) — H Ly, — 0.

m prime #l,p

We have t(gzg=t) = ||g||t(z) for x € Iy, g € Wi. The kernel of ¢ contains
no open subgroup of Zg.

The following result is important in classifying l-adic Weil representa-
tions.

THEOREM 1.5.

Let (o, V') be a finite-dimensional continuous representation of Wg over
Q; with [ # p. Then there exists a unique nilpotent n, € End@l(V) such
that

o(y) = exp(t(y)n,)

for all y in some open subgroup of Z.

Proof

Uniqueness follows from n, = t(y) *log(c(y)), which is independent of
y providing t(y) # 0. For existence assume that o takes values in GL4Q,
and let Z; denote the integral closure of Z; in Q;. Then 1 + I"™M,Z; for
m > 1 is an open subgroup of GL4Q, normalising 1 + ™+ M,Z; with
abelian quotient of exponent [.

Viewing o as a continuous homomorphism Wy — GL4Q;, let J de-
note the set of g € Ker(¢) such that o(g) € 1+ 1°M,Z,. Thus J is an open

subgroup of Ker(t) with o(J) C 1+12M,Z,. Its image in igi% is trivial

so that o(J) C 1+13MyZ,. By induction o(J) = {1}. Since J is open there
is an open subgroup Hy of Zx such that Hy () Ker(¢) C J. Shrinking H
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if necessary we may assume that o(Hy) C 1+ [2MyZ;. There is an open,
normal subgroup of finite index in W such that H (Zx C Hp.

The restriction of o to H [ Zx therefore factors through a continuous
homomorphism ¢ : t(H(Zx) — 1+ [>2MyZ;; that is o(h) = ¢(t(h)) for
all he HNIk.

Therefore we have o(®h®~1)? = o(h) for all h € H(\Zx and every
Frobenius element of Wg. Suppose that o(h)(v) = av then o(®)v is an
eigenvector for o(®h® 1) with eigenvalue . Hence a? is also an eigenvalue
for o(h). As o(h) is invertible this implies that « is a root of unity. Since
o(h) € 1 +12MyZ, then (o(h) — 1)/I? is integral over Z;.

However ([40] Lemma p.205) if « is a root of unity such that (a—1)/I?
is integral over Z; then o = 1.

Next choose hy € H(\Ix with t(hy) # 0 and set
n, = t(ho) !og(co(hg)) which is nilpotent. Now put A = Z;t(hg). We have
two continuous homomorphisms — z +— ¢(z) and = — exp(zn,) — which
coincide on hg and hence on the closure A of Z;hg. Putting H' = t~1(A),
which is open, since A is open in Z;, yields the result. O

REMARK 1.6. (i) In Theorem 1.5 (o, V) is smooth if and only if n, = 0.
In particular, (o, V) is smooth if V' is one-dimensional.

Also, since ||g|| =1 for g € T we see that n, commutes with o(Zg).

(ii) If v € Tk, g9 € Wi we have — provided we are in H in some sense

o(grg™") = exp(t(gzg~")n) = exp(||g|[t(x)n)
and

1 = exp(t(z)o(g)no(g) ™)

a(gzg™") = o(g)exp(t(z)n)o(g)
so that
gl = a(g)na(g)~".

1.7. The equivalence of representation categories
Fix a Frobenius ® € Wy and define

0e(P%z) = o(Pzx)exp(—t(z)n,) a €Z, v € Ik
Therefore, by Theorem 1.5, the homomorphism
op : Wrx — Aut@l(V)

is trivial on some open subgroup of Zx. It therefore yields a smooth rep-
resentation of Wg. By Theorem 1.5, the triple (og,V,n,) is a Deligne
representation of Wy on V.

THEOREM 1.8. ([40] p.206)
Let Repé (Wk) denote the category of finite-dimensional continuous
1

representations of Wy over @l. Let ® € Wgkbe a Frobenius element and
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t: Ty — Z; a continuous surjection. Then the map
(0’, V) = (UCI’v VY, ncf)
is functorial and induces an equivalence of categories

Rep% (Wg) — D — Repé Wk ).
l 1

The isomorphism of the Deligne representation (o4, V,n,) depends only on
the isomorphism class of (o, V); that is, it does not depend on the choice
of ® and ¢.

1.9. Theorem 1.8 gives a canonical bijection between the set of isomor-
phism classes of finite-dimensional continuous representations of Wy over
Q, and the set of isomorphism classes of Deligne representations of Wy
over ;. The latter can be transported from Q; to C.

The Langlands programme concerns the ®-semisimple (o, V)’s - that
is, those for which (0g,V,n,) is semisimple.

PRrROPOSITION 1.10. ([40] p.208)

Let (0, V) be a finite-dimensional continuous representation of Wy over
Q. The following are equivalent:

(i) (o,V) is ®-semisimple.

(ii) There is a Frobenius element ¥ € W such that o(¥) is semisim-
ple.

(iii) For every g € Wi — Zk the automorphism o(g) is semisimple.

THEOREM 1.11. ([40] p.208)

Let | be a prime not equal to p and let n > 1 be an integer. There is
a canonical bijection between the following sets of isomorphism classes of
representations:

(i) n-dimensional ®-semisimple continuous representations of Wg over
Q

(ii) n-dimensional semisimple continuous Deligne representations of
Wx over Q.

The choice of an isomorphism Q, 2 C induces a bijection of these sets
with isomorpism classes of n-dimensional semisimple Deligne representa-
tions of Wy over C.

REMARK 1.12. GL4F,

(i) In [93] and in [40] §25.4 p.159) we find two approaches to correspon-
dences involving Deligne representations of the Weil group and irreducible
complex representations of GL4F,. The first is combinatorial and the sec-
ond is a special case of the Langlands correspondence.

(ii) It is worth pointing out the analogy between the nilpotent operator
in a Deligne representation and the differential operators of (U(gl2C), K )-
modules associated to automorphic representations (Chapter Three, §§1.14-
1.16) via the (U(gl2C), Ko) X GL2A fin-module formulation.
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2. The bar-monomial resolution of a Deligne representation

2.1. We continue with the situation and notation of §1.1.

Let M(Wgk) denote the poset of pairs (H,¢) where H is a subgroup
of finite index in M(Wg) and ¢ : H — k* is a continuous character.
Therefore the image of ¢ restricted to H (Zx is finite. Given (H, ¢) there
are infinitely many continuous characters which agree with ¢ on H () Zg,
since we may tensor ¢ with any homomorphism of the form

Let (p, V,n) be a Deligne representation in G, (K). If v € VH:9) then

3(9)~"plg)(n(v)) = p(g)(n(p(9) " (v))) = [lglIn(v) = ¢~"*n(v)
so that n(VH:9)) C yULII=I-¢),

PROPOSITION 2.2.
If the characteristic of k is not equal to p then there are only finitely

pairs (H, ¢) € M(Wg) for which VH:9) £ (.

Proof

The representation p factors through a quotient Wx /N where N is a
normal subgroup which lies in the inertia group and where Zx /N is finite.
Therefore, in order that V%) may possibly be non-zero it is necessary
that ¢ is trivial on H (\Zx/H () N. Hence there are only a finite number
of possibilities for the restriction of ¢ to Zx. Therefore it suffices to choose
¢ and prove that there are only a finite number of characters of the form
¢; = || — ||* - ¢ such that VH:4:) £ 0,

If the characteristic of k is non-zero and not equal to p then ¢ is non-zero
and of finite order in k* so that there are only a finite number of ¢;’s. If the
characteristic of k is zero assume that the result is false and choose non-zero
vectors vj,, Vi,, - - . ,V;, With ¢ strictly greater than the dimension of V' and
v;, € V%) There is a non-trivial linear dependence relation between
the v;,’s. Choose the shortest possible such linear dependence relation and
assume, rearranging the v, ’s if necessary, that it involves v;,, vi,, ..., v;
with 7; <14, for all 1 < j <r —1. That is, we have

r

a1, +agvi, + ... +ayv;, =0

with each a; non-zero. Choose any g € H which does not lie in the inertia
group. Hence ||g|| # 0,1. Applying p(g) to the relation yields

a10(9)||gl|" vi, + a20(9)l|gl[*vi, + ... + ard(g)|lgl|"vi, = 0.

Subtracting ¢(g)||g||*~ times the first relation from the second leads to a
shorter non-trivial linear dependence relation, which is a contradiction. O
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2.3. We may define a monomial category [y, jmon of Line Bundles
and morphism by replacing My(G) by M(Wkg) (and relinquishing the
central character condition).

Let (p,V,n) be a Deligne representation in G, (K). Set

S = B (1.)emiwie), v zo Ind gy (ky)
and set Ag = Endk[WK]mon(S). Following Chapter One §5 set

Mg,,; = Homk[wK]mOd(V(S)v V) ®k As Qp ... As

and, by the same formulae as in the bar-monomial resolution define a com-
plex

.LMSJ'@]CSL...LMSJ@kSi)MS,o@kS;V—)O.

All the differentials and the augmentation commute with the n on V' and
post-composition  with  n  on  Hom,, moa(V(5),V),  because
post-composition commutes with pre-composition. Endowed with post-
composition with n each MS,i ®g S becomes a Deligne k[Wy|-monomial
Line-Bundle and (MS,* ®k S,d) is a chain complex of such. We define a
monomial resolution of a Deligne representation in the obvious manner.

The bar-monomial chain complex given above is a monomial resolu-
tion of the representation V restricted to the inertia group. This follows
from the properties of the bar-monomial resolution for finite-dimensional
representations of finite groups.

The following conjecture should not be too difficult to prove - perhaps
by an explicit chain homotopy.

CONJECTURE 2.4. Let (p,V,n) be a finite-dimensional Deligne repre-
sentation over an algebraically closed field of characteristic zero. Then the
complex of §2.3

.LM&Z'@]CSLMHLMS,l@kSL>MS,0®kSL>V—>O,

endowed with the nilpotent endomorphism induced by n, is a monomial
resolution of the Deligne representation V.



CHAPTER 6

Kondo style invariants

In [85] a Gauss sum is attached to each finite-dimensional complex
irreducible representation V' of GL,F;. The Kondo-Gauss sum is a scalar
d x d-matrix where d = dim¢ (V). In Chapter Twelve (Appendix III, §3)
I recapitulate the construction of [85] but giving the formulae in terms of
character values, which simultaneously removes the irreducibility condition
and reveals the functorial properties (e.g. invariance under induction; see
Appendix III, Theorem 3.2).

In this chapter the theme is the association of e-factors, L-functions and
Kondo-style invariants to the terms in a monomial resolution of an admissi-
ble representation V of GL, K when K is a p-adic local field. The examples
here suggest that eventually one may be able to construct the e-factors and
L-functions of [66] by merely applying variations of my constructions to
the monomial modules which occur in the monomial resolution of V' and
taking the Euler characteristic.

In §1 p is a finite-dimensional complex representation p of a compact
modulo the centre subgroup J of GL, K. To this I associate a Kondo-style
Gauss sum 77(p), defined by the formula used in Appendix III, §3, and
show that, at least for GLo K, that 7;(p) is given by a “Haar integral”
over J when the multiplicity of the trivial representation in p is zero (as in
Appendix III, Lemma 1.7).

In §2 we recapitulate the properties and construction of the Haar inte-
gral on a locally p-adic Lie group G. Then we recall in the case G = K, K*
Weil’s approach [142] to Tate’s thesis, which derives the local functional
equation (Corollary 2.23) Then we study the simple case of G = (K*, u)
which is a finite modulo the centre subgroup of GL3K. From the case
G = K,K* we construct meromorphic extension to the whole complex
plane of eigendistributions which are analogous to those of [142] and de-
rive a functional equation in Example 2.28.

In §3 I explain how the case when G is finite modulo the centre extends
the local functional equation to the compact open modulo the centre sub-
groups of GL, K. I conclude the section with several questions related to
what conjecturally might happen if one could take the Euler characteristic
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of the constructions in §2 applied term-by-term to a monomial resolution
of an admissible representation V of GL, K.

1. Kondo style epsilon factors

1.1. Let K be a p-adic local field with valuation ring Ok and prime
ideal Pr. Write U =1+ Pg for n > 1 and U?{ = OJ%. The standard
additive character on K is

tracex /g
vk K —"Q,— Q,/Z,CC*
where the final map is given by 1/n + Z +— e2mV=1/n

We have a chain of fractional ideals

- C Py CPLCPrCOx CPROK CPRPOK C -+

and D' = P§ — a fractional ideal called the codifferent (or inverse dif-
ferent) — is the biggest fractional ideal on which ¢k is trivial. That is,
Vi (Ps) C Z, and Y (Pi ') € Z,. The different is the fractional ideal
Dk = 73;(6.

1.2. Kondo-Gauss sums for compact modulo the centre subgroups

Forn>1let U =1+ 73 M, O C U?( = GL,, Ok where M, Ok is
the ring of m x m matrices with entries in Ok.

Let J be a compact modulo the centre subgroup of GL,,, K which con-
tains the centre K* and let p be a continuous, finite-dimensional complex
representation of J. Let nj(p) be the least integer such that p factorises

through J/J UL . Set f;(p) = P’ which shall be called the .J-
conductor of p (or sometimes merely the conductor of p if the identity of J
is clear).

Choose ¢ € K such that Ok - ¢ = f;(p)Dk, where Dk is the different
of K so that DgDx' = Ok.

Define the Kondo-Gauss sum 7;(p) by

1
Ti(p) = dm() Z Xp (¢ X)) (Trace(c ' X)).
P XeJnUy /Inup’ ¥

Here X, is the character function given by X — Trace(p) € C.

LEMMA 1.3.

Suppose that p restricted to the centre J(K* = K* is given by a
central character ¢ (for example, if p is irreducible). Then 7;(p) is well-
defined in §1.2.

Proof
The x,(c7'X) term is well-defined because if X, X’ € J(UY satisfy
X' = XU with U € JOUL® then we have p(U) = I, the identity, so
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that
Xp(cT'X) = () T xp (XU) = 6(0) 7' xp (X) = xp(c7' X).
Also, if U = I + W, then
Y (Trace(c 1 X")) = g (Trace(c 1 X + c=1W))
= Y (Trace(c™1 X))k (Trace(c™1W))

= Y (Trace(c 1 X))
because Trace(c™'W) € Di'. O

ExaMPLE 1.4. If n;(p) = 0 then p is J-unramified and the formula
becomes

71(p) dim(p)é(c™ ')k (Trace(c ™)) = d(c™!) = ¢(Dx).

~ dim(p)
LEMMA 1.5.
Ifn>0andde€ PI_("DI_(l then

INPx|™ if d € D',

€0k /PR 0 otherwise.

Proof

If d € D' then zd € D' and Yx(zd) = 1. Otherwise, if 2 =
y (modulo Py) then zd = yd (modulo Pid) and Pid C Dy’ so that
Vi (zd) = ¥ (yd) and the sum is well-defined. But if d ¢ D' there exists
x1 € Ok such that ¥x(z1d) # 1 and so

> tkd)= Y Wk(@+z)d) =dr(@d) Y vx(wd),

€0k [Py z€0K [Pr z€O0K [Pk

which shows that the sum is zero. O

COROLLARY 1.6.
Ifn>0andde ’P;("Df(l then

1 if n=0,
INPk|"Y(|NPk| —1) if d€ Dg' and n > 1,

> vxld)=§ _ yp if d¢ D', mred € D,
€05 /U, n>1,

0 if md g Dty n> 1.
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Proof

Again the sum is well-defined. Since Ok /Py is local, O /Uy =
(O /PE)* = Ok /P — P /P Therefore the order of O3 /Uj is equal
to [NPg|" " 1(|NPk| — 1) when n > 1 and to 1 when n = 0. This yields
the formulae when d € Dl_(l. The formula

S gkad) = > vkled)— Y Yx(rxad)
€L /UL €0k [P} 2€0K /P!
yields the other two formulae. O

LEMMA 1.7.

In the situation of §1.2 and Lemma 1.3 suppose that 1 <n < n;(p) <<
t. Then, if ¢, € P;(”Dl}l and the multiplicity of 1 in p is zero (i.e. the
Schur inner product satisfies (p, 1) jaun /7nvt. = 0),

Z Xp(cn X))k (Trace(c, X)) = 0.
XeJnUy /JNUE,
In general

erJnU" /JINUt Xp(en X) YK (Trace(c, X))

= Q(Cn)Q/’K(Cn)m[JnUﬁ' : JﬂUIt(KPa >Jr1U” /JINUE, -

Proof
This is a well-defined sum. If X = X’ (modulo P¥ - M,,Ok) then
Trace(c, X — ¢, X') € D' so that

1 = g (Trace(c, X — ¢, X")) = ¢ (Trace(c, X)) g (Trace(c, X)) !
Also

Xp(enX') = d(cn)xp(X') = d(cn)Xn(XU)
for some U € U}, so that p(XU) = p(X) and therefore

Xp(enX') = d(en)Xp(X) = Xp(cnX).
Then, if X € U} with n > 1 we have
cnX € e+ PR - MpyOr C ¢y + Dyt - M,y Ok
Therefore the sum is equal to

ZXeJﬂU;;/JmU;( Xp(cn X )Y xc (men)
= Yk (cn)"¢(cn) EXeJmU;/JmU;( Xp(X)

= ¢(en)¥i ()TN UR : JNUgl(p, 1>JmU;;/JnU;(7

as required. O
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The proof of Lemma 1.7 also yields the following result, since
<p? 1>JOU;J<p)/JﬂU}< = dlmc(p)

LEMMA 1.8.
In the situation of §1.2 and Lemma 1.3 suppose that
1<ny(p) << t. Then, if c,,(, € P;{m(p)Dl}l,

ZXeJmU;;J(P)/mU;{ Xo(Cny () XYk (Trace(cn, (5) X))

= G(Cny (p)) VK (Cny (o))" T MU - TN UL ]dime (p).

LEMMA 1.9.
In the situation of §1.2 and Lemma 1.3 suppose that 1 < n < nj(p) <<
tand c, € P;(”D;(l. Suppose that n = ns(p) — 1, then

ZXeJmU?(/JnU;{ Xp(cnX) YK (Trace(c, X))

=[JNUZ: JNUL] ZXGJQU%/MU; Xy onvp (enZi) Yk (Trace(cn Z;)).

where V' is the vector space which affords the representation p.

Proof

Let Zi,...,Zs € JOUY be a set of coset representatives for
JOUY/JNUR and let Wy, Wa... W, € JOUR be a set of coset rep-
resentatives for J (UL /J N\ U. Hence {Z;W; |1 <i<s, 1<j<wv}is
a set of coset representatives for J(UY%/J N UL. In addition

cnZiW; € ¢nZi + ey ZiPp C MyOxenZ; + ZiDi My Ok
Therefore
ZXeJﬁU;’{/JﬁU;( Xp(en X )Yk (Trace(cn X))

=2 i1 25:1 O(en)Xp(ZiW; )k (Trace(cn Z;)).

Now we shall use the fact that n = nj(p) — 1 and we consider the
matrix representation of

2521 Z;}:1 ?(Cn)P(Zin)wK(Trace(ani))
= i1 21 O(en)p(Zi) p(Wy)hx (Trace(cn Z;))
= Y im1 0(ea)p(Zi) i (Trace(cn Z:)) (25—, p(W5))-

The W;’s runs through J U;"(p)_l/J N U} and p on this quotient group
factors through the abelian quotient J | U;é"(p)*l /N U}y(p ). Therefore,
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in terms of matrices, we may diagonalise p on J[) U;"(p)_l/Jﬂ Ul as

(W) 0 0 ... ... 0 0 0
0 A(W;) 0 ... L. 0 0 0
Wi— 0 0 0 0 0 MNW,) 00
0 0 0 o0 0 0 1 0 0
where A1, ..., A\ are the only non-trivial characters

JnU;J(P)_l/JmU;( _ ., C*

appearing on the diagonal of this matrix representation of p. Therefore the
matrix 337, p(W;) has the form, summed over J N U=t raut,

Z;‘}:1 p(W;)

M(W) 0 0 0 00
=S 0 00 0 0 XMW 00
0 00 0 0 0 1 0 0

0 0

= [JnUrPO7 Ut
0 Ik

where the three 0’s are the k x k, k x (d — k), (d — k) x k zero matrices and
Tq—y is the (d — k) x (d — k) identity matrix and d = dim¢(V'). The matrix

ny(p)—1
I, comes from the trivial action of p on the fixed-points V7 nUE""
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Therefore, for each 1 <i <'s
dlen) Yjo1 Xp(ZiW;) ¥k (Trace(cn Z;))
= [JNUEP T UL b(en)x
2;21 XVMUZJW* (Zi)k (Trace(cn Z;))
=[Jn UI"(J(p)—l L INURIY X, o)1 (cnZi) i (Trace(cnZ;))

=[JNUL: JNUL] Y xesnvy janun Xyoov (€nZi)P (Trace(cn Z:)),

Next I shall prove Lemma 1.9 in general, by an induction based on the
proof of that special case.

LEMMA 1.10.
In the situation of §1.2 and Lemma 1.3 suppose that 1 <n < n;(p) <<
t and ¢, € P;(”D;(l. Then

erJmU;){/JnU; Xp(cn X )Px (Trace(cn X))

=[JNUL:JNUL| Y zesnvs unun Xyoovp (enZ)tk (Trace(cn Z)).
where V is the vector space which affords the representation p.

Proof

Let Z1,...,Zs € JOUY% be a set of coset representatives for
JOUY/JNUR and let Wy,... ,W, € J(YUZ be a set of coset represen-
tatives for J(\Ug/J(\Ul. Hence {Z;W;} is a set of coset representatives
for JNUY/J (UL . Let us subdivide the W;’s so that

Wi, ... ,W,, is a set of coset representatives for J [ U;J(p)fl/Jﬂ Ul
W41y s Wy, 44, are coset representatives of

JN U}’?I(P)*Q/Jm U;y(ﬂ)*l
Wy tvat1y -« - s Woytuatos 18 @ set ... for J( U}y(p)_‘g/Jﬂ U;;J(p)_z

W”1+~-+Um<p>7n71+17 ... an1+---+an(p)fn is a set ...for
JNUR/TNUE™.



156 6. KONDO STYLE INVARIANTS
Let d, = [JNUE : JNUL]. By the inductive step explained in the
proof of Lemma 1.9 we have

ZXGJOU?{/JOU% Xp(en X )Yk (Trace(c, X))

= 3 SO ()Xo (ZW )k (Trace(ca Zi))

= dn(](p)fl 25:1 23{2:"1‘---4‘”11‘7(,3)771 ?(cn)XVJnU;(J(P)*l (Zin)X
Vi (Trace(en,Z;))

s v3+...4v, .
= dnJ (p)—2 Zi:l 233:1 7 ?(CH)XVJQU;J(O)—Q (ZzW]) X
Y (Trace(c, Z;))

= dn 51y B(en) Xy nvp (Zi) Y (Trace(c, Z;)),

as required. O

LEMMA 1.11.
In the situation of §1.2 and Lemma 1.3 suppose that 0 = n = nj(p) <<
t. Then, if ¢y € D;{l,

erJnUg(/mU;( Xp(coX) vk (Trace(co X))

=[JNUY : JNU]dime(p)d(co)-
Proof
Since p is trivial on J [ U%
ZXeJmug/JmU;( Xp(coX )i (Trace(co X))

=2 xesnv sunut. ¢(co)dime ()P (Trace(co X))

=[JNUY : JNUL]dime(p)d(co),
because Trace(coX) € D' so that 1 (Trace(cpX)) = 1. O

LEMMA 1.12.
In the situation of §1.2 and Lemma 1.3 suppose that
<an(p)> = ,Pin‘](p)pl_(la

EXEJOU?(/JHUZJ(’)> Xp(X)¥x (Trace(co X)) = dime(p) ;J(%

Proof
By definition. O
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LEMMA 1.13.
In the situation of §1.2 and Lemma 1.3 suppose that ¢, € P]_("D]_(l and
1 <nj(p) <n <<t Then

ZXGJOU;J(P)/JQU? Xp(CnX)wK(Trace(CnX))

= @(cn)[JNUR : JNUL] ZXGJQU;J@)/MU;} i (Trace(c, X)).
Proof
Let Zy,...,2Zs € JﬂU;"(p) be coset representatives for

JﬂUz‘](p)/JﬂU}é and let Wq,... ,W, € JNU be a set of coset rep-
resentatives for J(UL/J(Ulk. Hence {Z;W,} are coset representatives

for JOUL ¥ /TN UL Then

ZXGJQU;J(P)/JOU;( XP(C'”X)wK (’I\ra‘ce(ch))

= p(cn) 2oy 22:1 Y (Trace(cn, Z;W5))
= o) Ty Sy e (Trace(en Ze) e (Trace(en Z4(W) — 1)

= ¢(cn)[JNUR : INUE] Y (Trace(c, X)),

XeJnUpd ¥ rinun Vi

as required. O
The formula of Lemma 1.13 features a constant which depends on the
identity of J, which is an issue I shall examine below.

LEMMA 1.14.

In the situation of §1.2 and Lemma 1.3 suppose that ¢, € ’P;{"D;(l and
1<ny(p) <n <<t Then

ZXGJHU?(/JOU;{ Xp(cn X)¥ i (Trace(cn, X))

=% e snws paruns® Senxo(Z) NUR - JNUKIAZ W)

where A(Z, W) = ZWeJmU;;J(”)/JmU;g i (Trace(c, ZW)).
Proof
Let Z1,...,Zs € JOUY be a set of coset representatives for

JﬂUIO(/JﬂUZJ(p) and let Wy,... , W, € JﬂU}y(p) be a set of coset
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representatives for J (U’ @riN Ul.. Therefore
ZXeJnU;’(/JmU;( Xp(en X) Yk (Trace(cn X))

=2 i1 2j=1 D(en)Xp(ZiW)) i (Trace(cn Z: W)

= ZZEJOU%/JQU;J@) dlen)Xp(Z2)INUR - INURJA(Z, W),

as required. O

The formula of Lemma 1.14 contains occurrences of the constant from
Lemma 1.13, which depends on the identity of J, which is an issue I shall
examine below.

LEMMA 1.15.
In the situation of §1.2 and Lemma 1.3 suppose that

<CnJ(p)> = PI_(nJ(p)DI_(l
and 1 < mny(p) << t. Then

2oxesnue anvt. Xp(Cn (o) X)Wr (Trace(cn, () X))

=[JnUEP T U)7(p).

Proof

Let Zi,...,Zs € JOUY% be a set of coset representatives for
JOUL/INUE Y and let Wy,... , W, € JOUX be a set of coset
representatives for J (U’ ) /J N U} Therefore

2oxesns janvs Xe(n (o)X )0r (Trace(cp, () X))
=21 =1 D(Cns(0)Xp(ZiW5) i (Trace(cn, () ZiW5))

=301 2 21 D(Cn ()Xo (Zi) i (Trace(c, ,(p) Zi)) %
Y (Trace(cy,, () Zs(W; — 1)))

= 3 Xo(Cny () Zi) 0k (Trace(cp , ( Z)) I NUR P - J N UL]

= [TnUY g UL (),

as required. O

1.16. In the situation of §1.2 and Lemma 1.3 suppose that 1 < n <
ny(p) << t. Set p, equal to the representation given on V' NUk

Pn Jﬂ Uy — Aut(V/"Vk)

so that ns(pp) <n << 1.
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If 1 <nj(pn) <n <<t we have

ZXEJOU}’(/JQU;( Xp(enX)Px (Trace(cn X))
= [‘] ﬂ Ufn( : ‘] n U;{] ZXEJOU%/JQU;J(/)”) Xﬂn (CnX)d)K (Trace(ch))
+HJNUE = JN Uf(]?(cn)@/’K(cn =), 1>JnU;J(Pn)

= [TNUE " - TNULIs(pn)
HIOUR = T NUfJb(en)(rc(en =)0 ypymson-

THEOREM 1.17.

In the situation of §1.2 and Lemma 1.3 suppose that H C J are two
compact modulo the centre subgroups with [J : H] finite and that ¢ is large
enough so that U; C H. Let o be a finite-dimensional representation of H.
Then

dimlc(cr) ZXeHnUg/HnU; Xo (en X )Y x (Trace(c, X))

_ 1
= 7A00 ZXEJOUE{/JHU;{ X

dim¢ (Ind 5 (o)) I
HmUK

AUl (cn X))k (Trace(c, X)).

ndHﬁU?{

Proof

The proof is going to use the same argument as the proof of Theorem
3.2 in Appendix Three. Since H N U} = J N U} we may consider o as a
representation of H = HNUY/HNUL. It J=JNUY%/JNUL we have
H C J and we may set p = Ind};(a).

By definition

% >oxej XplenX)Yr(Trace(cn X))
= m Yoxei 2ved vxy-ten Xo(enY XY 1)hx (Trace(c, X))

= |j|.diinc(g) ZXE] ZYEj, YXY-1cH XU(C"LYXYil)X
Y (Trace(c, Y XY 1))

by the character formula for an induced representation ([126] Theorem
1.2.43). Consider the free action of J on J x J given by (X,Y)Z =

(Z7'XZ,Y Z) for XY, Z € J. The map from J x J to J sending (X,Y) to
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Y XY~ is constant on each J-orbit. Therefore

\j\-diinc(a) 2oxed Zyej, YXY-leH Xo (Y XY 1) x
Y (Trace(c, Y XY 1))

— 1 j .
= Fldime(o) [ X ver XolenU)Yk (Trace(c,U)),
as required. O

1.18. The constant from Lemma 1.18
In the situation of §1.2 and Lemma 1.3 suppose that ¢,, € P]}"Dl}l and
1 <mny(p) <n. Then, in Lemma 1.13, we encountered the constant

ZXEJHU;JM/JOU; Y (Trace(c, X)).

I would like to evaluate this in the case when J C GL9K is one of:
Case (i): GL2Ok and

Case (ii):
a b’]TK
J={ | a,b,¢,d € Ok, ad € Ok }.
c d
Case (iii):
0 1 a brg
J = , | a,b,c,d € Ok, ad € O%).
7TI_(1 0 c d
LEMMA 1.19.

In Case (i), Case (ii) and Case (iii) of §1.18

2 xeanuns @ oy, VK (Trace(en X)) =0

Proof
In Case (i) GLyOx (U P = U and GLyOx UR = U so that
the coset representatives X have the form

b
12 +7T;l(J(p)
c d
with a,b,c,d € OK/PZ_nJ(p). Therefore

Vi (enX) = Yr(en)Pr(cany’? (a+ d))
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and so

ZXEGLZOKOU;J“’)/GLwKnU; i (Trace(cp, X))

= ZXEU;J@)/U; Y (Trace(c, X))
= b (¢ )2| NP [2—2m () 2 0 de O /P Vi (ent™ P (a + d))

= U (en)2INPx P3O T s b (enmi? ) 2)
= 0’

by Lemma 1.5 since cnwzj(p) generates ’P?(J(p)an;(l Z D;{I.

In Case (ii) also we have JﬂUITQ’(p) = U;;"(p) and JOUp = U} so
that the sum is again zero.

In Case (iii) the sum to be evaluated coincides with that of Case (ii)
because the intersections of these two J’s with Uy are the same. O

1.20. Results in Cases (i), (ii) and (iii) of §1.18
Assume that J is as in Cases (i) and (ii) of §1.18 so that

ZXGJQUZJ(’”/JQU; Y (Trace(c, X))
= EXGU;N)/U; Y (Trace(c, X))
—0

when 1 < njy(p) < n and (¢,) = PI;"D;. In addition, if Z € GLyOk,
then we also have

ZXEJF]UZJ(”)/JQU; 1/JK(Trace(anX))

= EXEU;J(’))/U?( Y (Trace(c, ZX))

— ZXQU;J(P)/UZ Y (Trace(c, Z2)) vk (Trace(c, Z(X — I3)))
= ZXEU;J(P)/U; ?/JK(Trace(an))z/JK(Trace(cn(X — _[2)))

:0’

because during this sum the matrices Z(X — I3) run over a set which is
independent of Z € GL2Ok.
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n . .
If p/"Uk denotes the representation of J given by the

J N Ug-fixed points of p then for any irreducible p we have

" p it TLJ(,O) =n,
ok =

0 otherwise.

Therefore, by Lemma 1.10, 1 < n < nj(p) << t and (c,) = Pr"Dg"
and p is an irreducible J-representation

Exe.ng/JmU? Xp(en X )P (Trace(cn X))
=[JNUE: JNU] ZXeJmU?{/.mU;g X v (cnZi) bk (Trace(cn Z;))

=0.

In addition, if n = 0 with p non-trivial , irreducible and 1 < n;(p) << t
then (co) = Dj' so that

ZXGJF]U?(/JOU;( Xp(coX )Yk (Trace(co X))
= ¢(co) ZXEJOU%/JOU;( Xp(X)
= ()l U : J O UkNp: Dgrwg
= 0.
From Lemma 1.15 we have, if 1 <n;(p) <<t and
<CnJ(p)> _ P};”J(P)D[—(l’

2xernu. fanuvt. Xp(Cny ()X )Pr (Trace(cn, (5 X))

= [.] N U;;J(p) :JN U}‘(] EXEJHU?(/JOU;J(p) Xp(CnJ(p)X)X

Y (Trace(cp, () X))-

Next we turn to the range 1 < nj(p) < n << t and {(c,) = P "Dy
By Lemma 1.14

ZXGJNU?{/JOU;{ Xp(en X)hx (Trace(cn X))

= ZZEJQUE(/JOU;J(p) Q(Cn)Xp(Z)[J NUk : JNUKJA(Z,WV)

:O7

where A(Z, W) =" Y (Trace(c, ZW)).

wenu ¥ 1 inun
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Therefore if p is non-trivial, irreducible with n;(p) > 1 and
(cn) = P Dy then

i Xp(cn X))k (Trace(cn, X))
lim g, ¢ o0 Zogn§N0<<t ZXGJHU%/JOU;{ dimc (p)[JNUR:JNUY]

_ Z Xp(CnJ(p)X)wK (Tra‘ce(c’flj(p)X))
= Zuxesnul Jinupt dime (p)

=75(p).
Next we examine the case when nj(p) = 0 so that

. Xp (en X)) (Trace(cn X))
lim g o0 Zogngzvo<<t ZXEJF]U?(/JOUI‘( dimc (p) [JNU R JNUE]

¢(cn )dime(p)h i (Trace(c, X))

= limpy, t—co Zogn§N0<<t EXeJﬂU%/JﬂU;( dime (p)[JNUL:INUL]
=1 f(cn)wK (Trace(cp, X))
= My, t—oo Zogn§N0<<t ZXeJﬁU?(/JﬂU;{ [JNUR:JNUL]
i d(cn) Yk (Trace(c, X))
= ¢(co) + limpng,t—o0 Zl§n§N0<<t ZXeJnU}L/mU;( T PNUEINUY]
However, if n > 1, let X1,..., X, € J(\U% be a set of coset repre-
sentatives of J N U?{/Jﬂ Ull( and let Wy,... W, € U}( be a set of coset

representatives of J N U} /J NUY. Therefore
ZXeJmU%/JmU;( Y (Trace(cn X))
= Zf:l 25:1 Vi (Trace(c, Z;W;))
=21 Yk (Trace(cnZi)) X5, Vi (Trace(c,Zi(Wj — I2)))
= Y0, th(Trace(e,Z:) S0, tbxc(Trace(ca (W — I2))
=0,

by the argument used in §1.20. Hence we have shown that

i Xp(cn X))k (Trace(cn, X))
llmNo’tHoo ZOSn§N0<<t ZXeJng/JnU;{ dime (p)[JNUL:TNUL]

= ¢(co)

=75(p)

in this case also.
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2. Tate’s thesis in the compact modulo the centre case

2.1. Let K be a p-adic local field and let Ok, 7, Pk etc. be asin §1.1.
Throughout this section G will be a locally p-adic Lie group containing K*
within its centre and such that G/K* is compact. In fact we rather favour
the case when G/K* is finite, reducing the more general case to this one.
For example, within GLs K we have the subgroup

G = (K*,u) C GL,K

where, as usual,

so that u2 = 7T;(1 e K*.

2.2. Let G be a locally profinite group and C2°(G) the space of locally
constant functions f : G — C of compact support [40]. For any such
function there are compact open subgroups Cp,Cs such that f(cigcs) =
f(g) for all g € G, ¢; € C;. Hence f is a linear combination of characteristic
functions of C\G/C with C' = Cy () Cs.

For example, if G is the additive group of a p-adic local field K then
any compact open subgroup contains a compact open subgroup of the form
P} of finite index. Hence any f € C°(K) is a finite linear combination
of characteristic functions ®,py of cosets x + Pi. Hence there exists an
integer r > 0 such that f(x) # 0 implies 2 € P;" and f is constant on each
coset © 4+ PJ. This Schwartz-Bruhat space is denoted by S(K) in ([86] p.
115; see also [143]) (see §2.3).

Another important example is given by G = K*. As usual, set UY% =
Oy and U} = 1+ Pg for n > 1. Any compact open subgroup of K*
contains a compact open subgroup of the form Uy of finite index. Hence
any f € C°(K™) is a finite linear combination of characteristic functions
®,ur (with n > 0). Suppose that f = 22:1 ai¢in;’('i then we may
assume that all n;’s are equal so that f is constant on each coset intersection
(x 4+ Pj) () K* for large enough r. Also z;Uy" C P:{K(zi) + P;?JFUK(:“') s0
that, for large enough r > 0, f(x) # 0 implies that z € P} () K*. Hence
we have an inclusion C°(K*) C C°(K) = S(K) given by extending f by
f(0)=0.

On C(G) we have left and right translation given respectively by
N(f)(@) = f(g7'z) and py(f)(xz) = f(zg). A right Haar integral is a
non-zero linear functional

I : C(G) — C
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such that I(py(f)) = Ic(f) and Ig(f) > 0if f > 0. If it exists then I is
unique up to multiplication by positive scalars. G is called unimodular if
any right Haar measure is also a left Haar measure.

We shall start by recalling the explicit formulae for the Haar integral
on K and K*.

EXAMPLE 2.3. Haar integration on K
Let r be a positive integer. A measure on Py is a family of functions
br,rm: Pr /Pg — C for n > Ny which satisfy

O (® + Pg) = Z K rnt1(y + ,PIT?FI)'

y+7’}§+1 | yex+Pp
In this case the sum
IK,r,n(f) = Z f(x)qumn(x +Pk)
z€PL" /PR

is well-defined for each n >> 0 and independent of n. This is because f is
locally constant so that there is an n such that f(z) depends only on the
coset x + P} and in this case

IK,r,n+1 (f)
=Y yeprprtt W)oK rnii(y+PE)
= Yoergrsrp 1@ Lypappnt | yeorry Oxrnni(y+ PR

= IK,r,n(f)‘

If, for example, we set ¢ ,.n(z + Pr) = |Ox /Pr|/2~" for all n > 0
then

Doyt | yeaspn PEmi1(y+ Pt =I|Pr/PE Ok [Px |/t

= IOK/PK\“/?)’”,

as required. Usually the integer |Ok /Pxk| is denoted by gq.

Now let f € C°(K), the set of compactly supported and locally con-
stant functions

f: K —C.

This means (see §2.2) that there exists an integer ¢ > 0, depending on f,
such that

(i) f(x) # 0 implies that z € P’ and

(ii) if 2,y € K and @ — y € Pl then f(z) = f(y).

Recall that there is a chain of fractional ideals of the form

P CPgtC... CK.
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Choosing integers r,n >> 0 we define

Ik (f) = Irrn(f)

which will serve as a formula for a Haar integral on K once we have verified
invariance under right translation, which is seen as follows.

For a € K set f,(x) = f(a+ ). Choose r so large that a € Pr" then
as « + P} runs through Pr" /P so does a+ x + Pf and vice versa so that
IK,r,n(f) = IK,r,n(fa)v as required.

In the integral notation it is usual to write I (f) = [, f(x)dz, in the
spirit of calculus!

EXAMPLE 2.4. Haar integration on K*

If f e C°(K™) it is simple enough to find a multiplicative measure on
K* to define Ix-(f) = [ f(x)d*z. Alternatively, we may extend f by zero
at 0 to give a function (denoted still by f) lying in C°(K) and set

I (f(x)) = I (f(x)|z]71).
Recall that the normalised absolute value of x € K* is given by
2|k = |Ox /Prc| 7<) = 7o),
Explicitly, for r,n >> 0

Tre=(f(x))
= Ix(f(@)lz|™)
= Ixrn(f(2)]2|7)

— erOKﬂ;{"/P}} f(x)qvx(x)(m{’r)n(x + 77172)

This is well-defined and will serve as a formula for a Haar integral on K*
once we have verified invariance under right multiplication, which is seen
as follows. Given a € K* we may write a = b} with b € O%. Therefore
as x runs through Py" /Py the element az runs through Prmy /Pyt
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and vice versa when r,r 4+ j,n,n+ j >> 0 . Therefore

I (f(@)]x™)
= Laveowmg+ pyrs F(a0)a" D rni; oz + Pi)

= Yecowmgrspy 100)a OGP brc s (az + P)

— ZZEOKT"I_(T/,P;% f(ax)qu (I)q]q(1/2)*n*]

= erOKw;"/pIn{ f(ax)q”K(f)q(l/Q)—n

= Ix(f(az)|z|™"),
as required.

DEFINITION 2.5. Eigendistributions [86]

Let S(K) denote the space of Schwartz-Bruhat functions on K and let
S’(K) be the space of tempered distributions on K, which is the space of
continuous linear functionals A : S(K) — C. A complex-valued function is
in S(K) if and only if there exists an integer r > 0 such that (a) supp(f) C
P~" (compact support) and f is constant on cosets of P" (locally constant)
(see [15]).

The multiplicative group K* acts on S(K) by

(r(a)f)(z) = f(za) for z € K,a € K*
and on S’(K) by
(r'(@)(N), f) = (\,r(a™)f) for A € §'(K), f € S(K)

where (—, —) : §'(K) x S(K) — C is the evaluation/integration pairing.

For a character w of K* define

S'(w)={Xe S(K) |7 (a)(\) =w(a)\ for all a € K*},

the space of w-eigendistributions.

2.6. The space S’(w) can be analysed geometrically. First observe that

K* acting on K has only two orbits {0} and K*. We have an inclusion
(extension by zero; see §2.2)

CX(K*) C S(K).
By duality there is a short exact sequence of distributions
0— S'"(K)y— S'(K) — C*(K*) — 0

where S’(K)g is the space of distributions supported at 0. This sequence
is compatible with the K*-action and, taking w-eigenspaces, we have the
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following exact sequence
0— S'(w)o — §'(w) — CZ(K") (w)
where S’(w)g is the space of w-eigendistributions supported at 0.

LEMMA 2.7. ([86] Lemma 3.2 p.116)
The space C°(K*)(w) is one-dimensional and is spanned by w(x)d*z.
In particular, for any A € S’(w) there is a complex number ¢ such that

Resgégg{*) (A) = c-w(x)d z.
That is, if supp(f) C K* is compact then
(A f)=c- f(@)w(z)d 2.
K*
LEMMA 2.8. ([86] Lemma 3.3 p.116)
The delta distribution dg is defined by (do, f) = f(0), which is obviously
K*-invariant and supported at 0. Then
S/(K)O =C-0g C S'(w0)7
where wg = 1 and for w # wp, S’ (w)o = 0.

The fundamental local uniqueness result is:

THEOREM 2.9. ([86] Theorem 3.4 p.117)
For any character w of K* dimcS’(w) = 1.

DEFINITION 2.10. Zeta integrals on K*
For a character w of K* (i.e. a unitary quasicharacter) the local zeta
integral is

((s,w, f) = f(@)wws(x)d*z = /K Fla)w(z)|z]* da.

K*
where s € C and wy(x) = |z|* for x € K*.

PROPOSITION 2.11.

In §2.10 ¢{(s,w, f) is absolutely convergent for all f € S(K) provided
that Re(s) > 0. In this range the distribution f — ((s,w, f) defines a
non-zero element ¢(s,w) € 5" (wws).
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Proof
Consider the zeta integral in its additive manifestation

C(s,w, f) = [ f@)w(@)lz[*~ da
= Ix(f(z)w(z)ws—1(x))
= I (f(@)w(@)ws () ]| 1)
= Dacrirpy J@)(@)a” T O rc (e + PR)

= ZmeP;{T/P; f@)w(x)g (=D @) g(1/2)=n,

for r,n >> 0. Here the choice of r and n depend upon f.

The absolute value of ¢Ux(#)¢(1/2)=" a5 z varies through the terms in
the sum is ¢"¢(1/2)=" = ¢'/2. The absolute value of f(x)w(z) is bounded
as x varies, since the sum is finite. Therefore, if @ = Re(s) is the real part
of s, then the absolute value of {(s,w, f) is bounded by a constant times

q—a(—r) + q—a(—r+1) + q—a(—r+2) L q—a(n—l) + q—om

_ g —g— (e
1—q© ’
which shows that ((s,w, f) is absolutely convergent when Re(s) > 0, as
required.
The eigendistribution condition is equivalent to the relation that

C(s,w, f(=-a™h) = (((s,w), f(= - a™h)) = wla)ws(a)((s,w, ),

which follows immediately from invariance of the Haar integral under right
multiplication by a=! € K*. O

2.12. The case when w is unramified
Suppose that w is unramified (i.e. w(z) =1if x € OF).
Let f € S(K) have compact support in K* and consider the integral

C(S,u},f) = (:c)wws(x)d*x
Ko+

which is absolutely convergent when Re(s) > 0. We would like to modify
this into a function which is absolutely convergent over the whole plane.
The idea is to kill the support of an arbitrary f € S(K) by applying a
suitable element of the group-ring Z[F*] - namely 7 =1 — 7r;(1.

Since f is constant in a sufficiently small neighbourhood of 0, say P,
we have for any = € P! then

(r(1)f)(@) = f(z) = r(7") f(2) = f(z) - flamy') = 0.
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Thus there is a distribution {y(s,w) € S’ (wws) defined by

(Co(s,w), f) = / ) (r(7) ) (z)wws (z)d* .
In the halfplane Re(s) > 0 we have
{Co(s,w), f)

= [ier (f(2) = flamy)wws(z)d*

= [ F@wws(@)d*e — [ flargwws(e)d*z
= (1 —w(mrg)ws(mx))C(s, w; f)

= (1 —w(rk)g*)C(s,w); f)

= L(s,w) (s, w), f).
In terms of distributions this says that for Re(s) > 0

C(s,w) = L(s,w)Co(s,w).

PROPOSITION 2.13.

In §2.12 the integral [,.. 7(7)(f)(z)ww,(z)d* is absolutely convergent
for all s € C and the distribution (y(s,w) is meromorphic analytic for all
seC.

Also if @ x is the characteristic function of X then

(Co(s,w), Poy) = / *<I>o;<d*m7é0.

Proof

Suppose that h(z) € S(K) is such that for some integer r > 0 h(x) =0
when either € P}, or € K —P". Then, as in the proof of Proposition
2.11,

C(s,w,h) = [ h(z)w(z)|z|*~td

— ZIEP;{T/P;; h(x)w(z)qf(sfl)vx(z)q(l/Q)*n

= Z‘LE’P;(T/'P;( h(x)w(x)q_(3_1)UK(x)q(1/2)_n

forn >> r > 0. Here r depends on h. Since n is arbitrarily large we see that
the sum is absolutely convergent for all s € C and (y(s,w) is meromorphic
throughout the complex plane, as required.
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Finally
<C0 (87 w)v (I)OK>

= [k oy (@)wws(@)d* s — [, Po, (zmg" wws(z)d*a
= [k Qo (@)wws(x)d*z — [ Ppy(v)wws(z)d*x

= fK* ‘I’o;{d*ZE,
as required. O

REMARK 2.14. By Proposition 2.11, §2.12 and Proposition 2.13, when
w is unramified, the right hand side of the equation {(s,w) = L(s,w){y(s,w)
gives the meromorphic analytic continuation of {(s,w) to the whole s plane.
Moreover it interprets the local L-factor as a constant of proportionality
between two natural bases of the one-dimensional space S’ (ww;) away from
the poles of L(s,w). Thus {y(s,w) is never zero and gives a basis vector for
S’ (wwy) for all s.

2.15. Ramified local theory

Suppose that w is ramified (i.e. non-trivial on O*). The conductor
¢(w) is the smallest integer ¢ such that w is trivial on 1 + P%. Since any
f € S(K) is constant in a neighbourhood of 0 the integral

/1(*an f(@)wws(z)d*z

is independent of n for n >> 0. This is seen as follows.
Recall that the integral over K* is, for r, N >> 0,

Y. f@o@)al brn(z + PR).
zeP"/PY
The integral over K* (PR is
> @@l brn (@ + PE),
ze(K* (Pr)/PY
The integral over K* (" Prt! is
> f@)p(@)|z*~ ¢y (@ + PR).
se(K* (PRt /PR

Now K*(\P} consists of all the elements of K* of the form an} with
a € Oj and m > n. Therefore the difference between these two sums is the
sum over ar?: where a runs through the finite group O% /(1 +PX). If n is
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large enough that f(z) is constant on K* [Py so the difference between
sums is a constant times
Y. ¢

a€0} /(1+PR)
which is zero because ¢ is a non-constant character on the finite group
Ok /(L +Pg).
As in Proposition 2.13, this gives analytic continuation of {(s,w, f) to
the whole s-plane and hence gives a basis vector
CO(sa W) = C(S,W)
for the one-dimensional space S’(ww;) for all s. We set
L(s,w)=1
in this case. Notice that for
wlx)™t if reO*
fox) =
0 otherwise

we have

(Cols,w), fO) #0.
Thus in the ramified case Remark 2.14 also holds.

EXAMPLE 2.16. G = (K*,u)
Consider the finite modulo the centre group
G=(K"u) C GL:K

where, as usual,
0 1

et 0
so that u? = ' € K*.
In this example we are going to imitate the material of §§2.5-2.15.
Let S(G) equal the set of compactly supported and locally constant
functions

f:G—C.

Since G is homeomorphic to two copies of K*, given by the cosets K* and
K*u, we have

it S(K*)@® S(K*) = C(K*) & C°(K*) = S(G)
given by given by i(f1, fo) = f where

a 0 0 «
f( )= file) f( ) = fa(a).

0 « Oéﬂ';(l 0
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Hence f € S(G) if and only if there exists an integer r > 0, depending
on f, such that

(i) f(x) # 0 implies that z € Pr" |JPx u and

(i) if z,y € K and ¢ —y € (MaOk)7} then f(x) = f(y), f(zu) =
fyu).

Set S’(G) equal to the space of continuous linear functionals (distribu-
tions) A : S(G) — C.

As in §2.6, evaluation (A, f) — A(f) gives a non-singular pairing

(—,—):8(G) x S(G) — C.
Now consider the action of G on S(G) given, for z,g € G, by

r(g)(f)(x) = f(xg). By duality we have r'(g) : S'(G) — S'(G) satis-
fying

(@), f) = A r(g™)()-

Consider

We have
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0 TK ﬁ O
7‘(( ))(f1,f2)(( ))
1 0 0 B

0 ﬁﬂ'K
= (f1, f2)( ) = f2(B7K),
1) 0

0 TK 0 5
T(( ))(f1,f2)(( ))
1 0 Brgt 0

Therefore
o™t 0
7"(( . » ))(fl,fz) = (r(e")(f1), r(@")(f2)
and

r(u™ ) (f1, f2) = (r(7k)(f2), f1)-

Now suppose we have a continuous character ¢ : G — C* whose
restriction to K* is the fixed choice of central character ¢; equivalently
#(u)? = ¢(rr) L. Given a space of distributions S’(G) with G-action the
space of ¢-eigendistributions is

S(G) (@) ={A € & | 1"(9)(A) = p(g)A for all g € G}

Therefore we have an isomorphism

o

p: CZ(E")(¢) — (CZ(K™) & C(K7)) ()

given by p(A\) = (A, ¢(u)A). To check that this is an isomorphism consider,
for A1, Ao € C°(K*) and f1, fo € C°(K™) the pairing

(A1, A2), (f1, f2)) = (A1, f1) - (A, f2).
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We have
(r'(u)(A1, A2), (f1, f2))

= (A, A2) r(u™)(f1, f2))
= (A1, M), (r(mx ) (f2), f1)
= (A2, f1) - (A, (i) (f2))

= (o, fi) (' (mH (), f)
= (2,7 () (M), (f1, f2)

2,7 (15 ) (M) = 7' (w) (M, A2) = (u) (A1, A2)
which implies that Ay = ¢(u)A; and
(' (mH ) (M), 7 (1) () = d(u)* (A1, Ae) = bl ) (A, Aa)
so that A1, Aa = ¢(u)A1 € CX(K*)(¢), as required.

Therefore we have shown the following result:

so that

PRroOPOSITION 2.17.
In §2.16 dimc(S'(G)(¢)) = 1.

EXAMPLE 2.18. Haar integration on G = (K*,u) C GL:K

Let G = (K*,u) be the group considered in §2.16.

The uniqueness, up to scalars, of the Haar integral means that Haar
integration is natural, up to scalars, with respect to subgroups. If we have
an inclusion of a closed subgroup H C G then the composition which takes
f€CX(H) to fert € C°(G) given by extending by zero and then forming
I (foxt) gives a right-invariant integral

C>(H) 2% 02 (G) L& ¢

which must be a scalar times Ig.
Taking H = K* we have, for some non-zero scalar Ay,

ATw+(f) = Ta(fext)-
Now G = K*|J K*u and f € C(G) is equal to the sum

f= Resg* (fext + Resg*u(f)ext.
Therefore
I (f)
= Ig(Res% (fext) + Ta(ResSy (f)ext)

= MIg-(Res§-(f)) + Ia(ResFey, (fext)-
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Define a function f; € CX(G) by fi(z) = f(zu) for x € K* and
fi(x) = 0 otherwise. Hence f; = Res%.,, (f)ext(— - u). For

fzu) if z =2u,x € K*,

Resg*u(f)ext (2) =
0 if z€ K*.

Therefore

flzu) if z e K*,
Resfo, (fext (— - u)(z) =

0 if o g K*.
Therefore, by right G-invariance,
Ia(f1) = I(ResFuy (fext)-
Therefore
Ie(f) = Mk (Res%. () + Ik~ (Res- (f1))).
Henceforth we shall assume that \; = 1 and that
I6(f) = Ix- (Res%- () + Irc- (Res- (f1)-

This integral is invariant under right multiplication for consider Ig(f(— -
1)) because we have Res&. (f(— - u))(z) = f(zu) = Res%.(f1)(x) and
Res%. (f(—-u))(z) = f(zu?) = Res%. (f)(— - ") (x) which implies

Ia(f(=-u) = Ix-(Resi.(f1) + I+ (Res@. (f(— - 75"))

= Irc- (Res (f1)) + I+ (Res. (f),
as required.
DEFINITION 2.19. Zeta integrals on G

Suppose that ¢ : G — C* is a continuous character extending the
chosen central character ¢. On G' we may extend w; to ¢, by setting ¢, (u) =

¢°*/? = |det(u)|~%/? since ¢ = wy(mx )" = ¢g(u)? = |det(mx Lo)| /2.
For a character ¢ of K* the local zeta integral is

Cals, ¢, f)
= [, f(2)p(x)¢s(x)d*®

= I~ (Res@. (fods) + Irc- (Res (fos)1))-
The distribution
CG(83¢) : f = CG(83¢7f)

is meromorphic on the half-plane Re(s) > 0.
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2.20. A meromorphic distribution in S'(G)(¢)
Consider

Ia((f(z) = d(u)ds(u) f(z - u))d(x)ds(2)).
In the formula of §2.18 for I applied to f we obtain Res%. (f(x)) and
Res. (f1(z)) where fj is given by « + zu. In that formula for I applied to
f(—-u) we obtain Res%. (f1(z)) and Res%. (f(z)nz") (see §2.18). Therefore
Ia((f(2) = ¢(u)ds(u) f (2 - u))p(2)ds(x))
= I (Res. (f)(2)g(x)|2|* ) + ¢(u)s (u) I (Res (f1) () () |2]* )
—p(w)os (u) I ResF (f1) (@) () |[*~)
—p(w)os (u) Ik Res (f) (- mi)g()|z]*~1)
= I~ (Res (f)(2) 9 () |2]*) — d(u) by (u) Ire- (Resen () (- mit) b))
= Ix- (Res%. (f)(2)(x)|a]*)
— ()¢ (W) () Imic|*) e+ (Res (f) () () |2]*))
= (1= ¢(u) ¢ (u) )i (Resn () (2) d()[]*).
Therefore the distribution
Caols,9)  f = Ia((f(2) — (u)ds(w) f(z - u)d(x)ps ()
is (1 — ¢(u) " 'ds(u)~t) times the distribution
f = I (Resi. () (@)d(x)|a]*) = (s, &, Resg- (f)).
From §2.12 and §2.15 for Re(s) > 0 we have
I+ (Res. (f) (@) ()|]*)
= ((s, ¢, Res- (f))
{ 5,0, Res%. (f)) if ¢ is unramified

5,9, ResK if ¢ is ramified.
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Therefore for Re(s) > 0 we have relations between distributions

Ceo(s, )
(1 + d(u) s (u) ™) "o (s, ¢, Res%.(—)) if ¢ is unramified

(1 — ¢(u)~ s (u) 1) o (s, ¢, ResF (—)) if ¢ is ramified.

which gives a meromorphic extension of (g (s, ¢) to the whole complex
plane, as in §2.12 and §2.15, which is a basis for S’(G)(®).

DEFINITION 2.21. Fourier transforms
Let i be the non-trivial character of the additive group K which was
introduced in §1.1. Identify K with its topological dual character group
K= Homonts (K, C*)
by the isomorphism
K — K, y = (x— Y (zy)).
The conductor v (k) of V¥ is the largest integer such that ¢ is trivial

on PI_(VKWK ).
The Fourier transform

fla) = /K )b (2y)dy

of a function f € S(K) is well-defined and lies in S(K). This is a fun-
damental property of the space of Schwartz-Bruhat functions. The map
f +— fis an isomorphism (;) 1 S(K) = S(K). There is a unique choice
of the Haar measure, the self-dual measure with respect to 1k, such that
Fourier inversion satisfies

f(z) = f(-=).
For given ¢ we fix this choice of dx henceforth. The Fourier transform of
a distribution A is defined by

LEMMA 2.22. .
If A € §'(w) is an w-distribution then A € S’'(w™lw;) where wy(z) = |z|.

By Theorem 2.9, §2.12 and §2.15, (o(s,w) is a constant multiple (de-
pending on s, w and k) of (o(1 — s,w™!). Hence we have shown the
following result:

COROLLARY 2.23. Local functional equation
(i) There exists a non-zero complex number €(s,w, k) such that

Co(1—s,w™1) = e(s,w, %K) - Co(5,w).
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(ii) Given f € S(K) (i) may be written as the relation

C(]-_va_l»f) _ C(svwvf)
L —swl) —C&@vr) =
REMARK 2.24. An alternative formulation of Corollary 2.23(ii) is
A L(1— -1
C(]- - vaila f) = 6(870‘]31;/}]() : (L(Sf’(,:;)C(s’w’ f)
in which the constant of proportionality

L1 —s,w™h)

V(s,w, ¥K) = e(s,w, P ) - T e

is called the local gamma factor. It can have zeroes and poles. This is the
traditional formulation while that of Corollary 2.23 is emphasised in [142].

Various important properties of the e-factor €(s,w, ¥ ) can be deduced
from Corollary 2.23. For example, if fV is the standard function with
respect to w then, as in §2.15, evaluating both sides of Corollary 2.23(i) on
f° yields the useful identity

e(s,w0,v) = (((1 = 5,07 1), ).
By construction the zeta distribution satisfies
C(s,wwr) = ((s+t,w).
Since the local L-function is also required to have this property we also
have
Co(s,wwy) = (o(s + t,w).

The standard function f° does not change under multiplication by w; so
that

E(S,wwt,1/)K) = 6(3 +t7w51/}K)
For 8 € K* let Yx g(z) = Y (Bz). If f is the Fourier transform of

f € S(K) with respect to ¢x then \/|B[r(8)f is the Fourier transform with
respect to ¥k 3 (using the self-dual measure) . Therefore

€(Sawa¢K,ﬁ) = |ﬁ|s_%w(ﬁ)e(s,w,w;{)

2.25. Next we give the explicit formulae for the e-factors, observing
that by the results of Remark 2.24, it suffices to do this for ¢ and w both
in “standard form”. Recall that vi (k) is the conductor of ¥k, as in
Definition 2.21.

PROPOSITION 2.26.
If ¢ is unramified then

1

€(s, 0, VK) = ¢(7T;K(wK))q 3=k (Vi)



180 6. KONDO STYLE INVARIANTS

If ¢ is ramified with conductor ¢ then

(s, 0 0x) = Byl V) g EmICRIOTIG (i)
where G(¢, ¥k ) is the Gauss sum

Gl r) = ¢ F [ o (o) dy

Ok
with dy the self-dual measure on K with respect to k.

Proof

By Remark 2.24 one has to compute the Fourier transform of the stan-
dard function fO for w where the character 1) can be taken as standard.

For example, if ¢ is unramified, f° is the characteristic function of O
and assuming v (V) = 0, fO = fO. This gives €(s, ¢,k ) = 1 in this case.
The general unramified case then follows at once from the final formula in
Remark 2.24.

If ¢ is ramified f¥ is given as in Example 2.15. Then, following ([143]
Proposition 13 p.131)

P = [ o ey
Ok

vanishes unless ordg () = —vk (YK ) — ¢ where ¢ = ¢(¢) is the conductor

of ¢. In fact

_vr(@WK)te

@) = Glw, i )g~ EHEE po (i Prd ey

The ramified result follows from the fact that G(¢,¢x)G(¢,¢x) = 1 and
that fO is the standard function for ¢—!.
More details on Tate’s thesis may be found in [143] and [40]. O

EXAMPLE 2.27. Haar integration on M, K
In order to define Haar integrals on M, K we need functions

dut, i rom 2 Mp P /M, PRz — C.
For m > 2,r > 0 define
Oty Krm (X + M PR) = |Oxc [Pre| =D (Trace(X) + PR).
Under the canonical epimorphism, for m > 3,
M, Py /M, P — M, Pg" /M, P

each coset has inverse image of order |(’)K/PK|"2. Hence there are |(’)K/77K|"2
cosets Y + M, Pi? above X + MnP}?*l of which |OK/’PK\(”2*1) have the
same trace modulo MnP}?ﬂ.
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Therefore for m > 3

+1
ZY+M7173;?+1»—>X+M7173;? o, K rm1 (Y + My PR™)

—(n2—
=Yy et xaa,pyp 0K /Pr|= 07D X

br¢rme1(Trace(Y) + Prth)

— n2— m m
=Y epr o trace(x )4y |OK /PRI 5 pimia (Z + PR

2 m
= |Ok /P |~ Dm ZZH??“HTraCe(X)H?}? Ox,rmt1(Z + PR

= |0k /Px|"" Dm0 (Trace(X) + P)

= ¢MnKmm(X + an}?)a
as required.

EXAMPLE 2.28. Local function equation for (g o(s, @) of §2.20

We could state this example using the Fourier transform on MK via
the Haar integral of §2.27. However, for convenience, we shall use the

Fourier transform on S'(K).
By Lemma 2.8 if w # 1 then the surjection

S'(K) — CZ(K™)

~ ~

(=): S(K) — S(K)
induces ) o
(—):S'(K) — S'(K)
which restricts to an isomorphism
(7) : 8'(w) = 8" wn)
where wi(z) = |z| = ¢ 5@ for z € K*.
Hence if w # 1,w; we have a Fourier isomorphism
(=) : (K () = CZ (K (@ wn).
As in the notation of §2.20 let ¢; denote the extension of w; to G and

~ G
for f € S(G) let Resg.(f) denote the Fourier transform of the restriction
of f to K*.
From §2.20 we have an isomorphism

S'(G)(§) — C2(K*) (¢)

given by sending (g,0(s, @) to (1 + ¢(u)¢s(u) )" ¢o(s, ¢, ResF. (—)) if
¢ is unramified and to (1 — @(u) ¢ (w) 1) Co(s, B, Res$. (—)) otherwise.
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Transporting the Fourier transform via this isomorphism to give

(=) : 8'(G)(¢) — S'(G) (¢~ )

the local functional equation transports to give

~ u -1 u -1
Coo(l—s,¢71) = 20D 00 ) e (s 6,9 ) (5, )

when ¢ is unramified and

~ — () g (u)
CG,O(l -5, ¢_1) = (1(i¢?75)21¢f)7s(,1)—)1)6(57?7 '(/)K)CGD(Sa ¢)

when Q is ramified.

3. Monomial resolutions and local function equations

3.1. This short section contains some fundamental questions which
arise from the previous sections of this chapter. Here K continues to be a
p-adic local field. We continue to study complex characters and complex
admissible representations.

Suppose first that H is a subgroup of GL, K which contains K* and
which is compact open modulo K*. Let (H,$) € My(H). Hence there is
an inverse system of quotients H,, of H which contain K*, are finite modulo
K™ and possess a character ¢, : Hy, — C* through which ¢ factorises.
An argument analogous to that if §2.16 shows that dimc (S’ (Ha)(da)) = 1.
For two groups H, and Hpg in the inverse system with quotient map

Ta,p - Ha — H/g
we have induced maps
w5 S(Hg) — S(Hy) and 7, 5 : S'(Hs) — S'(Hp).

The map of eigendistributions will be an isomorphism of one-dimensional
complex vector spaces

7"2,5 : S/(Ha)(¢a) - S/(Hﬁ)((bB)-
The direct limit
E/(H)(Cb) = 1i£n S/(Ha)(¢a)

[0
will be a one-dimensional space.

QUESTION 3.2. Is there a meromorphic distribution in S'(H)(¢)?
Is there always a non-zero distribution in (m (s, ) € S'(H)(¢), as in
Example 2.20, which is meromorphic over the whole complex plane?

QUESTION 3.3. Is there a Fourier transform on S'(H)?

Assuming an affirmative answer to Question 3.2, is there a Fourier
transform, as in Example 2.28, on S’(H) which induces an isomorphism of
the form

(=) : S'(H)(¢) — S'(H)(¢™ 1)?
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What is the form of the resulting local functional equation?

QUESTION 3.4. L-series and e-factors for local admissible representa-
tions

Suppose that we have an affirmative answer to Question 3.2 and Ques-
tion 3.3. Therefore we may apply the local functional equation to each
Line in the monomial resolution for an admissible representation V' of
GL, K with central character ¢. The function equation for any two Lines
in c— mgL"K (¢) should be related and essentially only depend on the
induced monomial representation to which they belong. By this token, for
each summand c—mgL »%($) in the monomial resolution we should obtain
a functional equation.

Does the “Euler characteristic” of these functional equations make
sense (we might have to capitalise on the finiteness property of Chapter
One, §6)7 If so, does the result have a connection with the functional equa-
tion, L-series and e-factors constructed in the local situation in [66] (see
also ([40] §24) for an account in the case of GL2K).






CHAPTER 7

Hecke operators and monomial resolutions

This chapter recalls how Hecke operators are defined and explains how
they fit in with the exact sequences

M) e g

which originate from a monomial resolution of the representation V. Given
two subgroups J and H of G the Hecke operators take the form of k-linear
maps

[JgH] : v (He) __ y(H)

for g € G. In Example 1.1 T describe how, when G is finite, the operators
may be defined via the Double Coset Formula ([126] p.32) for ResGInd% (¢).

In Definition 1.2 it is pointed out that the formulae of Example 1.1
apply equally well when J and H are compact open modulo the centre
subgroups of a locally profinite group. In particular the latter applies to
the adelic case of an automorphic representation. Then, if J, H are the
usual congruence subgroups I'g(N),I'1(V), the [JgH]|’s are the classical
Hecke operators ([51] §11.2).

In §1.3 T describe the conditions on H,J and g in order that [Hg/J]
extends to a chain map from from the exact complex

Mi(H,¢)) L yWHe)
to
ML(J@')) Ly .

The chapter concludes with Example 1.4. This solitary example is included
to show that the conditions for [JgH] to extend to the monomial resolution
can indeed be satisfied. These extensions should be especially important
when V is an automorphic representation and V#:#) is a space of modular
forms.

1. Hecke operators for an admissible representation

ExaMPLE 1.1. Let G be a finite group with subgroups H and J. Let
k be an algebraically closed field. Let V' be a k-representation of G and let

185
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@€ H,¢' € J be characters. Suppose that g € G and that JgH is equal to
the disjoint union of left cosets of H so that

JgH = J viH.

i=1

In addition suppose that ¢’ and (g71)*(¢) are equal on J [ gHg ' where
(971)"(¢)(ghg™") = é(h).

In this situation there exists a linear transformation of k-vector spaces,
called a Hecke operator,

[JgH] : V9 y e,

This transformation may be constructed by means of the double coset for-
mula ([126] Theorem 1.2.40) which in our case takes the form of an iso-
morphism of k[J]-representations

Res§Ind (¢) —= @.c Indjmsz—l((g_l)*(@)

given by a(g @y w) = j ®Jﬂsz—1 hw for g = jzh,j € Joh € H. The
inverse of « is given by a~1(j ®Jﬂsz—1 w) =jz Ry w.
Since we have isomorphisms

Homg (Ind$ (¢'), V) = V/¢) and Homg (Ind$ (), V) = v (H:9)

the transformation [JgH| may be induced by pre-composition with a k[G]-
module homomorphism of the form

Ind§ (¢') — Indf (¢)

and by Frobenius reciprocity such a map is equivalent to a k[J]-module
homomorphism of the form

kg — Res§Indf (¢) = DS.eNG/H Indjﬂsz—l((Zil)*(d)))'

Consider the expression
> i @y gy @ i) € Ind) A (071 (9)):
i=1

Since JgHg ' = Ui, vig 'gHg " the set {y1g7',... ,yng '} is a com-
plete set of coset representatives for J/J [ gHg~!. In particular y;g~! € J.
For j € J there is a permutation o(j) of 1,...,n such that jy; = yo(j))h
for some h € H. Therefore jy;g~' = yo(j)1)9~ *ghg™" which implies that
ghg™' € J(NgHg'. Therefore

o(h) = (g7 ) (0)(ghg™") = ¢'(ghg™") = &' (Gvig™ ") Woiiyyg™ ") ™"
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This implies that in IndjﬂgHg,l (M)
Yy JYig T ® (g ¢ (Wig™H

=21 Yo @9 9T @\ grg— ¥ (Wig™H) T

= 2im1 Yo Dy (grgr @' (ghg™ )¢ (g™ 1)

= 2im1 Yo Dy grgr @897 Woiyg ™) T ¢ (g™ )T

= ') izt Yoi)9 ' Dy grg—r ¥ Wen@9™ )

= &' (1) X0 497 5 gmg— ¢ (Wig™) 7"
Therefore 1 — >_1" | yig~ " D MoHg ¢ (yig~1)~ gives a k[J]-module ho-
momorphlsm from k4 to the summand IndJn oHg- ((g7H*(9)). Applying
a~! gives a k[J]-module homomorphism

kg — ResGInd% (¢)

given by 1 — Y% | y; @5 ¢'(y;g~')"'. Hence the required k[G]-module
homomorphism

Aygr) - Ind§ (¢') — Ind ()
is given by

Aagm(g' ®rw) =Y g'vi®n ¢'(yig™") " w.
i=1
Since v € VH:%) corresponds to the k[G]-module homomorphism ¢'®@p 1 —
g'v € V the composition of this with AlsgH] 18 given by

1®Jl’_’z Yi ®n &' (yig™)~ HZ ¢ (yig™") " yiw e VIO

i=1
In other words, [JgH](v) = > "1, qs’(yig*l)* yiv € V79,

In particular, if ¢’ = 1 then [JgH](v) = 3.7, yw € V"9) which is
the formula for the classical Hecke operator ([51] §11.2).

DEFINITION 1.2. Let G be a locally profinite group and let 7 : G —
Auty (V) be an admissible representation. Let H and J be compact open
subgroups with (H,¢), (J,¢') € Mg. The procedure of §1.1 (with ¢ —
Indg replacing Indg etc. and using Frobenius reciprocity for compactly
supported induction) yields a linear transformation of k-vector spaces

[JgH] : yvHEe) (e
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given by the same formula as that of the finite group case in §1.1.

This is the classical Hecke operator of ([51] §11.2) when ¢ =1 = ¢'.

In the adélic case of an automorphic representation when J, H are the
usual congruence subgroups these are the classical Hecke operators on the
spaces of modular forms ([51] §11.1).

Furthermore, if V has a central character ¢ and (H, ¢), (J,¢') € My(G)
the construction and formulae of §1.1 continue to make sense and extend
the definition of Hecke operators to that situation.

1.3. Hecke operators on the monomial resolution
In the situation of Definition 1.2 suppose that

M, -5V —0

is a monomial resolution of V' in (g 4mon. By Frobenius reciporicity in
the monomial category ([19] Remark 1.5(g)) there are isomorphisms

G Y
Homk[c;],fmon(c - mH(kqﬁ)v MZ) = Homk[H],Emon(k(b)?

Resf (1)) 2 1)

K2

and
Homk[G] ,fmon(c - m?(kdi’)a MZ) = Homk[J],meH(k¢’>’

ResG (M;)) = Mi((“l’q5 )),
since H, J are compact open modulo the centre.
In order that the monomial analogue of A, of §1.1

Aygr € — Ind§(¢') — ¢ — Ind$(¢)

should be a monomial morphism it is sufficient that for each y; we have
(see Chapter One §1.8)

(.¢') < (wiHy ", ()" (9)).

In that case A[j4p) is given by the formula

Mg (g’ @sw) =" g'yi @ ¢ (yig™") " w.

i=1
and induces a chain map
[JgH] : Mo Mi(‘w’)).

This chain map together with the Hecke operator of §1.1 induces a chain
map between the exact complexes of the monomial resolution from

) e e e e

%
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to
MO ) ) e e g,

K3

The question arises whether or not this ever happens. The following
example is related to the Hecke operator T'(p) of ([51] §3.3 and Remark
11.1.1). The classical operators concern the case when ¢’ = ¢ = 1.

In the context of this section it would be interesting to find out how
many of the classical operators described in ([51] Theorem 3.3.1) extend to
give chain maps of the chain complexes derived from the monomial resolu-
tion of V.

EXAMPLE 1.4. The following example satisfies all the conditions of §1.3.
Let J = H =T1(N) C GLyQ, where N = p® for some s > 1. Explicitly

14+ Na b
H={ | a,b,c,d € Zp}.
Nc 14+ Nd
Let
1 0
g = EGLQQP
0 p!
so that
1+ Na b
g g !
Nc 14+ Nd
1 0 14+ Na b 10
0 pt Nc¢ 1+ Nd 0 p
1+ Na b 1 0
Nep™t (14 Nd)p™! 0 p
14+ Na bp
Nep™' 14 Nd
Therefore
14+ Na bp
JﬂgHg_lz{ € H|abec,deZ,}
Nc 1+ Nd

Therefore we have a group extension

J(gHg™' — H — Z/p
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1

and a coset representatives for H/J [ gHg~ ! is given by 1,y,9%,... ,y?~*

where
1 1
y:
0 1
Since
1 1 U v 1 -1 u+w v+r—u-—w
0 1 w T 0 1 w T —w

we see that y normalises H.

Therefore if we have (J,¢') = (H,$) and (H,y 1)*(¢)) = (H, ¢) then
automatically we have ¢’ equals ¢ when restricted to J(\gHg '. This
happens, for example, for any character of the form

14+ Na bp
O : — A(N¢)
Ne 1+ Nd
where ) is any character of the form \ : NZ,/N?Z,, — k*.
This gives an example of a Hecke operator chain map [['1(N)gT'1(N)]
which is an endomorphism of the complex

M*E(Fl(N)vGﬁA)) Ly @i en)
coming from the monomial resolution of V.

In the formulae of §1.3 we have y; = y*~'g and

p
Ay (Nygry (] (9 Ory vy w) = Z gy g @r, v ¢y w.
=1



CHAPTER 8

Could Galois descent be functorial?

1. Morphisms and Shintani descent

1.1. Let us examine some examples of possible “Galois naturality” of
Shintani base change [117]. For example, if V' is a Galois invariant irre-
ducible of GLF,» with extension V to Gal(Fyn /F,) ¢ GLFyn, let H C
GLF be a “base change group” for the sub-Galois group Gal(Fyn /F,a) C
Gal(Fg» /F,). Examples of such an H include F}.. or GLoFgn X GLs_Fgn
[117]. If W is a Gal(Fgn /F q)-invariant irreducible of H with extension
W to Gal(Fgn /Fa) oc H and an H-map A : W — V is there a functo-
rial HEFam/Fe0)_map of the form Sh(X) : Sh(W) — Sh(V) between the
Shintani base change representations of W and V7

In general V can only be constructed as a representation of
Gal(Fg2n /Fy) o< GLsFyn (see Chapter Two, §6.1 (footnote) and Theorem
3.11; [117] Theorem 1 p.406). However the naturality question introduced
above also has an analogous formulation in the general case.

A weaker alternative question, potentially almost as useful, would be
to ask for a morphism Sh(A) which is functorial up to multiplication by
scalars.

ExAMPLE 1.2. In Chapter Ten, Appendix I §§7-8 we find the formulae
to analyse the case for GL2Fy and (H, ¢) = (F}, ¢). Since the fixed subfield
of Fy is F3 we must have ¢ = 1. Hence Sh[ﬁ‘z(l) = 1 the trivial one-
dimensional representation of F5 = {1}.

In the notation of Appendix I the matrix C' generates Fj. There are
three Galois invariant G LyF4-irreducibles - vs, v4 and 1.

We have u5(<c>’1) = C the unique C-fixed subspace of the 5-dimensional
vs and therefore a non-zero H-map A. Also Shgr,r, (vs) = X, the non-
trivial character of order two on GLsF9 =& Dg. Therefore

Shar,r, (V5)({1}71) -1

so, at least up to scalars, we have a unique F5-map which is a candidate for
Sh(X). Note that in this example, in the extended representation 5 the

Frobenius o also fixes 1/§<C>’1).

191
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Now consider 4 on which C and ¥, the Frobenius, act by the matrices

1 0 0 0 1 0 0 0
0 -1 -1 -2 0 -1 0 0
C=10o 1 o o |™=2=4 ¢ 1 o
00 0 1 00 0 -1

We have u£<c>’1) = C? so that we have a 2-dimensional space of \’s. In
this case Sh(v4) = v, the 2-dimensional irreducible so that

Shar,r, (,/4)({1}’1) -9

and we have a 2-dimensional space of potential Sh(A)’s.

Perhaps the recipe for assigning A — Sh()) should incorporate the
fact that the fixed subspace of the Frobenius on the extension 74 is 1-
dimensional?

Finally, Shgr,r,(1) = 1 and the functorial Sh(A) ought to be the
identity map of the complex numbers when A is non-zero.

EXAMPLE 1.3. A more elaborate example ([117] p.412)

In this section Galois extension is Fg 2 /F, and the irreducible is
R(x1,x2) with x; : [F}2, — C* and Frobenius action Y(x1) = x2, 2(x2) =
X1 SO that

Y R(x1, x2) = R(x1, x2)-
Hence Gal(F 2, /F,2) = (£?) fixes x1 and x» so that, by Hilbert’s The-
orem 90,
x1=0©-Norm:F,, — F. — C
and
x2 = X%(0) - Norm : Fpop, — Fpo — C*.
Therefore © # X*(0).

From ([117]; [126], Chapter Two) Sh(R(x1,x2)) = R(©), the Weil
representation associated to ©, which is an irreducible representation of
GLoIF,.

Let B denote the Borel subgroup of GL3Fg2» consisting of the upper
triangular matrices, which surjects in the obvious manner onto the diagonal
matrices

Dlag =~ ]F;sz X ]FZQP.

By definition we have

GLsF
R(x1,x2) =Ind; "~ " (Inf5,,,(x1 ® x2)).

Therefore a basis for this representation is given by

1 0 .
(u 1 )®31W1thu€Iqup
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<01 (1))®Bl=xl(—1)<(1) (1)>®31.

From [117] R(x1, x2) is realised by the vector space of functions f on
GLyF 2» with

and

(5 0 )0 =@

and the G LoF 2p-action is given by (9# f)(x) = f(xg). Therefore the action
first by go and then by gy satisfies (g1#(g2#/))(x) = (92#/))(wg1) =

f(zg192)-
Suppose we map f to C[GLoF 2] @5 Cyy0y, by f— > 97 @5 f(9).
We have
Y9 @ f(g)
s(§ 5)oter(§ Yo
-1
Zgl< 0 Z) ®Bf(< 0 Z >g)
=S enn@ @ A § ) )o)
so that

(G 0 )0 =@

as required.
Furthermore the left action by z € GLoF 2» is given by

2397 @5 fg))
=Y 297" @B f(9))
=> (927"t @B f(gz~1)z2))

=297 @5 f(g2))

so that (zf)(g) = f(g2).
Shintani has a transformation I on the functions which is the action of

the Frobenius in the semi-direct product. It is given by

anw= ¥ () 5 ) (o} )z

ue]Fqu
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Transforming this over to the tensor product followed by left multiplication
by ¥(z) yields

S(2) I g @B f(9)

=SS 950 e, /(] o ) (o 1) =0
=22 0n 0 Suen, 1) ) (0 | ) =@

=Yg '®p q—PZuqu2P f(( ? (1) ) < (1) le )Z(Qz))
whereas

I3 g7 ®s5 f(9)))
=1 297" @B f(g))
=I1> g ' ®5 f(g2))

S0 om0 Tuer, (] 5 ) (0§ ) S0,

Hence on R(x1, x2) we have ¥(z) = I-z-1~! which, up to a scalar which we
shall assume Shintani got right, I acts like the Frobenius in the semi-direct
product on R(x1, x2)-

Now consider the action of the diagonal torus H = Frae x Fls on
R(x1,x2). In the tensor product realisation a basis for this representation
is given by

1 0 . 01
(<u 1>®Bl)W1thu€qutand(<1 O>®Bl).

The matrix relation

(6 5) 00 ) =0 5)=Coma V)05 5)

shows that the H-action satisfies

(g g)(<i (1)>®Bl)—xl(a)><2(ﬂ)<51j/a (1))®Bl.

We also have

(o 5)(Y 0)ean=x®u@( ] § e
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Therefore
(Tx1®x2) _ L0 10
R(x1, x2) 1% —<(< 01 )®Bl)>€5< > (( L1 e
“GF;%:
Furthermore, since X2 preserves x1 ® Y2 we see that

R(x1, x2)X1@x2)  extends to a two-dimensional representation of
Gal(]Fth/]Fq2) x H.
In ([126] Chapter Two) it is shown that

GLa
Resg. * " R(0) = -0 on r;,620,5(0) 0,

the direct sum of the ¢ — 1 characters of Fzg which coincide with © on the
scalar matrices but are not equal to © or its Frobenius translate.
Consider the Gal(F 2t /Fj2-equivariant map

H = FZ% X FZzt — GLQ]Fq%

(a7ﬁ) = < 05310552 oéhoﬂtz ) :

Via this map H acts of R(x1, x2)X1®x2) as multiplication by
X1(@)  x1(8)*2 x2 () x2(8)"

This Shintani descends to F*z X IF*2 acting via (a, 1) as multiplication by

given by

()™

)5t a))tt = q)sttt
O O

and (1,b) b
Ss ta So+t2 @(E(b))t2
O(b)*:0(2(b))"2 = O(b)%=" CIOEE

Therefore, if 51 = so (modulo ¢®> —1), t; =t (modulo ¢+1) and 51+, =1
(modulo ¢ — 1) then (a, b) acts via multiplication by

oS (ab)"

O(ab) O(ab)hr

The character of IF*2 given by z — O(z) 92(552
restricted to Fj but is not equal to © or ¥*(0) if ¢; is chosen correctly.
Therefore this is one of the characters appearing with multiplicity one in
the restriction of R(©) to Iﬁ‘;}. Therefore, up to a scalar, we have a unique
morphism between Shintani descents.

Sometimes, in this example, the only candidate for Sh()\) is zero.

equal to © when
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1.4. The role of the VH:9) %

Suppose Shintani base change is functorial in the sense of §1.1 and
that V is a Gal(Fgn /Fy)-invariant irreducible representation of GL Fgn as in
[117]. Suppose that H C GL,F» is a subgroup preserved by Gal(FFgn /Fa)

and that ¢ € H is fixed by this Galois action. Then the inclusion
A VES) Ly

is an H-map. If H is a Gal(Fgn /F a)-base change group then functoriality
of base change would yield a H Gal(Fgn / qu)—map

Sh(\) : Sh(VHP)) — Sh(V)

which is unique (possibly only up to scalars).
If (H, ¢) is not Galois-fixed we could form the subspace given by

w= Y vemne ey
O'EGal(]Fqn /]qu)

Sometimes this inclusion will be a J-map of Gal(Fyn /FF,a) irreducible rep-
resentations of base change groups. In this case functoriality would lead
one to expect a JEUEa/Foa)_map

Sh(W) — Sh(V),
unique up to scalars.

1.5. The role of monomial resolutions
The discussion of §1.4 suggests (to an inrepressible optimist) that the

functoriality of base change would yields not just a JGalEqn/ qu)—map
Sh(W) — Sh(V) but also morphisms of the complexes of Chapter One
coming from the monomial resolutions and mapping from

M(Sh(W ) XD . gh(w)'x)
to

M(Sh(V)L XD sr(v) 'O
for suitable choices of (J', x').

1.6. Is there a canonical choice of morphism?
Suppose that, in §1.4, there were a JEFa"/Foa)_map

Sh(X) : Sh(W) — Sh(V),

unique up to scalars. How could it be normalised in order to become unique?
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The formulae for examples which I have encountered suggest the Mar-
shall McLuhan-style slogan “the morphism IS the invariant”. That is, some-
how (I have the local field case in mind here) the formula can be read off
the formulae for the epsilon factor or local L-function invariant .

1.7. A simple observation
Suppose that V' is a finite-dimensional complex Gal(Fym /F,)-invariant
irreducible representation of GL,F,~» and that

)\ . Fzm X Fzm — GLnqu

is a Gal(Fym /F,)-equivariant homomorphism. Let ¢ be a Gal(F,m /F,)-
invariant character and denote by C, the associated one-dimensional rep-
resentation.

We have

dlmCHom]F;m XF;m ((C¢, V)
= rg}n‘z Z(hl,;@)e]p;m X, ¢(h1, ha) " xv (b, ha).
If dimcHomp~_ «F=, (Cy,V) =1 and m is prime we may write
q q

GL,LIqu S * m,*
ReSF;me;m (V) =Cy @ (®i=1 Cy,) @ (5= Cy, T Y & ... @ ™ y)

where ¢; for 1 < i < ¢t are Gal(Fym /IF,)-invariant characters different
from ¢. The extension of V' to a representation of the semi-direct product
Cal(Fym /F,) o< GL,Fm is denote by V. The restriction of V to Gal(Fym /F,) o
(Fym xFym) is given by the sum of b, 1, ..., ¢ and the obvious extensions
of the Cy, ® X*¢; @ ... & E™ Y;’s.

Suppose that hy, hy € Fm and

(wl,wg) = (hlE(hl)) e Zmil(hl), hgz(hz)) e Emil(hg)) S F:; X ]FZ

and for any w; there are |F}..

/ Fy| hi’s whose norm is w;.

1Perhaps this is getting to be really too optimistic, attributable no doubt to my
(like Herbert Marshall McLuhan) spending too much time in Edmonton, Alberta!
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The character function on (X, hq, he) of the extension to each of the
Cy; X" & ... B X" ;s to the semi-direct product is zero. Therefore

dim(cHOHl]F; X]F; (Sh((C¢), Sh(V))

~ TP Z(wlwa)eF;xIF; Sh() (w1, wa) ™ xsnvy (Wi, wa)

| Fr|? _
= |]F1|2 ﬁ (wy,wg)€EFY XFY ¢)(h1,h2) 1X\7(Eah1ah2))
a4 wi=h; S(hy))...5m=1(h;)

= qu#m\z Z(hl,hz)eF;m X G(h1, ha) " (B(h1, ha) + 31y bi(hy, ha))

=1

This discussion, by induction, establishes the following result, which is
a further modest contribution to the topic of functoriality of Shintani base
change.

PRrROPOSITION 1.8.
Let V be a finite-dimensional complex Gal(Fym /F,)-invariant
irreducible representation of GL,F,» and let

A F X Bl — GLFym

be a Gal(Fym /F,)-equivariant homomorphism. Let ¢ be a Gal(F,m /F,)-
invariant character and denote by C, the associated one-dimensional rep-
resentation.

If dimCHomF;m XIF;m ((C¢7 V) =1 then

dimCHomFZXmZ (Sh(C¢), Sh(V)) =1.

EXAMPLE 1.9. One last base change naturality example

Let j : H — GL{F;m be a homomorphism where H is a subgroup
with a Galois action by Gal(F,m /F,) with respect to which H is a “Shin-
tani base change group”. For example, H might be the product of several
GLg,Fgm’s. Suppose that j commutes with the Gal(F,m /Fy)-action. Let V5
be a complex irreducible representation of Gal(F,m /F,) which is Galois in-
variant. Therefore there exists, for each g € Gal(Fym /F,) an automorphism
I, € Autc (V) such that for vy € Vo, € GL,Fym we have

I, (zve) = g(x)I4(ve) or equivalently xI;l(vg) = I;l(g(x)vg).

Let V7 be a complex irreducible representation of H which is also
Gal(Fym /F,)-invariant. In addition suppose that

dimcHompg (V4,57 (V2)) = 1.
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Therefore there is an H-isomorphisms
O:Vy —VioWandi: Vi — Vj

such that ®(i(v1)) = (v1,0).

There is also J; € Autc(Vi) such that, for v1 € Vi,
Jg(zv1) = g(2)Jg(01).

Consider the composition

i It
Vi v e S viaw.

This first maps zv; to Jy(zv1) = g(x)Jy(v1) and then to g(z)i(J,(v1)) and
thereafter to I;l(g(ac)i(.]g(vl))) = xlgl(i(Jg(vl))). If @(I;l(i(,]g(vl)))) =
(o, B) € Vi @ W the final image of zv; is (za, 28). By Schur’s Lemma the
first coordinate of I, (i(Jy()) is a scalar multiple of the identity map of V;
and by the H-multiplicity of V; in V3 the second component of I, (i(Jy()))
must be zero. Since the composition is injective the scalar multiple in the
first coordinate is non-zero and may be chosen equal to 1.

In other words we may choose the restriction of Iy to V7 to be equal
to Jx; where X is the Frobenius Galois automorphism.

Now let Sh(V;) € Trr(HG¥Fam /Fa)y and Sh(Vs) € Trr(GL,F,).

Consider now the dimension

dimCHOmHGal(qum /Fq) (Sh(m), Sh(VQ))

m Y venSitom/ro Xshvi)(Y)Xsnva) (Y)-

Let 3 denote the Frobenius automorphism. There is an automorphism

I, € Autc(V2) satistying, for © € GLFym,v € V5,
Is(z -v) = X(x) - Is(v)
and I§ = 1. Therefore (3, z)-v = x-Ix(v) defines an irreducible represen-
tation p’ on V3 of the semi-direct product Gal(F2™/F,) o< GLiFgm? When
I3 =1 p' factors through a representation p of Gal(IFy" /F;) o< GLiFgm. In
either case
Xp (B,2) = Xsn(va) ([28(2) ... 2" (2))]).

Here [z¥(z)...X™ !(x)] denotes the unique conjugacy class in GL,F,
given by the intersection of the conjugacy class of 2¥(x)...X™ !(z) in
GLn]qu with GLnFq

I shall take the assumption that H is a “Shintani base change group”
to mean that the analogous extension p” to Gal(F2™ /F,) oc H, constructed
using Jy, satisfies the analogous character formula

Xp (2,2) = Xsnvy) ([#5(@) ... "7 (2)]).-

2My convention for the product is given by (g1,21)(92,z2) = (9192, z191(x2)).
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Since Jx, may be taken to be the restriction of Is, to H the conjugacy
class in HGIE"/Fa) — [rGalFy/Fa) denoted by [z¥(z)...X™ (z)] is the
same in the x,/(X,z) formula as in the x, (X, z)-formula provided that
xeH.

Also, since Jy, may be taken to be the restriction of Iy, to H, there is
a non-zero map of representations from p” to p’. Therefore the equation

dim¢Hompg (V1,55 (V2)) =1

implies that
dimcHomgayrzm k)t (07,57 (0')) = 1.
We have

dimcHomgaipzm /7)ot (07, 57 (0'))
= |Gal(Fgm1/]Fq)o<H| Z(Zi,m)eGal(Fgm/Fq)mH XP”(Zi"T)XP'(Eiax)

= |Ga1(Fgm1/JFq)o<H| Z(l,a;)EGal(Fﬁm/]Fq)(xH Xp (1, )X, (1, 2)

+

_ -1 0 i
|Ga1(F3m1/Fq)o<H| 221 E(Ei,w)eGal(Fgm/]Fq)ocH X,o”(E >$)Xp' (X% x)

= ﬁdlmCHomH(Vl ) J* (VQ))

1 2m—1 — N~ i
FomE] 2im1 2o(wi w)eGalE2m E)oc X (B0 2) X (5, 2).

Next we observe the I3 = +1 = J3* implies that
XP”(Ei7 m)XP’(Eiv :,C) = XP”(Eeriv x)XP’ (Em+i’ x)
Therefore

dimcHomgaiwzm /w0t (07, 57 (0))

= i(ﬁIIl(CI‘IOHlH(‘/l 5 ]* (‘/2))

m

1yl T i
+otaT it 2o (mia)eCal(zzm /g ot Xp (B0 2)Xpr (X5 ).

Also, from [117] or the observation of Digne-Michel described in (Chap-
ter Ten, §10.3), we have the following relation between sizes of conjugacy
classes

|GLFym| - |GLF, conjugacy class of [zX(z)... X 1(z)]|

= |GLF,| - |GL,F,m conjugacy class of (3, z)|.

This relation is a consequence of Lang’s Theorem (see Chapter Ten §10)
and I am assuming that H being a “Shintani base change group” includes
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the implication that the analogous relation holds for H. That is, for x € H,
|H| - |HS*Fam/Fa) conjugacy class of [zX(z)... X" (z)]|

= |HGaFem /Fa)| | H conjugacy class of (Z,z)].

To count the size of conjugacy classes of (X¢,x) in the semi-direct product
(rather than just conjugation by elements of H) we observe that

(2, 1)(242)%,1)7 ! = (2, 2(x)).

Now, for simplification, assume that m is prime so that each X¥? for
1 <i < m —1 generates the Galois group. In which case each term in the
sum of of the form

Xsnvp) [@5(@) ... S @)X sn(ve) ([#S(z) ... 2™ (2)]])

Therefore the relation between character sums simplifies to

1- L

— m—1 dimcHOmHGal(Fgm/Fq) (Sh(Vl), Sh(VQ))

m
so that
dim(cHOInHGal(ngln/Fq) (Sh(Vl), Sh(Vg)) =1
as required.

Finally, when m is composite we proceed by induction on m, grouping
together the terms

Xp'! (Zlv x)Xp’ (Ei7 SL’)
according to the fixed field of ¥, say F,a, and using the result that
dim(CHOmHGal(]F;"/]qu) (ShF;n/ﬂrqd (Vl), Shﬂrgl/lpqd (Vg)) =1

for all divisors d > 1.

2. Galois base change of automorphic representations

2.1. Local fields

Let L/K be a Galois extension of unramified g-adic local fields with
residue field extension Fg2»/F,. Let xf,x; : L* — C* be continuous
characters such that

L* 4+ — 1nf9L (v,
Reso. (x;) = Ian;zp (xi)

in the notation of Example 1.3. In addition suppose that Z(xf) = X;
and X(x3) = x{ where ¥ € Gal(L/K) = Gal(F,2» /F,) corresponds to the
Frobenius of Example 1.3. Then there is a Gal(L/K)-invariant admissible
irreducible R(x{, x5 ) of GLyL [63] which is related to R(x1,x2) by c-Ind
induction. In fact, the entire base change from R(Xf7 X2+) to an admissible
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irreducible of GLy K is related to the Shintani base change of Example 1.3
by c-Ind induction.

Hence one is led to conjecture that base change for GL,, of local fields
might be functorial in the analogous sense to that of §1.1. The pay-off for
such functoriality of local base change could be very interesting. Suppose
that IT is a Gal(L/K)-invariant admissible irreducible of GL,L. Let &
be Tammo tom Dieck’s space (see Appendix IV) associated to the class
of cyclic subgroups of Gal(L/K). Let o be a simplex of £ with stabiliser
H, = Stabgai(1/k)(0), which is a cyclic group. Assigning to o the H,-base
change of II, functoriality of base change would give a sheaf of admissible
representations on £. The Cech complex of this sheaf would be a complex
of Gal(L/K) x GL, K admissible representations. Since each fixed-point
sub-complex £~ is contractible the spectral sequence for computing the
Cech sheaf cohomology simplifies and yields an interesting “base change
complex” of admissible Gal(L/K) x GL, K representations.

2.2. Automorphic representations

Cyclic Galois base change for automorphic representations of GL,Ap,
F being a number field, was established in [7]. This was accomplished by
proving local cyclic base change for GL,, and appealing to the Tensor Prod-
uct Theorem (Chapter Three, §2). If V is an automorphic representation
we have seen (Chapter Three §4 and Chapter Seven §1) that the subspaces
VLA can sometimes be spaces of automorphic forms. For example, in
the adelic language, Hecke characters may be interpreted as automorphic
forms on GL; and modular forms as automorphic forms on GLs. Therefore
Galois base change for automorphic representations of GLs is related to a
similar base change for modular forms. This was first studied, for GLq
and quadratic extensions, by Doi and Naganuma in [55] and [56], using
Weil’s converse to Hecke theory, as did Jacquet in [81]. Saito [107] intro-
duced the use of a twisted trace formula to treat the case of base change
for some Hilbert modular forms in cyclic extensions of totally real fields.
Saito’s method was recast in terms of automorphic forms on adelic groups
by Shintani [118] and Langlands [91].

For further details see ([39] pp.84-88 and pp.90-103) and, of course, [7].

Functoriality of base change may fit in with base change for modular
forms in the following manner. By the Tensor Product Theorem and the
Multiplicity One Theorem ([39], [91]) functoriality of local base change for
G L5 should imply functoriality for base change of adelic representations. If
V in §1.4 were an automorphic representation and

A VESD Ly
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is the embedding of a line spanned a “modular form” then the morphism
of base changes, analogous to

Sh(X) : Sh(VUHP)) — Sh(V)

of §1.4, Sh(VH:®)) being a line, would have image spanned by a “base
changed modular form”.

3. Integrality and the proof of Shintani’s theorem

3.1. This section sketches Shintani’s proof of Galois base change (Ga-
lois descent) for finite-dimensional complex irreducible representationsof
GLyF 4. Shintani’s proof is a baby version of the local base change proof
of [7], where “baby” means that applications of the highly technical twisted
trace formula are replaced by applications of the elementary character
(trace) functions for representations of finite groups. That is not to dero-
gate either the complexity or the importance of Shintani’s result. Far from
it, for [117] served as the insight and the motivation for the fundamental
[91] and many subsequent papers.

Since §1 and §2 of this chapter were concerned with speculation about
functoriality of base change for GL,, and its subgroups for finite and local
fields, I should try to present a sketch proof of the main result of [117]
which contains at least one fundamental difference. In what follows the
main difference will consist of reducing the proof to an integrality condition
related to the Explicit Brauer Induction formula of Appendix I, §5 and
therefore, by inference, to the monomial resolutions of Chapter One and
Chapter Two.

If G is a finite group recall that R(G) (Appendix I, §5) denotes the
complex representation ring of G; i.e. R(G) = Ko(C[G]). An element of
R(G) will be called a virtual representation (or simply a character in the
terminology of ([69] Theorem 1)). Any finite-dimensional complex repre-
sentation V' of G defines a class in R(G) and two representations V, W
become equal in R(G) if and only if they are equivalent. In general the
elements of R(G) are formal differences z = V4 — V4 of finite-dimensional
representations V; of G. The character function of x given by the conjugacy
class function on G defined by

x(g) — Trace(z)(g) = Tracey, (g) — Tracey, (g) € C
uniquely characterises € R(G) (see [126]).

3.2. Any complex-valued conjugacy class function f on a finite group
G defines an element of R(G) ® C. Conversely, via its trace function, any
element of R(G) gives rise to such a conjugacy class function. In order
to describe all the class functions arising from R(GL,F,) we shall need a
necessary and sufficient recognition criterion.
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Recall that G is an M-group [77] if every finite-dimensional complex
irreducible representation of G has the form Ind% (¢) for some character ¢ €
H. Following [69] G will be called an elementary group if it is isomorphic
to a product H x C' with H a p-group and C a cyclic group whose order
is not divisible by the prime p. As in Chapter One, §1, M(G) denotes the
poset of pairs (H, ¢) with H C G and ¢ € H.

PROPOSITION 3.3.
The following conditions on the class function f of §3.2 are equivalent:

(i) f€eR(G)CR(G)®C,
(ii) for every M-group H C G
Res%(f) € R(H) C R(H)®C,

(iii) for every elementary group H C G
Res%(f) € R(H) c R(H)®C,

(iv) for every (H,¢) € M(G)
Tcln > > () f(h) € 2.
(

H,¢)=(Ho,$0)<...<(Hr,p) heH

Here the sum is taken over all ascending chains on M(QG) starting at (H, ¢).

Proof:

Since the restriction map on representations R(G) ® C — R(H) ® C
maps R(G) to R(H) we see that (i) immediately implies (ii) and (iii).

By Brauer’s induction theorem [33] every virtual representation \ €
R(G) may be written as a Z-linear combination of the form

t
GLFyn
A= oiInd; """ ()
i=1

where ¢ : J; — C* is a character and J; C G is an elementary group.
In particular take A = 1 and multiply the relation by the conjugacy class
function f to obtain, via Frobenius reciprocity, a relation between class
functions

¢
f= Z a;f -Ind§ (¢;) = a;Ind5 (Res§ (f) - #:)
i=1
which shows that if each Resi(f) € R(J;) C R(J;) ® C then f € R(G) C
R(G) @ C, proving (iii).
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In ([126] Proposition 2.1.17) a topological argument® shows that
1=Y " Indf (1) € R(G)

in which every H, is an M-group. The proof of part (iii) applied to this
relation proves (ii).

Let ag and bg denote the explicit Brauer induction homomorphism of
Appendix I. §5 and its left inverse. If V' is a representation of G then

dime (V) = dime(Homp (Cy, V)
= dim(c (HomG (Indg ((C¢,), V)

= Yen ¢h)"xv(h)

where xy is the trace function of V. By additivity the formula is true
for any V € R(G). Therefore, by Appendix I §5, the expression in (iv) is
precisely the coefficient of (H,$)“ ®1 in (ag ® 1)(f) € R4 (G) ® C. Hence
if f € R(G) then this expression has integral coefficients and conversely the
integrality of the coefficients implies that (ag®1)(f) € R+(G) C R4+ (G)®C
and so f = bg @ 1(ag @ 1(f)) € R(G), which proves that (iv) is equivalent
to (i). O

DEFINITION 3.4. Choose an injective homomorphism 6 : FZ — C*.
Let G be a finite group and let

p:G— GL,F,

be a homomorphism. For X € G let {{(X),...,&.(X)} denote the set
of eigenvalues of p(X) considered as lying in ?Z. Let S(t1,...,t,) be any
symmetric function in n variables.

Define a complex-valued conjugacy class function x, s on G by the
formula

Xp.s(X) = S(0(&1(X)), -, 0(¢n(X)))-

THEOREM 3.5. ([69] Theorem 1)
Let x,5 € R(G) ® C correspond to the conjugacy class function of
Definition 3.4. Then x, s € R(G)*.

3The M-group induction result together with a simple case of the cyclotomic number
theory (when G is cyclic) used in [33] gives a proof of Brauer’s Induction Theorem in
the form appearing in [33]. I tried in [126] to be clever and eliminate the cyclotomic
number theory with the result of messing up the last step!

4Topologists call this result “Brauer Lifting”. It appears famously in the classic
paper [105]
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Proof:

By Proposition 3.3 it suffices to prove Theorem 3.5 with G replaced by
an elementary subgroup of the form H x C where H is a p-group for some
prime p and C' is a cyclic group of order prime to p.

Now consider the cyclotomic field Q(€,m_1) where £, = e2™V=1/a and
m is such that F,m contains all the eigenvalues of all the matrices p(X) with
X € HxC. Let P<QZ[gm_1] be any prime ideal dividing the characteristic
of Fy. Then Z[{gm_1]/P = Fym where the isomorphism sends a (¢™ — 1)-th
root of unity x to its residue class T.

We may choose 6 in Definition 3.4 so that 6(%) = z.

Now let [ be the characteristic of F,. If [ does not divide the order
of H x C then it is well-known that there is a complex representation of
the form p1 : H x C — GLsZ[{;m_1] such that reduction modulo P
gives a representation p; of H x C over Fgy» which is equivalent to the
F,-representation p. For g € H x C the eigenvalues of p, are precisely the
images under 0 of the F, eigenvalues of g. The i-th elementary symmetric
function of the §-values of the F, eigenvalues of g is equal to the i-elementary
symmetric function of ther complex eigenvalues of p; which is the trace
function of the i-th exterior power representation \*(p,) of p;.

Now assume that | does divide the order of H x C. We may write
H x C =2 Hy x Hy where the order of H; is not divisible by [ and Hs is an
l-group. If g € H x C corresponds to (hi, ha) € Hy x Hs then hy and hoy
are two commuting elements of GL,F,~ and the E] eigenvalues of ho are
all equal to 1. Therefore elementary matrix algebra shows that in GLFgm
we may simultaneously conjugate (h1,1) and (1,hs) to upper triangular
matrices of the form

G e 1
0 & ... ... 0 1
and
0 0 ... (s o o ... 1

respectively.

Therefore the f-values of the F, eigenvalues of g = (hq, ha) are exactly
those of (hy,1). This reduces us, by projection onto Hy from H x C, to the
case in which [ does not divide the order of the subgroup, which completes
the proof. O

DEFINITION 3.6. Let X € GL,IF, then, for 0 as in Definition 3.4, set
xm(X)= > O\, .- Ni,)° € C.

1<iy <...<ir<n



3. INTEGRALITY AND THE PROOF OF SHINTANI’'S THEOREM 207

Define ¥? € R(GL,F,) to be the virtual representation, given by The-
orem 3.5, whose character function is xx:.

THEOREM 3.7. ([69] Theorem 5; see also Theorems 12 and 13)

Each irreducible representation of GL,F, is, in R(GL,F,), equal to an
integral lineat combination of the {¥2;1 <r < mn,s € Z} of Definition 3.6
and the irreducible representations constructed in Appendix III, §2 as sum-

mands of induction of tensor products from parabolic subgroups (denoted
by Du, na.... n, in Appendix III, §2).

3.8. ([117] Lemma 1.4)

Let G be a finite group and let 3 be an automorphism of G of order
m. Let (¥) o G denote the semi-direct product of the cyclic group of order
m, generated by ¥, with G. That is, the product G = (X) x G with the
multiplication given by the formula of Appendix I, §3

(Eivgl) . (EjaQQ) = (Zi+ja2i(91)92)~

LEMMA 3.9.

Let p be a representation of G on a vector space V' with character yy .
Then there exists a representation W of G whose character function with
xw satisfies, for all g € G,

xw(Z,9) =xv(g-2(g)-...- X" %(g) - " (g)).

Proof:
Let ¥ act on the m-fold tensor product of V' with itself by

Y1 ®@Ua®...QUp) =0, QU1 QU2 ® ... R Un_1.
Let g act by a formula of the type
g1 @2 @ ... @ vm) = X" (g)(v1) ® B(g)(v2) ® ... @ LU (g)(vim)-
Therefore
g XN R1e...0u,)

=Z-9)(12eVvs®...0 Uy Qur)
— RS (g)(02) © £ (9) (v3) @ . .. & 5o (g)(01)

= X% (g)(v1) ® £ (g)(v2) ® X2(g)(v3) ® ... @ X1 (g)(vim))
and in order for this to be X(g)(v1 ® v2 ® ... ® vy,) we need that
am=a1+1,a1 =as+1,... ,am—1 = ap + 1 (modulo m).
This works if

ar=m-—1a,m,=0,am_1=1,0m_2=2,... ;a0 =m — 2.
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Therefore, if {e,} is a basis of V, then
(Eag)(e(xl & €Cay ®...0 6am)

= (Lg)(Z,1)(eq, ®ea, @ ... Qea,,)

_ m—1 ) ) m—1 . . . .
= Eil,iz,... bY (9)ir,ameis ®E (9)iz,01€i2 @ -+ @ iyt 1 Cin

whose trace is given by

Zal,ag,... Em_l(g)m,amzm_l(g)az,m s Gam,amoa

= Trace(g - X(g) ... X" ?(g) - X" (g)).

COROLLARY 3.10.
Let ¥ € R(GL,F,;) be the virtual representation of Definition 3.6.
Then for any integer m > 1 there exists a virtual representation
W e R(Gal(Fym /Fy) x GL,Fgm)
such that

Xw (2, 9) = xz:(9-2(9) .- " 3(g) - " H(g))
for all g € GL,Fym, where ¥ is the Frobenius.

Proof:

Lemma 3.9, by additivity, extends to virtual representations. There-
fore we may apply Lemma 3.9 to X¢ € R(GL,F,m), which is a virtual
representation which restricts to X7 € R(GL,F,). O

THEOREM 3.11. ([117] Theorem 1; see also Lemmas 2.7 and 2.11)
(i) Let p be a finite-dimensional complex irreducible representation of
GL,F,. Then there exists an irreducible representation p of the semi-direct

product
Gal(Fgm /Fy) o< GL,Fym which satisfies, for all g € GL,Fgm,

X5(2,9) = ex,([92(g) ... 2" (9)])
where € = +1 is independent of g. Here [g¥(g)... ™ 1(g)] denotes the
unique conjugacy class in GL,F, given by the intersection of the conjugacy
class of g%(g)... X" (g) in GL,F m with GL,F,.
(ii) The Shintani base change correspondence (see Appendix I, §4)
Sh : Irr(G Ly F g )2 Fam /Fa) =, (G L, F,)

is given by, in the case where € may be chosen to equal 1 in part (i),

Gal(Fym /F GL,Fgm , ~
Sh(Resiy /" (7)) = p.
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When € = —1 is the only possibility there is an extension, denoted by p/,
of p to Gal(Fg2m /Fy) o< GL,Fgm and

X (5:9) = x([92(9) .- - (9)])
specifies x(p) in this case.

Sketch Proof of Theorem 3.11

Write N(g) for [g2(g)...X™ 1(g)], which is a conjugacy class in
GL,F,°. Tt is shown in [117] that every conjugacy class occurs as an
N(g), which also follows from the observation of Digne-Michel in Appendix
I, §10. Observe that N(gzX(g)~!) = g7 N(z)g.

The proof consists of an induction in which one assumes for smaller val-

ues s < n that for each p € Irr(GL,F,) there exists a virtual representation
p € R(Gal(Fym /F,) x GLsF,m) such that, for all g € GLFym,

X5(,9) = x,([92(g) ... =" (g)]).

There, if (nq,...,n,) is a partition of n by strictly positive integers, and
pi € Irr(GL,,,F,) there exists a virtual representation

ﬁi € R(Gal(qu /Fq) X GLninm)
such that, for all g € GL,,Fgm,

X5: (2,9) = Xp. ([92(g) .. Z™Hg))).

If p € Ir(GL,F,) is constructed by parabolic inflation-induction from
Prys--- s Pn,., asin Appendix I11, §2, p is constructible by parabolic inflation-
induction from py,, ..., pp, ([117] Lemmas 2.8 and 2.9).

By additivity, Theorem 3.7 and Corollary 3.10 for each p € Irr(GL,F,)
there exists a virtual representation p satisfying the character condition
of part (i). A character calculation then shows that +p is an irreducible
representation and, finally, the counting (as in Appendix I, §10) shows that
p — p gives a bijection as in part (ii). O

3.12. Integrality is equivalent to Shintani descent

I shall close this chapter by recapitulating and elaborating upon the in-
tegrality remarks of Appendix I, §9 and finally posing a question about a po-
tentially alternative proof of Theorem 3.11. The sketch proof of Shintani’s
Theorem starts from the bottom of Galois descent, with p € Irr(GL,F,).
The integrality point of view starts at the top with a Galois invariant ir-
reducible 7 € Trr(G L, F m )@l Eam /Fa) . As explained in Appendix I, being
Galois invariant is equivalent to there existing an extension of 7 to

TE Irr(Gal(qu /]Fq) X GLnqu)

5N(g) in [117] is constructed from ™~ 1(g)...%(g)g due to the convention used
for the multiplication in the semi-direct producrt (see [117] §1) which differs from mine.
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which is unique up to twisting by a one-dimensional character of
Gal(Fgm /Fy).

Assigning to the conjugacy class [g£(g) ... X" 1(g)] in GL,F,, as de-
fined in Theorem 3.11(i), the complex number xz (X, g) gives a well-defined
class function and hence an element £Sh(r) of R(GL,F,) ® C.

As we saw in the sketch-proof of Theorem 3.11, in order to complete
the proof it is sufficient to show that £Sh(r) € R(GL,F,). As explained
in Appendix I, §9, this condition is equivalent to the condition that each
coefficient in the Explicit Brauer Induction formula agr,r, (£Sh(7)) is in-
tegral.

If (Ho, ¢0) € Mar,r, the coefficient of the GL,F,-conjugacy class of
(Ho, ¢o) in agr,r,(£Sh(r)) is given by

3 o) < 61) <o () (1) Ty dime (£SR(m) U197))

where the sum is over the set of strictly ascending chains

(Ho, ¢0) < (Hi, 1) < ... < (Hy, ¢r)

ending in (H,, ¢).
Here, as for a virtual representation, dime(+Sh(r)#r#r)) denotes the
complex number given by

dim(c(ﬂ:Sh(’]T)(H"’qb")) = u}irlzheHr ¢r(h)71XiSh(7r)(h)
= ﬁ Zh:[gE(g)...Zm'*l(g)]€H7- <ﬁr(h)_1X:i:.S’h(7r)(h)

= \1;7,4Zh:[gE(g)...Z"”*l(g)]GHT or(h)"'x5(2, 9)-
Since
(=)H#7) = Homy, (Cy,, —) = Homgp,x, (Indj;. "™ (Cy, ), )
the above dimension formula can be rewritten in terms of the character
values of Indgf"Fq (Cy, ) using the formula from ([126] Theorem 1.2.8) and

the sizes of conjugacy classes given in ([117] §2.6(ii); see also Appendix I,
§10).

QUESTION 3.13. In §3.12 we saw that the integrality of each of certain
sums over chains

(Ho, ¢0) < (Hi,¢1) < ... < (Hy,¢r)

implies Theorem 3.11. It is straight forward to compare each of those sums
with similar sums over chains, at least when m is prime,

(Gal(Fym /Fy) x Ho, o) < (Gal(Fym /Fy) x Hy, ¢1)

< ... < (Gal(Fym/F,) x Hy,é,).
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We know that the Explicit Brauer Induction formula for 7 has integral
coefficients which involve sums over chains in M(Gal(Fym /Fy) o< GL,Fgm)
- in particular, sums over chains commencing at (Gal(Fgm /Fq) x Hy, ¢o).
Could the latter integrality be used to show that of the sum over chains of
the form (Gal(Fym /Fy) X H;, ¢;)?

4. Some recreational integer polynomials

4.1. Choose an injective homomorphism 6 : ?Z — C* as in Definition
3.4. Recall from Definition 3.6 that X! (abbreviated here to ;) is equal
to the following conjugacy class function on GLsF,. For X € GL,F, let
{A1,...,As} denote the set of eigenvalues of X and set

S(X) = Y O0(Xi,s--- 5 N\i,) €C.
1<i1<...<4,<s

These functions may be collected into polynomials if we set

6N) 0 ... ... 0

0 6X) 0 ... 0

o . : S
0 0 ... 0 60

so that the characteristic polynomial of X satisfies

det(tly — X) =5 — Dy (X)L + So(X)t2 + ...

(=) (X))t + .+ (—1)° 24 ((X).

By Theorem 3.5 the element of R(GLsFy»)[t]®C given by the complex
polynomial-valued class function X — det(tI, — X) lies in R(GLyFn)]t]
for all s,n > 1. Write P(s,n) for this polynomial.

By the discussion of §3.12 this is equivalent to the condition that for
each (Hy, ¢9) € M(GLsF4n) the sum

r_|H : rbr
22 (Hobo)<(Hy 1)< < (Hy o) (T 1) |G|Lfléq|dlmC(P(sv”)(H ) € ZIt].

Here the sum is over the set of strictly ascending chains
(Ho, ¢o) < (Hi,¢1) < ... < (Hy, )

starting at (Ho, ¢o) € M(GLsFyn).
These integer polynomials are given by the coefficients of

(Ho, $o)“FFa" € R\ (GL.Fyn)
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in the (polynomial-valued) Explicit Brauer Induction formula. This formula
is natural with respect to restrictions such as the one from R (GLF jna)
to Ry (GLsFgn), as explained in Appendix I, §5).

In addition, restriction via the map GL; — GLs4; which extends a
matrix by adding zeros off the diagonal and 1’s along the diagonal sends
P(s+t,n) to P(s,n)(t—1)".

These two types of naturality relate the P(s,n)’s to the Brauer lifting
of [105].

QUESTION 4.2. Do there exist closed formulae for the integer polyno-
mials of §4.17

5. Base change functoriality for stable homotopy theorists

5.1. The Shintani correspondence gives a bijection between Irr(GL,F,)
and Trr(G L F,n )2 (Fa /Fa) for complex irreducibles. Since the former is a
free Z-basis for the complex representation ring R(GL,F,) the additive
extension of the inverse correspondence Sh™! gives a homomorphism

Sh™': R(GLF,) — R(GLF,n).
Explicitly, if v = ®!_, v; with v; € Irr(GLsF,) then

t
_ Gal(Fyn [Fq)xGLFyn / ~
Shlv)=> ResGaLqun/ v (pi)
i=1

where p; € Irr(Gal(Fgn /Fy) o< GLsFgn) is an irreducible of the first kind
(i.e. [117] Definition 1.1; p; restricts to p; € Irr(GLFyn)) and Sh(p;) = v;
for 1 <i<t.

Let IR(Irr(GLF,)) denote the augmentation ideal, generated by vir-
tual representations of dimension zero. Hence IR(Irr(GL,F,)) has a base
consisting of elements of the form p — dim(p) for p € Irr(GL,Fy). The
addition extension of Sh~! gives a homomorphism

Sh™': IR(Irv(GLsF,)) — IR(Irt(GLsFyn))

given by p — dim(p) — Sh=1(p) — dim(Sh=*(p)).

For a finite group G the I R(G)-adic completion of I R(G) is isomorphic
to [BG, BU], the topological unitary K-theory of BG, which is the set of
based homotopy classes of maps between the classifying space BG of G to
that of the infinite unitary group U = {J,, U, (C) [8]. An element p—dim(p)
is mapped to the homotopy class of the map

Bp : BG — BUgim(,)(C) — BU.

QUESTION 5.2. Is Sh™! continuous in the I R(G)-adic topology?
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QUESTION 5.3. A question for homotopy theorists
If the answer to Question 5.2 is affirmative then one could ask whether
or not there is a functorial map induced by Sh~! of the form

Sh™': [BGLF,, BU] — [BGL:F ., BU].

5.4. More generally than §5.2 and Question 5.5, there is a similar ques-
tion in stable homotopy theory.

Let X, denote a space X with a disjoint base-point adjoined. Let
{X;,Y;} denote the group of stable homotopy classes of maps from X
to Y, [6]. There is an isomorphism between { BG ., BU, (C);} and a com-
pletion of the abelian group on triples (G <>~ H -~ U, (C)) where p is a
representation and « is the inclusion of a subgroup. More precisely, if J
is a compact Lie group such as J = U,(C) let R4 (G, J) denote the free
abelian group on triples as above. Then R, (G,J) is a module over the
Burnside ring R4 (G, {1}) and the completion mentioned above is formed
with respect to the Burnside ring augmentation ideal topology ([97], see
also [102]). Sending a triple (G <%~ H -2+ .J) to the stable homotopy class
of the composition

BG, ™™ g, % gy,

yields the isomorphism
Ry(G.J)" = {BGy,BJ.}.

This result was first proved in [125] for J = S and was proved in general
in [131]. A cosmological® generalisation of this result appeared as [97].

QUESTION 5.5. A question for stable homotopy theorists

The Euler characteristic of a monomial resolution over C lies in Ry (G, S*).
Supposing the monomial resolution to be “continuous in the Burnside ring
topology”, is there a functorial map between stable homotopy groups which
coincides with that induced by the Euler characteristic of the monomial res-
olution of Sh=1?

6. Inverse Shintani bijection and monomial resolutions

6.1. In this section I shall consider the inverse Shintani correspondence
and the resulting homomorphism of complex representation rings

Sh™: R(GL.F,) — R(GL,F)

introduced in §5.1.

Continuing the theme of functoriality of base change I shall consider the
possibility of starting from the monomial resolution of v € Irr(GLF,) and
from it constructing a chain complex of representations of the semi-direct
product

6In the sense of SETL.
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Gal(Fyn /Fy) o< GLgFgn which, when restricted to GLFg», has homology
concentrated in dimension zero and equal to Sh™!(v) € Irr(GLsFyn).

Let us begin with an elementary example given by Shintani descent
from GLyF4 to GLoFy = Dg, the dihedral group of order six, which is
discussed in detail in Chapter Ten, Appendix I.

ExXAMPLE 6.2. Let A, C be the elements of G LyFs introduced in Chap-
ter Ten, §1. Therefore

=(A,C| A2=C%=1,ACA = C?).

Let ¢ be the character of (C') given by ¢(C) = &3 as in Chapter Ten, §6.
Set v = Ind?&(qﬁ) € Irr(Dg) as in Chapter Ten, §4.

A monomial resolution for v = Ind&‘f(@ over an algebraically closed
field of characteristic different from two is

M,: 0— Ind?s(1

nd{ (1) -5 Ind2? (¢) © Ind 22 (1) & Ind 22 () = v — 0

where g is the non-trivial character and the differentials are given by
Ilem 1) =(1®c, 1,-(1/2) ®c, 1, —(1/2) ®c, 1),
(1 ®c, 1,0,0)) =1®¢, 1,
€0,1®c, 1,0) =1®¢, 1 + A®c, 1,
€0,0,1®c, 1) =1Q¢c, 1 —A®c, 1
In Chapter One, §3 one finds the monomial morphism
(K. 9). g, (H,9)) : IndF (ky) — Indfj (ko)

given by ¢’ @k v+ ¢'g®@pm v when (K, %) < (gHg™", (97")*(¢)). With this
notation the morphism 0 is equal to

= ({1}, 1), 1, ((C), 9))=1/2(({1}, 1), 1, ((A4), 1)) =1/2(({1}, 1), 1, ((A), p))-

In the notation of Chapter Ten, Appendix I, the Euler characteristics
of Mi(H)) are given by

X(M( Ds))) 0
X(M((Cs))) ¢+¢2
X(M((Cz))) 1+pu
X(M(({l}))) 9
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The irreducible representations are 1,y, v whose character values are
given by the table

L [t x]|v]
T[1]1]2
A[1[=1]0
cli[1 -1

The three Galois invariant irreducibles of GL;F, are 1, vy, v5 explicitly con-
structed in Chapter Ten, Appendix I where explicit extensions to the semi-
direct product Gal(Fy/Fy) &< GLyFy (1,74, 75 respectively) are also con-
structed.

From Chapter Ten §9 we have the following table of character values
in Gal(F4/F2) 0,8 GL2F4

| [ L7 [ ]
1) [1] 1 ]-2
(,B) [1] -1

o111

so that, if X is the non-trivial character of the form
Gal(Fy/Fy) o&x GLyFy — Gal(Fy/Fy) —» {£1}

then Theorem 3.11(i) (with ¢ = 1 in each case) is satisfied by the map
1—1, x— U5 and vi— AQ Dy,
As a sequence of Dg-representations My — M is isomorphic to

lexorveor —rvd(1ev)d(xdv).
If we form the two Gal(F4/F3) o< GLoF4 representations
N1 :1@135@174@174 and NO:A®ﬁ4@(1@A®ﬁ4)@(ﬂs@A®ﬁ4)

whose summands are irreducibles of the first kind. We may define a homo-
morphism of representations Ny — Ny by sending each irreducible sum-
mand in N; to the copies of itself in Ny by the same scalar multiplication
as occurred between the corresponding summands in M; — M.

In this simple example this procedure gives an injection whose cokernel,
restricted to GLoFy, is vy = Sh™1(v).

QUESTION 6.3. Suppose that we are in the general Sh™! situation with
p an irreducible representation of GLsF, and Sh™!(p) an irreducible rep-
resentation of GLsFgn. Suppose we form the monomial resolution of p and
then, in each dimension, form the direct sum of the first kind irreducibles
of the semi-direct provided by Theorem 3.11 and finally construct maps of
representations, each reducing the degree by 1, in the manner analogous to
the simple case of Example 6.2.
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As representations of GLsFg» is the resulting sequence of homomor-
phisms of representations a chain complex and furthermore is its homology
concentrated in dimension zero and isomorphic to Sh~1(p)?



CHAPTER 9

PSH-algebras and the Shintani
correspondence

1. PSH-algebras over the integers

1.1. A PSH-algebra is a connected, positive self-adjoint Hopf algebra
over Z. The notion was introduced in [146]. Let R = ®,>¢ R, be an
augmented graded ring over Z with multiplication

m:R®R— R.

Suppose also that R is connected, which means that there is an augmenta-
tion ring homomorphism of the form

¢:7 =5 RyCR.

These maps satisfy associativity and unit conditions.
Associativity:

mm®1l)=m(lem): RIR® R — R.
Unit:
mlee=1=m(E®1);RIZEZRZZR®R— R®R — R.

R is a Hopf algebra if, in addition, there exist comultiplication and

counit homomorphisms
m*":R— R®R
and
€ :R—17Z

such that

Hopf

m* is a ring homomorphism with respect to the product (z ® y)(z' ®
y') =zz’ @ yy on R® R and €* is a ring homomorphism restricting to an
isomorphism on Ry. The homomorphism m is a coalgebra homomorphism
with respect to m*.

The m™* and €* also satisfy

Coassociativity:

m@1)m*=1e@m")m":R— R®RQR—RIR®R

217
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mlee=1=m(Ex1);RIZZREYZ®R— R®R — R.

R is a cocomutative if
Cocommutative:

m*=T-m":R— R®R
where T(x ® y) =y®@x on RQ R.
Suppose now that each R,, (and hence R by direct-sum of bases) is a
free abelian group with a distinguished Z-basis denoted by Q(R,,). Hence

Q(R) is the disjoint union of the Q(R,)’s. With respect to the choice of
basis the positive elements R* of R are defined by

R+:{7“€R|7":Z mew, mw207w€Q(R)}'

Motivated by the representation theoretic examples the elements of Q(R)
are called the irreducible elements of R and if r = Y, my,w € RT the
elements w € Q(R) with m,, > 0 are call the irreducible constituents of r.

Using the tensor products of basis elements as a basis for R® R we can
similarly define (R ® R)" and irreducible constituents etc.

Positivity:

R is a positive Hopf algebra if

m((R® R)") C RT,m*(R") C (R® R)",e(Z") C RT,e*(RT) C Z™.
Define inner products (—, —) on R, R® R and Z by requiring the chosen
basis (2(Z) = {1}) to be an orthonormal basis.
A positive Hopf Z-algebra is self-adjoint if
Self-adjoint:
m and m* are adjoint to each other and so are € and €*. That is
(m(z®y),z) = (x@y,m"z)

and similarly for e, €*.
The subgroup of primitive elements P C R is given by

P={reR|m*"(r)=r®l+1er}
2. The Decomposition Theorem

Let {R, | @ € A} be a family of PSH algebras. Define the tensor

product PSH algebra
R= QacA R,

to be the inductive limit of the finite tensor products ®yecs Ry with S C A
a finite subset. Define Q(R) to be the disjoint union over finite subsets S
of [Toeg URA)-

The following result of the PSH analogue of a structure theorem for
Hopf algebras over the rationals due to Milnor-Moore [99]
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THEOREM 2.1.

Any PSH algebra R decomposes into the tensor product of PSH alge-
bras with only one irreducible primitive element. Precisely, let C = QP
denote the set of irreducible primitive elements in R. For any p € C set

Qp) ={w e Q| (w,p") # 0 for some n > 0}

and
R(p) = 69wGQ(p) Z-w.

Then R(p) is a PSH algebra with set of irreducible elements 2(p), whose
unique irreducible primitive is p and

R= ®p€C R(p)

3. The PSH algebra of {GL,,F,, m >0}

3.1. Let R(G) denote the complex representation ring of a finite group
G. Set R = @m>0 R(GL,,F,) with the interpretation that Ry = Z, an
isomorphism which gives both a choice of unit and counit for R.

Let Ui, m—r C GLyF, denote the subgroup of matrices of the form

Iy W
X =
0 Imfk

where W is an kx (m—k) matrix. Let Py, denote the parabolic subgroup
of GL,,IF, given by matrices obtained by replacing the identity matrices I,
and I,,_; in the condition for membership of Uy ,n,—; by matrices from
GLiF, and GL,,—F, respectively. Hence there is a group extension of the
form

Uk,m—k — Pk,m—k — GLkIFq X GLm_k]Fq.

If V is a complex representation of GL,,F, then the fixed points VVm-& is
a representation of GLiF, X GL,,_1F, which gives the (k, m—k) component
of

m*: R— R® R.

Given a representation W of GLiF; x GLp,_;F, so that W € Ry ® Rk

we may form

GLuFy 1 eProm
Indp, ™3 (Inf Ve Seor, e, (W)

which gives the (k,m — k) component of
m: R® R — R.

We choose a basis for R,, to be the irreducible representations of
GL,,F, so that R consists of the classes of representations (rather than
virtual ones). Therefore it is clear that m, m*, e, e* satisfy positivity. The
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inner product on R is given by the Schur inner product so that for two
representations V, W of GL,,IF, we have

<V, W> = dim¢ (HOHlGLm]Fq (V, W))

and for m # n R, is orthogonal to R,,. As is well-known, with these
choice of inner product, the basis of irreducible representations for R is an
orthonormal basis.

The irreducible primitive elements are represented by irreducible com-
plex representations of G'L,,F, which have no non-zero fixed vector for any
of the subgroups Uy, . These representations are usually called cuspidal.

In the remainder of this section we shall verify that R is a PSH algebra,
as is shown in ([146] Chapter III). I believe, in different terminology, this
structural result was known to Sandy Green at the time of writing [69] and
to his research supervisor Phillip Hall.

THEOREM 3.2. (Self-adjoint)
If X,Y,Z are complex representations of GL,Fy, GL,Fq, GLy10nFy
respectively then

(m(XQY),Z)=(XY,m"(Z)).

Also € and €* are mutually adjoint.

Proof:
This follows from Frobenius reciprocity ([126] Theorem 1.2.39) because
the Schur inner product is given by

(m(X®Y),Z) =dimc(Homgy,, ,r,(m(X ®Y),Z))
= dime(Homp, ,InfG}" s L app, (X ®Y),2))

= dim¢(Homp,

m,n

Pran
InfGL'm]quGanq(X ®Y),ZUmm)).
The adjointness of € and €* is obvious. O

PROPOSITION 3.3. (Associativity and coassociativity)
The coproduct m™* is coassociative and the product m is associative.

Proof:

Clearly m* is coassociative because taking fixed-points GLyFxGLyF
GL.F, of a GLy1p4 Iy representation is clearly associative. It follows from
Theorem 3.2 that m is associative, since the Schur inner product is non-
singular. O

THEOREM 3.4. (Hopf condition)
The homomorphism m* is an algebra homomorphism with respect to
m. The homomorphism m is a coalgebra homomorphism with respect to

*

m”.
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Obviously the coalgebra homomorphism assertion follows from the al-
gebra homomorphism assertion by the adjointness property of Theorem
3.2.

The discussion which follows will establish Theorem 3.4. It is rather
delicate and involved so I am going to give it in full detail (following ([146]
p.167 and p.173 with minor changes). For notational convenience I shall
write Gy, = GL,F, for the duration of this discussion.

Recall that we are attempting to show that for each (a,m — ) and
(a,m — a) that the R(G4) ® R(Gp—q)-component of m* - m

R(Ga) ® R(Gn-a) = R(Gm) ™= R(Go) ® R(Gr-a)
is equal to the R(G,) ® R(G,—q)-component

R(G)OR(Gm-o) ™2 RoRoROR 'S RoROROR ™2 R R.

Let Z be a complex representation of G, then the (a, m—a)-component
of m*(Z) is given by
ZVem=a € R(Gy X Gn—a) = R(G4) @ R(Gp—a)
with the group action given by the induced P, y,—q/Uqs m—q-action.
If Z=m(X®Y) with X,Y representations of G, Gy,—q respectively
then
Z=m(X®Y)=Idf" (Infi7s (X®Y)).

Therefore we must study the restriction

Resgr _ (Ind§m (Inf7e” (X ®Y)))

m—a

by means of the Double Coset Formula ([126] Theorem 1.2.40; see also
Chapter 7, §1). Explicitly the Double Coset Formula in this case gives

Pam—a —1ys7, ¢Pam—a
> Idp" " p, g1 (7)) Il G, (X @Y)
9EPa,m—-a\Gm/Pa,m—a
where the (g~—!)*-action is given by (ghg™!)(w) = hw.
The Double Coset Formula isomorphism (downwards) is given by
z ®Poc,7n7a w = -] ®Pa,m7amgpcx,m—a‘971 hw
where z = jgh with j € P, ;i—q,h € Py m—q with inverse (upwards) given
by
J ®Py m—agPaim-ag=t W JGOP, ,_, W.

Next let ¥, C GL,,F, denote the symmetric group on m letters em-
bedded as the subgroup of permutation matrices (i.e. precisely one non-zero
entry on each row and column which is equal to 1).

The following result is proved in ([146] p.173; see also [30] Chapter IV,
)
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THEOREM 3.5. (Bruhat Decomposition)
The inclusion of 3, into GL,,F, induces a bijection

S0 X T \Zm/Za X Zim—o — Pam—a\Gm/Pom—a

Now we shall construct a convenient set of double coset representations
for the left-hand side of Theorem 3.5.
Consider the double cosets

Yo X Yo \Em/Za X T

On page 171 of [146] one finds the assertion that the double cosets in
the title of this section are in bijection with the matrices of non-negative
integers

ki kg

ka1 koo
which satisfy
kii+kig=a, ko1 +keo=m—a, kij1+ke1=a, kig+kyo=m—a.
Let w € ¥, be a permutation of {1,... ,m}. Set I = {1,2,... ,a},
I, ={a+1,a42,... ,m}, J1 ={1,2,... ,a} and Jo = {a+1,a+2,... ;m}.
Therefore if g € ¥, X X,,_¢ and ¢’ € X, X X, we have, for t = 1,2 and
v=1,2,

qug (J) (Vo = gw(I) (V1o = 9w () (g~ (1)) = 9w () () 1)-
Therefore if we set
kt,v = #(w(Jt) ﬂIv)
we have a well-defined map of sets from the double cosets to the 2 x 2
matrices of the form described above because
a if v=1,
kl,v + k2,v = #(IU) =
m—a ifv=2
and
« ift=1,
kia + ko, = #(J) =
m—a if t=2.
Next we consider the passage from the matrix of k; ;’s to a double coset.
Write
Jy = J(k1,1) UJ(kl,z), Jo = J(k2,1) UJ(kz,z)
where J(k11) ={1,... ,k11} and J(k21) = {a+1,... ,a+ko1}. Similarly
write

I =1I(ki1) Uf(k‘m), Iy = I(k12) UI(kQ,Q)
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where I(kl,l) = {1, . 7k1,1} and I(kLz) = {CL + 1, oo,a+ klﬁz}. Since
the orders of I(k; ;) and J(k; ;) are both equal to k;; there is a permu-
tation, denoted by w(k. ) which sends Ji|JJ2 to I; |JI> by the identity
on J(k1,1) = I(k11) and J(kaz2) = I(ke2) and interchanges J(k1,2), J(k2,1)
with I(k1,2),I(k2,1) in an order-preserving manner.

Given the permutation w(k. .) we have

#(w (ke ) (J1) 1) = #(I (k1,1) N1 (k1)) = kg,
(W (ke ) (J1) N 12) = #(w(ke ) (T (k2,1)) N (K1.2) = ka2,
#(w (ke ) (J2) 1) = #(w(ke ) (T (k1,2)) NI (K2,1)) = k2.1,
#(w(ks ) (J2) N 12) = #(J (k2,2) N L (k2,2)) = k2,2

so that the map k. . — g X Ty qw (ks )Xo X Ei_q is a split injection.
In addition it is straightforward to verify that any permutation whose k .-
matrix equals that of w(k, .) belongs to the same double coset as w(k. .).
Hence the map is a bijection.

For example when a =3, =4,k11 =1 = koo, ko1 = 2,k12 =3

1000000
0001000
0000100

wk. )™ '=]100 000 10
0100000
001 0000
000O0O0TO01

1 000000
0000100
000O0O0T10
wke,)=1 0 1 0 0 0 0 0
001 0000
0001000
00 0O0O0TO0 1

This permutation arises in another way as a permutation of the basis
elements of tensor products of four vector spaces. Let

V= ]F’;u ® ]FZI2 @ Flgzl o F’;zz and Vy = F];u P Flgzl o ]F’l;lz P ngz.
We have the linear map
10T (hkew)®1: V3 — Vs

which interchanges the order of the two central direct sum factors. The
basis for V; is made in the usual manner from ordered bases {e1,... ek, },

{ek11+17 s ek11+k12}7 {ek11+k12+17 s ek11+k12+k21}
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and {€x,, +k1ptkoy+1,- -« €m} Of IF’;“, ]F’;l?, F’;ﬂ and IF’,;” respectively. Sim-
ilarly the basis for V5 is made in the usual manner from ordered bases
{vh s 'Uku}? {vk11+17 s vk11+k21}7 {vk11+k21+17 s Uk11+k21+k12}
and {Vky, 4k, +kio+1s - - - Um} Of FE1 Fh2t Tk and FF22 respectively.

The linear map 1 @ T'(ky ) @ 1 sends the ordered set {e1,... ,en} to
the order set {vi,... ,vm} by €; = Vo, )(j)-

Clearly

w(k*,*)Gku X lez X szl X Gk22w(k*,*)_l = Gkn X ka X lez X Gk22
from which is it easy to see that
W(ks)Go X Gt (ks )™ [ Ga X Gma = Ghyy X Gy, X Gy X Gy

So far we have shown that the (a, m — a)-component of m*(m(X ®Y))
is the sum of terms, one for each w(k, ), given by the induced G4 X Gpp—q-
action on

Indbem—e (k) ) Info75" (X QY)).

Pam—aNw(k s Paym—aw (k)1

On the other hand, for each w(k. ) there is a (a, m — a)-component of
the other composition we are studying given by

(7)U’€11‘k12 XUkgy,kap
—

R(Goé X Gm—a) R(lel X ka X Gk21 X Gk’22)

1T (k) ®1
(—)) R(Gkn X szl X Gk‘m X szz)

IndInf X IndInf
P R(Go X Gna).

Composing this second route with the split surjection

R(Gq % Gia) 225 R(Pyyna)

is equal to the composition

(_)Uk11,’€12 XUkgy koo
—

R(Ga X Gm_a) R<Gk11 X ka X ka X Gk22)

1QT (kx4 )®1 Inf
— R(Gku X ka X lefz X ka) I

Ind
R(Pku,kzl,km,km) - R(Paym*a)
because the kernels of the quotient maps Pk, ko1 k10,kes — FPhis ke and
Pym—a — Gq X Gp—q are both equal to Uy ym—q.
This composition takes the Uk, , k., X Uk, ksn-fixed points of X @Y with
the Gk, X Gy, X Giy, X Gp,,-action and then conjugates it by w(ksx ).
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Alternatively it takes the w (k) Uk, k1o X Ukay koo (ks )~ -fixed points of
(w(kss) H)* (X ®Y) with the Gy,, X Gp,, X G,y X Gp,,-action. Now
w(k*A,*)Ukn,km X Uk21,k22w(k*,*)_1 - Ua’m*a'

For example, in the small example given in the last section of this chapter,
Uki1 k1o X Uk, ke, consists of matrices of the form

1 ajp a1z ai4q 0 0 0
0 1 0 0O 0 0 O
0 0 1 0O 0 0 O
D = 0 O 0 1 0 0 O
0 O 0 0 1 0 as7
0 0 0 0 0 1 ag7
0 0 0 0O 0 0 1
s0 that w (ks «)Ukyy k1o X Ukyy koW (ki ) ™1 consists of matrices
1 0 0 a2 ai13 A4 0
01 0 O 0 0 as7
0 01 0 0 0 ag7
w(ke)Dw(k, )™ =10 00 1 0 0 0
0 0 0 O 1 0 0
0 0 0 O 0 1 0
0 0 0 O 0 0 1

Since w(ky «)Dw(ky )" 1’s act trivially we may inflate the representation
to
Py y kior hia kee (1. extending the action trivially on Uk, kyy kiskes) and
then induce up to a representation of P, ,—q.

Now let us describe the isomorphism between the result of sending
X ®Y via the second route and the U, ,,,—4-fixed subspace of

Ind = (wlky) ) Infe7s" (X ®Y)).

Pa,m—aNw (ks Po,m—aw (k)71

There are inclusions
—1
w(k*y*)P(%m—@w(kﬂ*) ﬂ Pavm_a/ C Pk117k217k127k22 C Pa,m—a-

For example, w (ks «)Pa.m—aw(ks )" () P34, in the small example of the
Appendix, consists of the matrices of the form

a11 ais G Q12 a1z a4 Ay

0 as5 456 0 0 0 asy

0 ags  Ae6 0 0 0 Qg7

E/ = 0 0 0 a29 Q23 Q24 Q27
0 0 0 asx ass ass asr

0 0 0 aa2 a3 aaa agy

0 0 0 0 0 0 a7y
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and, as we noted above, w(k, ) Dw(k, .)~! consists of the matrices

{(bi) € W(ke ) Pan—aw(ku) " [ |Usa | biz = 0}.
There is a bijection of cosets

Pkll,k217k127k22/w(k*,*)Pa,m*a)w(k*,*)il ﬂ Paym*a

= a,mfa/"U(k‘*,*)Pa,mfa)w(k*,*>_1 m U3,4~

Therefore we may take the coset representations X, to lie in the abelian
group U, pm—q. In the small example the X,’s may be taken to be of the
form

1000 0 0 a
01 0 b ¢ d O
0 01 e f g O
Xo = 0 001 0 00
0 00 0 1 00
0000 O0OT1FO0
0000 001

The isomorphism from the image of X ® Y via the second route to the
Uq,m—q-fixed subspace of

Indjome (ko) ™) Inf 75" (X ®Y))

Py m—aNw(ks « Po,m—aw(ke )71
is given by
I@Py, gy bazian U D, 9% (ke ) P ) w (ke )~ () Pasna V-
XOt

This concludes the proof of Theorem 3.4. The remainder of the Hopf
condition is given by the following result, which is proved in a similar
manner to Theorem 3.4 (see [146] p.175).

THEOREM 3.6.
In the notation of §1, €* is a ring homomorphism restricting to an
isomorphism on Ry.

4. Semi-direct products Gal(Fy» /F;) o GL,Fyn

4.1. Let V be an irreducible representation of GLF;» and let ¥ €
Gal(Fyn /F,) denote the Frobenius substitution. Hence the representation
(V) given by transporting the GL;F,n-action by the i-th power of ¥ is
another irreducible representation. Suppose that n = sd and that

V,2(V),23(V),..., 25 1(V)

are inequivalent GL;Fgn-irreducibles but that V' and ¥°(V') are equivalent
G L4F jn-irreducibles.
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Therefore V' (c.f. Chapter Two, §6; see also Chapter 8 and Chapter 10,
§3) extends to an irreducible representation V of the semi-direct product
Gal(Fon /Fys ) o< GLFgn for some b > 1, where Gal(F o /IF s ) acts via first
projecting onto
Gal(Fgn /Fge).

In discussions of the semi-direct product I shall attempt to follow the
notational conventions of ([125] p.36) and Chapter 10, §3.1 as opposed to
those of [117]. Explicitly, if C' acts on G via A : C — Aut(G) then the
semi-direct product C' < G is the group whose underlying set is C x GG with
multiplication given by

(c1,91) - (c2,92) = (c1c2, 91M(c1)(92)), c;€C,g; €G.

We may form the induced representation
~ Gal(F pp /Fq)xGLFyn =~
V= IndGal(szn /]Fqs)o<GLt]Fqn( )
which restricts to give

©iZ5 V) € R(GLFyn).

7

Also
HomgaiF ;.. /F,)xGLFn V,V)

~ Gal(F_yn /Fq)xGLiFyn  ~
~ aq
= HomGal(]Fqbn JFys)xGLFyn (V7 IndGal(qubn JFgs)xGLFyn ( ))

~ @iy Homgai(r,,, /F,e )G L (V, BH(V))

= Homgai(r ., /Fys )xGLiFyn (V,V)

as is seen by restricting representations to GLF,n. Since V is irreducible
its endomorphism ring is 1-dimensional and so therefore is that of V.

In the terminology of [117] when s > 1 V is called an irreducible
representation of the second kind and when s = 1 it is called an irreducible
representation of the first kind..

Let 6 : Gal(Fgpn/F,) — C* be a character which is trivial on
Gal(FFjon /Fgs ). Then
Gal(F b /Fq) <G L Fgn ~ -

0-V= IndGal(]Fqb" JFys )G L Fyn (

All the irreducibles of Gal(F»/Fy) o< GL;Fyn are of the form V for
some s dividing n. For if W is an irreducible of Gal(Fun /Fq) o< GLiFgn
then its restriction to GLFs» must have the form

mVi @mE(V1) @ ... e mE* (1)
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with V; irreducible and %% (V) = V. Therefore V; extends to an irreducible
Vi and there is a non-zero map of representations Vi — W which must
be an isomorphism (and so m = 1).

Twisting V by a character 6 which is non-trivial on Gal(F on /IFgs ) gives
a distinct irreducible. There are bn/s cosets of such 6’s so we have bn/s
distinct irreducibles

V.05V, ... OV
each restricting to
@25 V) € R(GLFyn).

By Shintani base change for finite general linear groups ([117]; see
also Chapter 8 and Chapter 10, §3) there is a bijection between GL;Fn-
irreducibles V' such that X%(V) = V and the irreducibles of GL;F,s. The
V’s in the construction of V are those which are fixed by ¥* but by no X%
with u a proper divisor of s.

En route to the base change result one finds ([117] Theorem 1) that
b =1 or b = 2 suffices for the extension to the semi-direct product which
was discussed in this section. This is explained in §6 just after the statement
of Theorem 6.2.

5. R and R"

5.1. Let K = R(Gal(FF» /FF,)) which is the ring of integral linear com-
binations of characters x : Gal(Fyn/F,) — C*. Suppose that G is a
subgroup of GL,F,» which is preserved by the Gal(F,»/F,)-action. Let
S(G) denote the subset of the irreducibles Irr(Gal(Fyn/Fy) «x G) of the
first kind (i.e. representations which are irreducible when restricted to G).
Tensoring with a Galois character y permutes the set S(G) making Z[S(G)]
into a free K-module.

Define R = Bi>0 R; where R; = R(Gal(Fyn /Fy) o< GLFyn) for a fixed
choice of n. Define R” = @;>¢9 S(GLFyn) C R.

For each Gal(F,. /F,)-invariant irreducible V € Trr(G LF )21 (Fan /Fa)
choose an irreducible V € Rt which restricts to V. The set of irreducibles
which restrict to V' are given by {x ® YN/} as x varies through Galois char-
acters. Therefore there is an isomorphism of K-modules, depending on the
choice of V’s, of the form

AGLiyn : K[I1(GL,Fgn )G Em /F)] =, RY = S(GL,Fyn)

given by sending x @ V to x ® V. Hence R is a K-module of which R” =
®>0 S(GLFyn) is a free K-submodule.
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The first objective of this section is to make R into a connected, graded
K-algebra! of which R” is a connected, graded K-subalgebra. Clearly we
have an isomorphism € : K — Ry = Rl which shows that these are
connected K-algebras.

Multiplication:

Let P, be the usual parabolic subgroup of GL,14F4n. Then inflation
induces a K-module homomorphism of representation rings

Inf, p, : R(Gal(Fyn /Fy) & (GLFgn x GLyFyn)) — R(Gal(Fyn /Fy) x Py ).
We also have induction maps

Ind, s, : R(Gal(Fyn /Fy) < Pyp) — R(Gal(Fyn /Fy) o GLottFgn).
Let V and W be representations of Gal(Fyn/F,) o GL,F4n) and
GalFgn /F,) o< GLyF,n) respectively. Define a representation V @ W of
Fogn /Fq) o< (GLFgn x GLyF4n) on the underlying vector space of V@ W
by

(9, X, Y)(v@w) = (9, X)(v) @ (9, Y)(w).

The multiplication on R is defined, following the GLFjn-case, by

m(V @ W) = Indgp(Infa (V@ W)) € Raysp.
If x belongs to the character group of Gal(F4» /F,) then
m(xV@W)=m(V e xW) = xm(VeW) € Rqys.

If V and W are representations in R/, and R} respectively we shall
show that m(V @ W) € R ;.

By additivity it suffices to assume that V, W are irreducibles (of the
first kind). Then, by the construction of all the irreducibles of the finite
general linear groups which first appears in [69] and is reiterated in ([93] §1)
and Chapter 12, §2, m(V ® W) is irreducible when restricted to GLqpFgn
unless W = x®V. In that case m(V@(x@W)) = x@m(V®V). Restricted
to GLg4sFgn the latter is known to be the sum of two irreducibles picked
out by the idempotents of the symmetric group on two letters?. However
these idempotents also decompose m(V ® V) into two irreducibles of the
first kind, in the same way.

Note that m factorises through

m:R@Kfi—>R

which is a K-module homomorphism. Also m is associative.
This discussion established the following result.

LThe structure map giving the multiplication in this algebra first appeared in ([117]
Definition 2.4)
2These idempotents will show up again in §6.
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THEOREM 5.2. ~
With the notation introduced above R is a graded K-algebra of which
R is a graded K-subalgebra.

Let V' be an irreducible of Gal(Fyn /F;) & GLy4pFyn. We are not going
to define a comultiplication on R. However, we close this section with the
observation that sending V' to its U, ;-fixed points yields a homomorphism

m* : Rayy — R(Gal(Fyn /F,) o (GLaFyn x GLyFyn))

which covers (via the restriction to general linear groups) the comultiplica-
tion defined in §3 on the PSH algebra &;>¢ R(GLFyn).

6. Shintani base change

6.1. Let us recall the main result of [117] which, for our notation for
the semi-direct product, is stated in the following form:

THEOREM 6.2. ([117] Theorem 1; see also Lemmas 2.7 and 2.11)

(i) Let p be a finite-dimensional complex irreducible representation of
GL,F,;. Then there exists an irreducible representation p of the semi-direct
product Gal(Fgm /Fy) o< GL, Fgm which satisfies, for all g € GL,Fgm,

X5(2,9) = ex,(l92(g) ... " (9)])
where € = +1 is independent of g. Here [g¥(g)...X™ 1(g)] denotes the
unique conjugacy class in GL,[F, given by the intersection of the conjugacy
class of g£(g)... X" (g) in GL,Fym with GL,F,.
(ii) The Shintani base change correspondence (see Appendix I, §4)
Sh : Irr(GLpFgm )8 Fam /Fa) =, 10(G L, F,)
is given by, in the case where € may be chosen to equal 1 in part (i),

Gal(Fgm /Fg)xGLpFgm , ~
Sh(Resgy /") ™ (5)) = p.

When € = —1 is the only possibility there is an extension, denoted by p/,
of p to Gal(F2m /Fy) o< GL,Fgm and

Xo'(2,9) = Xo([9%(9) --- =" (9)])
specifies x(p) in this case.

In this Theorem x, denotes the character function of p. In part (ii)
of the theorem it should be noted that p is an irreducible of the first kind
because the x;(X,g)’s are not identically zero ([117] Lemma 1.1(i)) and

Gal(Fgm /Fq)xGLpFqm ;. . . .
therefore Resg (o™ /Fa)ex 7" (p) is an irreducible representation.
GLnqun

Given p as in part (i) of the theorem write p(z,1) = X, for z €
Gal(Fym /Fy) and p(1,g9) = p(g) for g € GL,Fym. Since (1,9)(z,1) = (2, 9)
we have

X.p(g) = p(z(9)) X=
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so that y5(%, g) = Trace(p(1, g)Xx) (see [117] Theorem 1)3.

For p and p as in Theorem 6.2 the matrix Xy will satisfy X = 1.
However, as mentioned in the statement of ([117] Theorem 1), for a general
Galois invariant p there exists a choice satisfying X3 = £1. When X{I' =1
the extension p of p may be constructed as in Theorem 6.2 but when X' =
—1 the extension of p must be a representation of Gal(F2m /Fq) o< GL,F .

Given a choice of p the irreducible extension p to the semi-direct prod-
uct, which we may take to be Gal(Fg2m /F,) o< GL,Fym in general, is unique
up to twists by Galois characters.

Next we shall examine the multiplicative property of the Shintani cor-
respondence.

Suppose that p; € Irr(GL,F,) and py € Irr(GLyF,). By Theorem 6.2
there exist gy € Irr(Gal(Fgm /Fy) ox GL,F,) and po € Irr(Gal(Fym /Fy)
GLyF,) such that for i =1,2

X5, (2, 9) = €ixp, ([95(9) - .. ™ (9)])

where €¢; = £1 is independent of g.
Therefore, by ([117] Definition 2.4 and Lemma 2.9),

Xm(51,52) (5 9) = €1€2Xm(p1,p2) ([92(9) - - - Z" " (9)])

where on the left-hand side m denotes the multiplication in R of §5 and on
the right-hand side the multiplication in R of §3.

If p1 # p2 then by the Shintani correspondence the restrictions of gy
and po to the general linear groups are distinct so that p; and ps are
distinct irreducible representations. Therefore m(p1, p2) and m(py, p2) are
both irreducible and

Gal(Fym /Fq)xGLqypFgm U
Sh(ReSGii+in/'mq)o< R (mipr, p2))) = mp1, p2).
However

Gal(Fym /Fq)xGLaysFym L
Resqr, ofom’ " (m(p1, p2))

o Gal(qu/Fq)O(GLaqum ~ Ga](]qu/]Fq)o(GLb]qu ~
= m(ReSGLa]qu (p1), Resgr,pm (P2))-

Gal(Fym /Fq)xGLaFym

Therefore, if p1 = Resg, (p1) and

LoFm

A ‘Gal(F m/Fq)(XGLb]F m oo~
P2 = RebGLb]F;’m " (p2),

then
Sh(m(pr, 52)) = m(Sh(pr), Sh(ps)).

3The formula of [117] differs from mine because we have used different formulae for
the multiplication in a semi-direct product.
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If a = b and p; = py and (see §5 on “multiplication”) m(py, p1) is not
irreducible but there is an idempotent e of the symmetric group on two
letters such that

m(p17p1) = em(p17p1) + (1 - e)m(phpl)

and the two summands on the right are irreducible. Similarly

m(p1, p1) = em(p1, p1) + (1 — e)m(p1, p1)

where the two summands on the right are irreducible. In addition

Xem(ﬁl,ﬁl)(za g) = 61€1Xem(p],p1)([gz(g) v Emil(g)])

and

X(1—e)m(p,51) (5 9) = €1€1X(1—e)m(pr.pn) ([95(9) - . - 7 (g)])-
Therefore
Sh(em(p1, p1)) = em(Sh(p1), Sh(p1))
and
Sh((1 —e)m(pr, p1)) = (1 — e)m(Sh(p1), Sh(p1))
and adding these relations yields

Sh(m(p1, p1)) = m(Sh(pr), Sh(p1)).

Set R = ®;>0 R, where R} = Z[Irr(G LiF ym )21 Fam /F)] the subgroup
of R(GL,F,m) spanned by Z-linear combination of irreducible representa-
tions which are invariant under the Galois action. In Theorem 5.2 we saw
that R” is a subalgebra of R and a similar argument shows that R’ is a
subalgebra of @;>0 R(GLFgm).

THEOREM 6.3.
With the notation introduced above R’ is a graded subalgebra of the
algebra @;>9 R(GL{F¢m). Furthermore the restriction map

R = @50 R(Gal(Fym /Fy) o< GLFym) — ®y>9 R(GLFym)
restricts to a surjective algebra homomorphism of the form R” — R’.

The Shintani correspondence of Theorem 6.2 is a bijection of set of irre-
ducible representations. Extending it by additivity yields an isomorphism
of abelian groups

Sh:R = R.

The preceding discussion concerning the multiplicativity of the Shintani
correspondence establishes the following result.
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THEOREM 6.4.
The Z-linear extension of the Shintani correspondence of Theorem 6.2
yields an algebra isomorphism

Sh:R =R
between the Hopf algebras R’ introduced above and R of §3.

6.5. The algebra isomorphism Sh~! of Theorem 6.4 yields an injective
algebra homomorphism

R — R' C &0 R(GLFym)

between two Hopf algebras is not a Hopf algebra homomorphism. This
is illustrated by the following GLoF 2» example of ([117] p.412; see also
Chapter Eight, §1.3).

Suppose that m = 2p. Consider the Galois extension F,2»/F, and
the irreducible representation of GL2F,2» given by m(x1,x2) (sometimes
denoted by is R(x1,x2)) with x; : F*, — C* and Frobenius action

q
E(x1) = x2,X(x2) = x1 so that

E*R(XIJQ) = R(X17X2)-

This is decomposable in the Hopf algebra @;>¢ R(GL¢Fg2») and there-
fore is not primitive and therefore it is not primitive in R.

Hence Gal(F 2 /F,2) = (X?) fixes x1 and x2 so that, by Hilbert’s The-
orem 90,

x1 = O - Norm : Fzgp — IF:;Q — C*
and
x2 = X%(©) - Norm : Fop, — Fpo — C*.
Therefore © # ¥*(0).

From ([117]; [126], Chapter Two) Sh(R(x1,x2)) = R(0©), the Weil
representation associated to ©, which is an irreducible representation of
GLyF,. However the Weil representation is an example of a irreducible
cuspidal representation of GLoF, and, as explained in [146], these are the
same as the positive primitive irreducibles in the PSH-algebra for GLIF,.

The character © is an example of a regular character of the multi-
plicative group of a finite field. In fact, as a consequence of the Shintani
correspondence together with ([133] Theorem 8-6), the character functions
of all the cuspidal representations of the GL,F,’s are calculated in ([117]
Theorem 2) and, in addition, these cuspidals are shown to be in one-one
correspondence with regular characters®.

4There are other ways to prove ([117] Theorem 2). For example, in ([69] Theorem
13 p.439) the cuspidals are classified and denoted by g*’s. Also the result can be derived
from ([41] Theorem 9.3.2) which asserts that the irreducible Deligne-Lusztig characters
:th(@), for regular € will be cuspidal if and only if the torus 7' does not lie in any
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7. Counting cuspidals irreducibles of GL,F,

7.1. This comes from ([117] §3) which culminates in the proof of ([117]
Theorem 2).

Let By C GLF 4 denote the Borel subgroup of upper triangular ma-
trices so that By = D;U;, the semi-direct product of the diagonal and the
unitriangular matrices, D; and Uy, respectively.

Suppose that Fy C Fgn C Fym where m = nd. A character x : Fy. —
C* is regular if g € Gal(F4n/Fy) and g(x) = x implies that g = 1 (i.e.
Xx#Zx) forl=1,...,n—1).

Define x to be the composition y = x - Normg, ,,, /5 n : Fgm — C*.

Define a character ¢, : B,Fqm — C* by the formula

by (Xij) = H S - Normsg . (Xi0)-
i=1

Therefore, by the regularity of x, the character ¢, is regular in the sense
that ¢, # w*(¢y), the conjugate of ¢, by a permutation matrix w.
Define a function 1, on GL,F;= by the formula

Ox(Xij) i 9= (Uij)w(Xi;)
Qﬁx(g) =

0 otherwise

where (U, ;) € Uy, (X;,;) € B and w is the permutation matrix given by

o1 0 ... ... 0
0 0 1 ... 0
w = S : : :
o0 o0 ... ... 1
1 0 0 ... ... O

THEOREM 7.2. ([117] Theorem 2)°
(i) If x is a regular character of F}, there exists an m-th root of unity
&m and an irreducible cuspidal representation p, of GL,F, such that

q—m(n—l)/Q

mPx (NE,n ===
é‘ pX( IFq /]Fq(g)) |Bn]qu

Yo (XgZ(X)T.

X€GL,Fgm

(ii) For two regular characters x1,x2 py; = Py, if and only if x1 =
Y!(x2) for some I. Moreover any cuspidal of GL,F, is equal to p, for some
regular character x of F..

proper Frobenius-stable Levi subgroup of G. I am grateful to Alexander Stasinski for
explaining the latter argument to me.

5This result is stated in the conventions for semi-direct products, GL-norms etc of
Chapter Ten (Appendix I) rather than those of [117].
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7.3. Sketch proof of Theorem 7.2

By Mackey’s irreducibility criterion (proved by Frobenius reciprocity
and the Double Coset Formula for the restriction of an induced represen-
tation)

Indgfﬁ]ﬁim (¢ ) is irreducible. This uses the fact that the permutation ma-

trices are the double coset representatives of B,F m \GL,Fm /B,Fgm.

In the tensor product notation for this induced representation as a
left GLpFgm we have g @, r,m 1 = gb @B, F,m Ox(b™1) so that we may
think of ¢ ® B,Fym 1 as the complex-valued function f;, which is defined
by f(z) = 0 unless z € gB,Fym and if x = ¢gb with b € B,Fym then
fo(x) = ¢y (271g) = 6, (b71).

This makes sense because
T ®p,Fm fo(2) = gb@p,F,m Ox(b7") =g @p,F,m 1.

Note that if o’ € B,Fm then fy(zb') = fy(gbb’) = ¢ (V)10 1g71g) =
Ox (V)" fo(@).

In the tensor-product notation for the induced representation the func-
tion f,, transforming as above, corresponds to

g ®Bn]qu 1= Z h ®B,L1qu fg<h) S (C[GLnqu} ®B"1qu C¢x'
hEGL,Fym | BpFym

To switch from Shintani’s conventions to mine we need to define a
function f;’fl by f;'fl(x) = fy(z7'). Then, if b,/ € B,Fym, f;’}l(bx) =
fo(z71b71) is zero unless z7'b~! = gb and in the latter case

S (bx) = fo(a™'b71) = by (bzg) = 6y (0) folz™h) = 6y (0) 3" (2).

Following Shintani if w is a permutation matrix write
U, =UNw 'U~w where U = U,F,m and U~ is the transpose of U (i.e.
the lower unitriangular matrices). For the permutation matrix introduced
above one finds that

1 U2 U133 ... Ul,n

0 1 0o ... ... 0
U, ={u= 0 O 1 .. 0 1.

0 O o ... .. 1

Now consider the product of a matrix in U__, and an unitriangular
matrix

1 « 1 8\ (1 B+aB Y\ (1 0 1 B+aB
0 I, o B) Lo B “\o B 0 I,
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where (3, a are row vectors and B is upper unitriangular (n — 1) x (n — 1)
matrix. Also we have the matrix relation

(4 8)e=(22)

Suppose that b is the upper triangular matrix

_p(l 8
b_D<o B>

where D is the diagonal matrix D = diag(dy, ds, ... ,dy). Then there exist
matrices u,u’, " € U _, where

(1! «
“= 0 Infl

wtu(b)

such that

Notice that

and that
sz (FP 0 )=s.0.

In addition, as u runs through U, _, so does u".
Then Shintani defines I, by the formula

(Isfy") (@) = g~ =02 % 7 fh (w™ s (x)).

uEUwi1

and the above discussion explains why (Is f5")(bz) = ¢, (b)(Iz f3") ().
Therefore, in my conventions, the right hand side of the above equation
is
Usfe-)(@™) =g ™02 3" f (S uw).

ueri1

In the tensor product notation this is equivalent to

Is(9 ®@B,F,m 1) = Z Z h®B,F,m fq(E(h)uw).

hEGL,Fym [BnFom ue~_
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Therefore
g'Is(9 ®B,F,m 1)

= ZheGL"]qu/BnIE‘qm ZugU’il g'h @B, Fgm fo(E(h)uw)
= YW eGLFym BuFym Soucr—, 1 ®B.Fm fo(E((g") (R )uw)
= Zh’eGLn]qu/Bn]qu ZueUi1 W @B, Fm Isg)g(E(R")uw)

=Is(3(9")g ®B,F,m 1)-

Set p = Indjj % " (¢y). By ([117) Lemma 3.2) I = 1 and

p(2(9)) - Igt =I5 p(g).
The multiplication in my convention for semi-direct products is given by
(¢,9)(c,g") = (e, ge(g’)). With this convention

(&, D1, 9) = (5,2(9) = (1,5(9)) (%, 1)
so the irreducible representation p extends to an irreducible p on
Gal(F,m /F,) oc GL,Fym in which (¥, g) acts via Ig' - p(g) = Ig-1 - p(g).
Therefore, by ([117] p.409),
g mn=1)/2

Trace(p(X, g9) = W
n+qm

> (XgS(X)h).
X€GL,Fym

To show that Sh(p) = p, is a cuspidal irreducible of GL,F, it suf-
fices to show that for any pair of irreducibles p; € Irr(GL,F,) and ps €
Irr(GLy,—,Fg) that py is not an irreducible constituent of m(p; ® p2). By
Theorem 6.4, applying the Shintani correspondence up to Fym, Sh™!(p1)
must be equivalent to the PSH algebra product of ¥ (y)’s as 1; Tanges over
some a proper subset of 1,2,... ,n. However this is impossible because any
such product is not Galois invariant.

Similarly, applying the Shintani correspondence up to Fgm,

Sh™(py,) = Sh™'(py,) implies that the Galois orbits of x; and x2 coin-
cide.

Finally, the discussion shows that the number of distinct regular char-
acters of F7., is less than or equal to the number of inequivalent irreducible
cuspidal representations of GL,F,. The fact that these numbers are in fact
equal follows from a counting argument given in ([133] Theorem 8.6). O

8. An example of w(k. .)Pam—aW(ks) ) Pam—a
8.1. In the notation of the discussion of Double Cosets in §3 let
m="Ta=3,a=4,k1 =1=ka, ka1 =2,k1o=3
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and consider the double coset representative

1000000
0000100
00000T10

wlky,)=] 0 1 0 0 0 0 0
0010000
0001000
00000O0 1

If (a;;) € G7 then the conjugate by w = w(k, .) takes the form

a1 a5 aie 12 aiz a4 aiy
as1  Aas5 A5 G52 G53 0(54 457
a1 Ae5 Ae6 G2 (g3 G4 A7
w(ai;) = | a1 ags azs aze azz azs asr
aszy ass age Gz2 G33 34 Aa3z7
G41 QA45 Q46 Q42 43 Q44 Q47
ary  ars  Qrg Gy Gr3 Q4 A7y

-1

In order that w(a;;) = w(a;;)w™! lies in wGy4 x Gyw™! it must have

the form

a1 0 0 aip a1z aig 0
0 ass Q56 0 0 0 asy
0 aes  Qge 0 0 0 Qg7

w(aij) = a1 0 0 Q9292 A23 A24 0
az1 0 0 az2 azz az O
ag1 0 0 a4 as3 age O

0 ars Qg 0 0 0 ary

and so to lie in the intersection w(G4 X G3) () Gs x G4 it must have the
form

a;p O 0 0 0 0 0
0 ass  As6 0 0 0 0
0 agr Qg6 0 0 0 0
w(aij) = 0 0 0 99 Q23 A24 0 = A”.
0 0 0 azg Q33 0434 0
0 0 0 a42 Q43 A44 0
0 0 0 0 0 0 arr

Therefore in this example

wG4 X G3’U)_1 ﬂGg X G4 = Gku X Gk21 X lez X szz'
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In order that w(a;j) = w(a;j)w™" lies in wPy3w™! it must have the

form
a11 ais Gie Q12 A1z a4 Ay
0 ass Qg6 0 0 0 asy
0 aegs  Qge 0 0 0 Qg7
w(aij) = G21 Aag25 Q26 Q22 A23 Q24 G27

a3y ass a3 a3z2 a3z a34 A3z7
G4q1 Q45 Q46 @42 A43 Q44 Q47

0 ars Qg 0 0 0

and so to lie in the intersection wP4,3w’1 () P34 it must have the form

arr

ail; ais aie ai12 a1z G4 a7
O ass ase O 0 0 as7
0 ags A6 0 0 0 ag7
w(aij) = 0 0 0 a2 a23 ag4 Qg7 = C
0 0 0 a3z aszz ass agy
0 0 0 as2 aa3 aasa a4r
0 0 0 0 0 0 arr
A matrix in wP; 3w (| G3 x G4 has the form
a1 a5 aig O 0 0 0
0 ass Q56 0 0 0 0
0 ags Qe 0 0 0 0
w(aij) = 0 0 O as2 a23 ag4 A27 = A
0 0 0 a3z aszz ass azr
0 0 0 a4 a43 agq ayr
0 0 0 0 0 0 [0 rdrd
and a matrix in wPy sw™! (| Us 4 has the form
1 0 O b12 b13 b14 b17
01 0 O 0 0 bsy
0 01 O 0 0 bgr
w(a;;))=1 0 0 0 1 0 0 0 = B.
0 00 O 1 0 0
00 0 O 0 1 0
0 0 0 O 0 0 1
Choosing
bio = 2 hyg = T2y, = L
11 ail a1
air a5 Gie b7 ay
X = 0 ass asg |, X | bs7r | = | as7

0 ass aes ber ag7
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shows that AB = C and therefore
P3,4 ﬂwP4,3w’1 = ((G3 X G4) ﬂwP473w’1 . (U3,4 ﬂwP4,3w’1).

In order that w(a;;) = w(a;;)w™" lies in wUs3w™" it must have the
form

1 ais QAie 0 0 O ayy
0 1 0O 0 0 0 O
0 0 1 0 0 0 O
w(aij) = 0 25 A26 1 0 O a7
0 ass Aa3e 01 0 ast
0 a45 Q46 0 0 1 0%k
0 0 0 0 0 0 1

and to lie in wU473w_1 (N Gs x G4 it must have the form

¢ 0 0 0
0
0
a7 :A/.
asr

Q47
1

ais a

=
=

w(ai;) =

[N elolNoNoBoll S
OO OO O
[N all =)
oo o~ OO
OO O OO
O R OO O oo

To lie in wUy 3w™" (Us 4 a matrix must have the form

1.0 00

OO OO
S OO+ OO
OO, OO oo
_ O OO OO

0
1
0
0
0
0

OO OO OO

and to lie in wUy 3w~ () P54 it must have the form

a60

Q
=
o

ayr

0

0
a7 == C/.
asr

aq7
1

=

w(a;j) =

SO DO OO O
oS o oo
SO OO O
S OO+ OO
SO OO OO
O = OO O oo

0

Therefore, choosing A’, B’, C' in a similar manner to the case of A, B,C
shows that

P374 ﬂ’LUU473”LU_1 = ((G3 X G4) me4,3’LU_1) . (U3,4 ﬂwU473w_1).
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From the matrix immediately preceding A” in order that a matrix lies

n

wGy x Gaw™ ! N Us 4 it must have the form

w(bij) =

1

OO O O oo

0

OO OO o

0

oo oBel "

b

2

S oo, OO

b13

OO OO O

=
O»—‘OOOO:
o

— B//

and to lie in to lie in wGy x Gaw™! P34 it must have the form the form

ail

w(ai;) =

OO OO O

0

0
ass
aes

0

0

0

0

a56
ae6

a12

az2
a32
42

a13

ai4 0
0 asy7
0 Qg7
a4 0 = C” .
a3y 0
a44 0
0 arr

Therefore, choosing A”, B”,C” in a similar manner to the case of

A, B, C shows that

P3’4 ﬂ wGy X Gg’w_l

= ((Gg X G4) ﬂwG4 X Ggw_l) . (U374 ﬂ’LUG4 X G3w_1).






CHAPTER 10

Appendix I: Galois descent of representations

This Appendix contains more detail than any reader might conceiv-
able want concerning Shintani descent from Galois invariant complex irre-
ducible representations of GLyF4 to GLoFo. In §1 and §2 explicit matrix
formulae are given for the 4-dimensional and 5-dimensional Galois invari-
ant irreducibles. In §3 matrix formulae are given for extensions of these
representations to the semi-direct product of GLsF, with the Galois group
Gal(F,/F2). §4 describes the characterisation of the Shintani correspon-
dence for finite general linear groups [117]. §5 recalls the explicit Brauer
induction formula which gives the Euler characteristic of the monomial res-
olution of the representations under consideration without my having to
write down the entire bar-monomial resolution. §6 gives the data needed
for the explicit Brauer induction formula of the semi-direct product rep-
resentations. §7 and §8 give a “descent algorithm” which one applies to
the monomial resolution of the semi-direct product extensions in order to
obtain a monomial complex all of whose Line-stabilisers lie in the product
of the Galois group with the subgroup of Galois-fixed points. In this simple
example it is shown how the Euler characteristic of the monomial complex
resulting from the “descent algorithm” is related to the outcome of Shintani
descent. In §9 are explained the necessary and sufficient conditions on the
integers dime(V(#:#)) which ensure that a representation exists which is
the Shintani correspondent of a Galois invariant irreducible V.

Note that knowing all the subspaces V(#:9) is sufficient to write down
the bar-monomial resolution for the Shintani correspondent of V.

1. Subgroups and elements of A5 via PGLyF,

1.1. Let As denote the alternating group consisting of even permuta-
tions of the set with five elements and let GLsF4 denote the group of 2 x 2
invertible matrices with entries in the field with four elements.

243
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In GLsFy, if £ is a cube root of unity in F,4, then we have matrices

0 1 0 1 0 1 1 ¢
X, = (X2 = —
I ¢ 1 ¢ 1 ¢ IS
0 1 1 ¢ ¢ ¢
X3 = -
IS IS €1
01 £ ¢ €1
Xt = -
1 ¢ €1 1 0
01 €1 10
X5 = -
1 ¢ 10 0 1

This matrix gives a cyclic permutation of the projective line over Fj.
In fact, as we shall see from the elements described below, the projective
general linear group PG LyF4 = GLoF,/F; is isomorphic to As. Acting via
right multiplication on row vectors, PG LsF, permutes via the points of the
projective line

P (F4) = {(0,1),(1,0), (1,8), (&, 1), (1, 1)}
For example, X yields the 5-cycle ((0,1),(1,£),(1,1),(&,1),(1,0)).

The 2-Sylow subgroup of As is the Klein 4-group Vj generated by the
images in PG LyFy of the matrices A and B given by

01 1 ¢
A= , B =
10 €1
since A2=1,B?2=¢-1 and
0 1 1 ¢ €1 1 ¢ 0 1
AB = = = = BA.
10 €1 1 ¢ €1 10
As even permutations of the projective line both A and B fix (1, 1) since
01
(1, DA = (1,1) = (1,1),
10
L ¢
(17 1)B = (1v 1) - (52752) = (L 1)

&1
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The 3-Sylow subgroup consists of the images of I, C, C? where

0 1 11
C= , C? = ,C3=1.
11 10

Since the order of PGLyF, equals % = 60 which is the order
of A5 and PGLsF, sits inside X5 the above calculations with matrices show
that PGLoF, = A5 C Zs.

The subgroup A4 has index five in A5 and can be realised as the images
of the matrices which fix (1,1) in the projective line. Also setting

1 ¢
Y =
& 0
which satisfies
1 ¢
(1,DY =(1,1) = (£,¢) = (1,1)
& 0

and furthermore Y2 = I. Finally Y normalises V; = (A, B) since we have

1 ¢ 0 1 0 ¢
YAY? =
£ 0 10 £ 1
¢ 1 0 ¢
- 0 &2 £ 1
=E{AB,
IS I ¢ 0 ¢
YBY? =

Hence
Ay =(Y,A,B) C As.
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By Sylow’s theorem (Y') and (C) are conjugate in As. Explicitly we have

1 0 0 1 1 0
C= =Y
& & £ 0 & ¢
One easily verifies that
Y = XBCBX{ and X¢ = C*BC”.

Since As has order 60 its proper subgroups must have orders in the set
{2,3,4,5,6,10,12,20}. In fact there is no subgroup of order 20. For suppose
that a subgroup contains V4 = (A, B) and a 5-cycle. Then conjugating the
elements of V; by the 5-cycle and multiplying the results by A, B, AB one
finds that the subgroup must also contain a 3-cycle and hence equals As.
Similarly, there is no subgroup of order 30.

The following table shows all the conjugacy class representatives of
subgroups of As.

1.2. Congugacy classes of subgroups H of As

H Order Generators Number in conjugacy class

A; 60 A, B,Y, X¢ 1
Ay 12 A, BY 5
Dy 10 Xe, A 6
Ds 6 A,C 10
Cs 5 Xe 6
Vi 4 A, B 5
C; 3 C 10
Cy 2 A 15
1y 1 I 1

A simple argument using Sylow’s theorems shows that each subgroup of As
is determined up to conjugacy by its order.

The classification of irreducible, finite-dimensional complex represen-
tations of GLyF,4 given in ([126] §3.2 p.89) shows that there are five ir-
reducible representations of the quotient group PGLsF4 = As. Therefore
there are five conjugacy classes of elements of A5 of orders 1,2,3,5 and 5.
To see that there are two distinct conjugacy classes of order 5 observe that
only one conjugacy class implies either that Cs is normal in As or there is
a subgroup of order 20 or 30.

In the character table of A5 given below the conjugacy classes of ele-
ments are labelled 1,2,3,5" and 5% and are represented by elements hav-
ing orders 1,2,3,5 and 5, respectively. The «; are real numbers given by

a1 = (14++/5)/2 and ap = (1 —/5)/2.
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1.3. Character Table for As

1 2 3 5 52

1 ]1 1 1 1 1
V31 3 -1 0 ap Qo
V32 3 -1 0 [65) (651
ve |4 0 1 -1 -1
vs |5 1 -1 0 0

2. Complex irreducible representations of A

2.1. The action of Gal(F4/F3)

Let o denote the Frobenius automorphism of Fy given by o(z) = 22
Applying ¢ to the matrix entries given an involution on GLyF4 and its
quotient PGLyFy = As. Therefore, if p is a finite-dimensional complex
irreducible representation of As then so is o*(p), the composition of p with
the o.

It is straightforward to verify that o applied to the conjugacy class 5
gives 52 so that 0*(v31) = v32. On the other hand, since o* preserves
dimension, we must have

U*(l) =1, U*(V4) =1y and U*(Vs) = vs5.

2.2. Explicit models for vy and vs

The Borel subgroup of upper triangular matrices in GL3F, has order
36 so its image in PG LoF4 has order 12 so is conjugate to A4. Denote by
B the image of the Borel subgroup in PGLsF4 and also, when there is no
confusion, the Borel subgroup of GLsF,. This enables us to describe the
irreducible representation v4 and vy explicitly, following the description of
irreducibles given in ([126] §3.2 p.89).

There is a short exact sequence representations of GL3F, of the form

0— vy =5(1) — md%* (1) — L(1) — 0

where L(1) = 1, the one-dimensional trivial representation, and S(1) is irre-
ducible. Each representation in the short exact sequence factorises through
As = PGLyF, and S(1) factorises through the irreducible representation
Vy.

If X is a non-trivial character of F; we know from ([126] §3.2p.89) that
IdGE2 4 (InfZ (X ® A?)) is irreducible. Also A ® A? is trivial on the scalar
matrices since A3 = 1 so that A®\? factorises to give a non-trivial character
which is conjugate to ¢ : B = Ay — A4/Vy — C*. This irreducible
factorises through

vs = IndEGE2F1 ().
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2.3. Bases for vy and vs
If 41 : B — C* be a character. The standard basis for Ind5%%2%4 () is

I®pl, Xe®pl, XZ@pl, X}®pl, X} ®pl.
Define a basis Vi, Wy, Wy, W3 for v4 by
Vi=(I®pl-Xfepl)-(I®pl-X;®pl),

Wy =1®p1—-X:®p1,
W2:I®31—X§®Bl,
Ws=(I®pl-X;opl)+([®pl—-X!®pl).

If & = €2™V~=1/3 define a basis v, w1, wa, ws, wy for vs by

v=I®pl+X:0pl+&X20p1

wy = —&I@p 1 —&Xe@pl+28X2@pl - X ®pl—-X;®p1
wy=(1—ENI@p1+ (- )Xe®p 1 - X{@p 1+ XZ®p1

ws = —&I ®p 1 —&Xe @p 1+ 265X 0p1+3X ®@p1+3X2@p1

wy=(1-)®pl1+ (& -1)Xe®p1+3X! ®p1-3XZ@p1.

2.4. The As-action on vy
In terms of the ordered basis {Vi, W7, Wa, W5} the matrices for the
action of A, B, C, X¢ on vy are given by

-1 0 0 0
0 -1 -1 -2
A=l 0 0 1 o
0 0 0 1
0 -1 -1 -1
-1 0 0 1
B=1"0 0o 1 o
0 0 -1 -1
1 0 0 0
0 -1 -1 -2
“lo 1 0o o
0 0 0 1
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1 1
0 a5
Xe=11 0 o 1
1 1
o 3 L 0

2.5. The As-action on vs
In terms of the ordered basis {v,w;,ws,ws, ws} the matrices for the
action of A, B,C, X¢ on vs are given by

10 0 0 0
01 0 0 0
A=fo00 -1 0 o0
00 0 1 0
00 0 0 -1
0 0 8 o
01 0 0 0
2
B=| 0 0 0 0 s
2
£ 0 0 0
0 0 &-¢& 0
10 0 0 0
1 1
0 T v 0 0
1
c=|0 £-% -1 0 § 052
1 :
D 0 2 3
0 0 0 14& -1
4 4
S SO b
0 i ity iy -y
1 3 1
Xe = 0O 3+% -3 “1 D
_& s, 3 3 1 4 @
6 4 4 4 12 12 12
& 1 3 8 & _1 & 1
6 6 4 4 4 12 6 4

3. Semi-direct products

3.1. Following the notational conventions of ([125] p.36), if C acts on
G via A : C — Aut(G) then the semi-direct product C' G is the group
whose underlying set is C' x G with multiplication given by

(c1,91) - (€2, 92) = (c1c2, 1A (e1)(g2)), ¢ €C,g; €G.

Let ‘H denote a complex vector space and let p : G — Autc(H) denote
a representation of G on H. For ¢ € C denote by ¢*(p) : G — Autc(H)
the representation of G given by the formula c¢*(p)(g)(h) = A(c)(g)(h) for
ceC,geG,heH.
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Suppose that p is a representation for which Schur’s Lemma holds; that
is, Endgjg)(H) = C, the ring of scalar endomorphisms. Assume in addition
that ¢*(p) and p are equivalent representations for each ¢ € C. Therefore
for each ¢ € C there exists

U. € Autc(H)
such that, for all c € C, g € G,

*(p)(g) = p(A(e)(9)) = U plg) - U; ' € Autc(H)

If V. € Autc(H) satisfies Ue.- p(g) - U7t = V.- p(g) - V.1 then, by the Schur
Lemma condition, U, = V. € Autc(H)/C* = ProjAutc(H), the group of
projective automorphisms of H.

PROPOSITION 3.2.

Let G and C be as in §3.1. Let p be a representation of G for which
Schur’s Lemma holds. Assume in addition that ¢*(p) and p are equivalent
representations for each ¢ € C. Then, in the notation of §3.1, there is a
homomorphism of the form

p: C x G — ProjAutc(H)
given by the formula p(c, g) = p(g9)U,.

Proof

Since Uy is unique in the group of projective automorphisms we have
UgUqg, = Uyg, in this group and therefore

plecr, gA(e)(g1)) = p(gA(c)(g1))Uce,
= p(9)p(A(c)(91))UcUc,
= p(9)Ucp(91)U; U U,
= p(c)Uep(91)Ue,
= ple, g)p(er, gr).
EXAMPLE 3.3. Let G = PGLyF,; and let C = Gal(IF4/Fs) generated

by the involution given by o, the Frobenius automorphism. From §2.1 we
know that

c*(1) =1, 0*(v4) = v4 and o™ (v5) = vs.

(i) When p = 1, the trivial one-dimensional representation, then
U, = 1 and the homomorphism of Proposition 3.2 is trivial. The trivial
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projective representation factors through each of the two one-dimensional
representations C' o« GLyFy — C* of the form

C x GL2F4 — C — C*.
(ii) When p = vy we have H = (V1, Wy, Wa, W3). Let U, be the linear

involution on ‘H given by

Us(V1) = V1, U, (Wh) = =W1,Us (W2) = =W2, U, (W3) = —Ws3.
With this choice of U, and U; = 1 the projective homomorphism p of
Proposition 3.2 lifts to a representation

174 : Gal(]F4/IE‘2) 0.8 GL2F4 i Aut@(H)
given by (¢, g) — v4(g)U.. This is easily verified using the relations o(A) =
A,0(C) = C,0(Xe) = X¢AC, 0(B) = BA in PGLyF,.

In terms of matrices o acts on 74 as

1 0 0 0
o -1 0 o
10 0o -1 o0

0o o0 0 -1

The other lift of p to a linear representation is the tensor product of 74
with the non-trivial one-dimensional representation of the form

Gal(F4/Fs) x GLyFy —> Gal(Fy/Fy) — C*.

(iii) When p = v5 we have H = (v, w1, ws, w3, ws). Let U, be the
linear involution on H given by

Us(v) = v,Us(wy1) = —w1, Us(w2) = —wa, Ug(w3) = w3, Us(wy) = wy.

With this choice of U, and U; = 1 the projective homomorphism p of
Proposition 3.2 lifts to a representation®

135 : Gal(]F4/IF2) X GL2F4 — Aut@(’H)

given by (c, g) — v5(g)U..
In terms of matrices o acts on U5 as

1 0 0 00
0 -1 0 00
c=]10 0 -1 00
0o 0 0 1 0
0o 0 0 01
The other linear lift of g is constructed by tensoring with a non-trivial

quadratic character, as in (ii).

1In this case we are fortunate to be able to construct p=104,05 with E =K =Ty
in the notation of Chapter Two, §6.1 and its attendant footnote.
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3.4. Conjugacy classes of subgroups H of Gal(Fy/F3) x PGLyFy
The following table shows the conjugacy classes of subgroups H which
are not conjugate to a subgroup of PGLyFy = As.

H Order Generators Number in conjugacy class
((0,1),45) 120 (0,1),A,B,)Y, X; 1
((0,1), Ay) 24 (0,1),A,B,Y 5

C4O(C5 20 (O',B),Xg 6

02 X DG 12 (O}].),A,C 10

((0,1), V) 8 (0,1),A,B 15
Dg 6 (0,A),C 10

Cy XOg 6 (a,l),C 10

Cy 4 (0, B) 15

C2 XCQ 4 (O’,].),A 15

Cs 2 (0,1) 10

To determine the subgroups J C C5 o< PGLsF4 up to conjugacy whose
projection J C Cy o« PGLsF, — C5 is non-trivial we consider the kernel
of the projection. This a subgroup J’ of index two in J which we may
assume is one appearing in the table of §1.2. A laborious analysis of the
possibilities yields the results of the above table.

In addition, let us record the action of the Frobenius on Y € PGLsF,

oY) = AY?A.

4. The Shintani correspondence for GL,F

4.1. Let C denote the cyclic group of order d given by the Galois group
of F,a/F, generated by the Frobenius automorphism, o. Let Irr(GL,F )¢
denote the set of finite-dimensional, irreducible complex representations p
of GL,F,a such that 0*(p) is equivalent to p. Let Irr(GL,F,;) denote the
set of finite-dimensional, irreducible complex representations of G L,IF,.

The Shintani correspondence [117] is a bijection of the form

Sh : Irr(GLnFga)¢ —> Irr(GL,F,).

This correspondence is characterised in the following manner. Let xsp(,)
denote the trace function of the irreducible representation Sh(p). Then
there exists an irreducible linear representation p of the semi-direct product
C «x GL,Fja which is a lift of the projective homomorphism of Proposition
3.2. Let x; denote the trace function of p. This linear lift may be chosen
in such a way that, for all g € GL,Fa,
6XSh(;))(((-’T7 g)d) = Xﬁ(g7 g)

where € = +1 is a sign which is independent of g. The left side of this
relation is interpreted in the following manner. The C' oc GL,,F ja-conjugacy
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class of the element

(0.9)" = (1,90(g)...0" '(9))

intersects GL,F, in a unique GL,F4-conjugacy class. The left side of the
characterising relation denotes xgp(,) applied to any element of this G L, [F4-
conjugacy class.

EXAMPLE 4.2. GLoF,

The group GLsF5 is the dihedral group of order six whose irreducible
representation consist of two one-dimensions, 1 and x and a two-dimensional
irreducible v. Therefore the Shintani correspondence takes the form (see
§9.6)

Irr(GLoF4)C = {1,v4, 05} « Irr(GLoFy) = {1, v, x}.
Setting ¢ = 1 in the characterising relation we find from Example 3.3(iii)
that

dim(Sh(vs)) = Xsh(ws)((1,1)) = xi5 (0, 1) = 1.
Since Sh(1) = 1 we must have Sh(vs) = x and Sh(v4) = v. This agrees
with Example 3.3(ii) since x,(0,1) = 2 for the two choices of U,.

5. Explicit Brauer Induction ag

The homomorphism a¢g is an explicit formula for Brauer’s Induction
Theorem, discovered by Robert Boltje [17]. The first such explicit for-
mula (a derivation rather than a homomorphism) appeared in [122] and a
topological formula for a¢g, analogous to that of [122], was given by Peter
Symonds [134]. The material of this section and its notation is taken from
[126].

DEFINITION 5.1. Let G be a finite group and let R, (G) denote the free
abelian group on G-conjugacy classes of characters, ¢ : H — C*, where
H C G. We shall denote this character by (H, ¢) and its G-conjugacy class
by (H,$) € R.(G).

If J C G we define a restriction homomorphism Res§ : Ry (G) —
R, (J) by the double coset formula ([126] p.32)

Res7((H,¢)9) = Y (JNzHz"'.(=7)"(¢))’

ze€J\G/H

where (z71)*(¢)(u) = ¢(7tuz) € C* . If 7 : J — G is a surjection we
define an inflation homomorphism 7* : Ry (G) — R (J) by 7*((H, ¢)) =
(n=Y(H), ¢7)”. These maps make R, (—) into a contravariant functor from
finite groups to abelian groups.

Define a homomorphism bg : Ry(G) — R(G) by ba((H,¢)%) =
Indﬁ,(gf))7 the representation of G obtained from ¢ by induction. Then
ba is surjective because bg - ag = 1.
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5.2. Axzioms for ag The homomorphism ag is uniquely characterised
by functoriality and a normalisation property on one-dimensional characters
of G.

(i) For H < G the following diagram commutes.

RG) 25, R.(G)

el
Res¥

R(H) 2. R, (H)

(ii) Let p: G — GL,(C) be a representation and suppose that

ac(p) =Y e (H,0)% € Ri(G)
then a(g,¢)c =< p,¢ > for each (H, $)¢ such that H = G. In particular,
if p is one-dimensional then ag(p) = (G, p)©.

5.3. The formula for ac(p)
The formula for ag(p) is given by ([126] Theorem 2.3.15 p. 48)

ac(p)

M G
= &1 L)< (0 in Me ISy gy < @ Resip(p) >ne -(H, ¢)¢.

Here < ¢/, Res$, (p) >p is the Schur inner product of ¢ and the re-
striction of p as representations of H' and Mg denotes the poset of pairs
(not G-conjugacy classes of pairs) (H,¢). The Mébius function of the or-
dered pair ((H, ¢), (H',¢")) in M is the integer defined by the alternating
sum of the number chains in Mg from (H, ¢) to (H',¢’)

Hine), )
= >",(—=1)"#{chains of length i with (Ho, ¢)
= (H,9), (Hi, i) = (H',¢)}.

A chain of length ¢ is a totally ordered subset of Mg of the form
<

< <
(Ho, ¢0) # (H1,¢1) # ... # (Hi, ¢5).
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6. Explicit Brauer Induction data for Cy oxc PGLsFy

6.1. Mc,xpPGrL,F,

In order to compute the coefficients in the formula of §5.3 for

apGL,r,(Va) apar,r,(Vs)

and AGal(Fy /F2)x PG Ly, (U5)

AGal(Fy/F2)x PG L2Fy (V1)

we need to tabulate all the Gal(Fy/F3) o« PGLsF,-conjugacy classes of
pairs (H,\) € Mgai(F,/F,)xPaL.F,- This are given in the following table
where A ~ ) indicates conjugacy, &, = 2™V and H = Hom(H,C*),

the group of characters of H.

H H formulae
Asx 1 -
Ay L ¢~ ¢? oY) =&,
H(ABI) = 1
Dqg 1,9 P(A) = -1,
P(Xe) =1
DG ]-7¢ ¢(A) = _]-7
P(C) =1
Cs Lo~o¢'~¢" ~ | o(Xe) =&
Vi L pa ~ po ~ s pi(A) = —1,
m(B) =1
C3 1,6~ ¢2 ¢(C) =§3
Cy 1, ¢ ¢(A) =-1
{1} 1 -
((0,1)) 2 Cy 1,7 7((0,1)) = -1
((6,1),A) = Cy x Cy 1,7, ~71¢ 7((0,1)) = -1
—1=¢(4)

The table is continued on the next page.
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’ H H formulae
C'4 17¢N¢37¢2 ¢((U’B)):£4
<(071)7C> =y x O3 l’T’¢N¢2’T¢NT¢)2 T((Ual)) =-1,
P(C) =&
{(0,A),C) = Dg 1,7 7((0,A)) = -1,
7(C) =
<(U,1),V4> L7, T((le)) _‘_1
—1=u(A*B)
((0,1),A,C) 2 Cy x Dg 1,7,0,7¢ 7((o, 1)1_4") =-1
¢((0,1)'A) = —1
((0,B), X¢) 2 Cy x Cs 1,7,72,73 7((0, B)) = v/—1,
T(Xe) =1
((0,1), Aq) Lr,¢g~¢* 10 ~7¢> | 7((0,1)) = -1,
¢(Y) : 533
$p(A'B7) =1
{(0,1), As) 1,7 7((0,1)) = —1

(05,¢i) ~ (C5a¢4i) in PGLQ]F4

Note: (A4, ¢) and (A4, ¢?) are conjugate in Co oc PGLoF, (as is seen
from the relation at the end of §3.4) but not in PG LyF,. Similarly (Cs, ¢°)
for i = 1,2,3,4 are all conjugate in Co x PGLyF4 (via (o, B)) but only

6.2. Res%‘XPGLzF“(zZl)ab and ReS%“PGLZF“(%)ab
In order to compute the Schur inner products which appear in the for-
mula of §5.3 for p = 7y and p = U5 we need to know the multiplicities of
each of characters of H which appear in the restriction of 74, and 5 to H.
We denote the sum of these one-dimensional representations (with multi-
plicities) by Res&?*P% 2 4(5,) ,, and Res$*PL2 4 (55) .. These “abelian

parts” of the restrictions to H are given in the table below.
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7] 2 -
Ay 1 ¢+¢2
Do 0 i
De 1+¢ 1
< G+ +0" | 1+ o+ @+ "+
Va T+ +pe+ps | 214 p + po + ps
Cs 2-14¢+¢° 1+29 +2¢°
Cy 2.1+2-¢ 3-1+20
{1} 4-1 5.1
((0,1)) = Cy 1-1+3-7 3119,
<(071)aA>gCQ><CQ 2. T+¢p+T10 2. 1+7+0+70
& d+P+ o +1 14202+ b+ &
((0,1),C) = Cy x Cs 1+T+T¢+T¢2 1+¢+T¢+¢2+T¢2
<(UaA)7C> gl)ﬁ 2.7 1
((0,1),Va) T+ TH T+pu+r
((0,1),A,C) = Cy x Dg T+ ¢ 1
<(U’B)7X€> =0y x Cs 0 2
<(071)aA4> T 0
<(071)7A5> 0 0

63 apGLZ]F4 (V4) and aPGL2]F4(V5)

Recalling that A5 = PGLyF,, a calculation of the formulae for apgr,r, (¥3,1)
may be found in ([126] p.50). Similar calculations using the data from the
tables of §6.1 and §6.2 yield the following formulae:

apcr,r,(va) = (Ag, 1)PCL2Fs 4 (Dg, 1)PGL2Fa | (Dg, )P GL2Fa
(T, ¢)PGL2Fa

+(C5, ¢2)PGL2F4 _ (037 1)PGLzIF4 + (037 ¢)PGL2F4

+(Viy pp ) PCL2Fs — (O, 1)PGL2Fs _ (1, ) PG L2Fs
and
apcryr,(vs) = (Ag, ¢)POLFs 4 (A4, ¢2)PCGLFs 4 (D, 1)PCLFs
+(D6> 1)PGL2]F4
+(Cs, §)PGL s 4 (O, ¢2)POLaFs

+(Va, g ) POE2Fs — 2(Cy, 1) PG L2Fs
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6.4. ac,ocPGLyF, (V1) and ac,opPGL,F,(V5)

Setting G = Cs x PGLyF,, the formula of §5.3 together with the
tabulated data of §6.1 and §6.2 yield the following form for ag(7s5), which
follows from the detailed calculations of the Appendix of [130]:

ag(vs)

= (45,0) + ({(0.B), X¢), 7)) + ({(0,1), 4,C), 1)¢
+({(0,1),Va), )¢ + ({(0, 1), Vi), )¢ + ({0, 1), Vi), )@
+({(0,1),C),9)% + ({(0,1),C), 7¢) + (C5,6)¢
—(Va, ) = (C5,0)% — (C2,0)¢
+({11 D)9 = (0, 1)), )¢ = ({(0,1)), 1) = ({(0, 1), 4), D¢

+(<(0a 1)7 A>7 ¢)G’ + (047 ¢>G - (047 ¢2>G‘
Similarly for 74 we obtain

ac(Ps)

= ({(0,1), A4),7)¢ + (Ca x Dg,7)% + (Ca x Dg, )¢
+(C5,0)% + ({(0,1), Va), 711) + ({(0, 1), C), 7¢)¢
—(C2,0)% = ({(0,1),4),7)¢

+(C47 ¢)G - (<(0, 1)> C>7 T)G'
7. The weak descent algorithm

7.1. Descent of representations

In this section we are interested in the following construction. Suppose
given a finite-dimensional irreducible, complex representation p of a group
G which is invariant under under the action of a subgroup C' C Aut(G).
This gives rise to a projective representation

p: C x G — ProjAutc(H)

where H is the underlying vector space of p.
Suppose that there is a linear lift of p (which we shall also denote by

p)
p:CxG— GL(H).

There are several choices of this linear lift but any two will differ by a twist

by a one-dimensional representation of the form 7: C «« G — C — C*.
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The same is true for acxg(p) € Ry (C x G) since acog commutes
with twisting by one-dimensional representations.

Let G¢ denote the subgroup of C-fixed points of G. Consider the
endomorphism & of R (C « G) which is given on the free generators by

(H,$)“>C¢ if His conjugate to H' C C x G°
E(H, ¢)7¢ =
0 otherwise.

Therefore we may write
g(a’C(XG(ﬁ)) = Z Q(H,p)CxG - (Ha ¢)CO(G7
HCCxGC

which is well-defined up to twists by a one-dimensional representations .
Therefore

E(aonc(p)) € Im(IndSXSe : Ry (C x GY) — R (C x G)),

well-defined up to one-dimensional twists.
Similarly in terms of representations

bexc(E(acxa(p))) € Im(IndgGe : R(C x GY) — R(C x G)),

well-defined up to one-dimensional twists.
We have a commutative diagram

R(C x GO) _ R(C x @)
Indgzgc
ResCxG° Res&>C
G¢C G
ndé
R(GO) e | R(G)

so that
ResG™ (bowa (E(acxa(p)))) € Im(IndGe : R(GY) — R(G))

is a well-defined element depending only on p.
For example, if C is cyclic then the linear lift always exists.
Finally, if Indgc is injective, we have a construction of the form

Irr(G)¢ — R(GO).
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The following result, proved in Appendix I §11, will be required in
Example 7.3.

LEMMA 7.2. (i) The induction homomorphism
IndpC "™ 1 R(Dg) — R(PGLsFy)
is injective.
(ii) The kernel of the induction homomorphism
Ind&2 55 2"« R(Cy x Dg) — R(Ch ox PGLyFy)

is equal to ((1—7)® (14 2x + 3v)) where v is the 2-dimensional irreducible
representation of Dg and 7,x are the non-trivial quadratic characters of
Cs, Dg, respectively.

EXAMPLE 7.3. G = GLsFy and C = Gal(F4/Fs)
In this example G¢ = GLyFy = PGLyFy = Dg. By Lemma 7.2

Indp&r2st + R(PGLyFy) — R(PGLyFy)

is injective and so is the analogous homomorphism for GLs.
From the formulae of §6.4 one finds that

benc(E(ac,xa(Ps)) = IndZ 3G (—r @ x — (14 7) @ v)
and
boacc (E(a0ynei (74))) = IdG30e (—(147) @ v — 7@ (14 2x)).

These elements are only determined by v4 and v up to tensoring with 7 so
to obtain elements determined which are uniquely by v4 and v5 we should
form

(14 7) - bexa(E(acy,«a(Ps))) = Indgzi(gc(—(l +7)®@(x+2®@v)
and
(1+47)  beac(E(ac,xa (1)) = Ind@2 5o (—(1+7) @ (20 + 14 2x)).
Note that, by Lemma 7.2(ii), the homomorphism
(147) - Ind&23PE ™ : R(Cy x Dg) — R(Ca o< PGLaFy)
is injective.
REMARK 7.4. If we were to apply a similar algorithm - deleting terms

which are not subconjugate to PGLoFs - to apgr,r, (v4) and apar,r, (V5)

we would obtain the following results. The irreducible v5 would yield —1 —
2v and for v4 we would obtain —1—x —v . Applying (1+7) ~Indg§°XdDDSL2F4
to these elements yields

I+7)®(-1—-2v)and (14+7)® (-1 —x —v),

respectively.
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Subtracting these elements from the elements of §7.3 yields
vs——(14+7)@(x—Dand vy — —(1+7)® v+ x).

It is interesting to compare these values with the Shintani correspon-
dence of §4.2.

8. The strong descent algorithm

8.1. Monomial complexes

This section is merely a sketch and is suitable only for those familiar
with the monomial complexes and monomal resolutions of [19] (see also
[128]). In the derived category of monomial complexes there exists a unique
monomial resolution for p which possesses an Euler characteristic equal to
acxc(p) € Ry(C x G). The Lines of the form Ind5*%(¢) with H not
subconjugate to C' x G¢ form a sub-monomial complex. The quotient
monomial complex has an Euler characteristic in

Im(Ind5%%¢ : R, (C x GY) — R, (C x G))

which is the one featured in §7.1 and Example 7.2.

Since I have not computed the monomial resolution in this paper I
cannot give here the monomial complex computation which is analogous to
87.

REMARK 8.2. The induction map
md¥ : R, (H) — R, (G)

is not injective in general for finite groups since (J,¢) — (zJx~1, 2%(¢))
maps to zero but could be non-zero if x € G — H and zJz~ ! C H.

8.3. Historical note

Most of this Appendix (§§1-10) was written several years ago. I still
have not written down the monomial resolutions M, for the complex rep-
resentations 74 and U5 of Gal(F4/F3) o« PGLyF4. However, from the calcu-
lation of ag(7;) in §7, one may calculate the invariants given by the Euler
characteristic of M) for each (H,\).

For use in that calculation, which appears in Chapter Two §§7-8, I have
added an extra section (§11) to this Appendix. It contains several tables
of (=)L) data and their derivation.

9. The role of the integers dimc(V(#:#)) in Shintani descent

9.1. In the context of finite groups and complex representations we
have

dime(V)) = dime (Home (1nd(6).V)) =z 3 ()™ v ().
heH
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The left-hand factor in the tensor product which features in the
bar-monomial resolution is the direct sum of vector spaces of the form
V(H:9)  In the Shintani base change situation the formula for the base-
change character values gives the dimC(V(H ’¢))7S for the base-change cor-
respondent representation.

If we knew that these values come from an actual representation (or
even a virtual one) we could form the bar-monomial resolution for it. There-
fore the existence of the Shintani correspondents, as described in this Ap-
pendix §4.1, is equivalent to an affirmative answer to the following question:

QUESTION 9.2. Suppose that p is a complex irreducible representation
lying in the Galois invariants

pE Irr(GLn]qu)Gal(qu /Fa),

Does there exist a representation V of GL,F,; such that each integer
dimg (VU:#)) is as predicted by the character formula of [117]?
If such a V exists it will automatically be irreducible.

9.3. The necessary and sufficient condition for a set of candidate inte-
gers dime (V(H:9)), as (H, ¢) varies through Mgr,F, to come from a virtual
representation (i.e. a difference of two representations in the complex rep-
resentation ring R(GL,F,) = Ko(C|GL,F,])) is equivalent to the condition
that of the rational numbers

|Ho| . H
E 1) d (Hr ¢r)
(Ho,$0)<(H1,¢1)<...<(Hr,¢r)

is an integer. Here (Hp, o) < (H1,¢1) < ... < (Hy, ¢,) runs through all
strictly ascending chains in Mg, r,. This is because these are the coef-
ficients in the Explicit Brauer Induction formula of ([126] §2.3; see also
[122], [17], [20], [102]) for V. The Explicit Brauer Induction formula gives
an expression for V' as an integer linear combination of induced represen-
tations of the form Indgf"F" (kg,). It is clearly the formula for a virtual
representation.

The i-th exterior power of a representation )\’ satisfies the relation in

R(G)

NVie W) = Z N (VDN (V).
J=0
This allows one to define a formal power series [9]
M(V) =D XVt
with coefficients in R(G) for any V' € R(G). Also
A(v1 + v2) = Ap(v1) A (v2)
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for all vi,ve € R(G).
I learnt the following result from the late Frank Adams.

THEOREM 9.4.

Let G be a finite group and let V' € R(G). The necessary and sufficient
condition that V' is a representation (rather than a virtual representation)
is that the power series A\¢(V') is a polynomial.

REMARK 9.5. The remarks of this section constitute a potential alter-
native method for proving the Shintani correspondence of [117]. To my
knowledge no one has attempted this method of proof, although the entry
of A\¢(V') might appeal to algebraic topologists!

EXAMPLE 9.6. Galois descent for GLoF4 revisited
For GLyF, the Galois fixed subgroup is GLsFs =2 Dg, the dihedral
group of order six. Its subgroups are given by the following table

H H formulae
Dg = (A,C) 1,7 T(4)=-1,7(C) =1
C3=(C) |[1,6~¢ ?(C) = &3

(A) 1,7 T(4) = -1
{1} 1 -

The “abelian parts” of v = Indé’?(qﬁ) are given by

H v
Dg 0
Cs | p+¢°
Cy 1+7
{1r ] 21

This yields the formula (see Appendix One §5.3)
ap,(v) = (C3,0)”° +(C2,1)P° + (Co, 7)* — ({1},1)7° € R(De).

We shall now show how the characterisation of the Shintani correspon-
dence (see §4) determines the dimy(Sh(vy)##))’s and dimy (Sh(vy)H®))’s.
Since, in the bar-monomial resolution for Dg we have

Spe =1©7®Ind7?(1) © Ind2°(¢) ® Ind e (1) & IndE? (7) @ Ind 7, (1)
we are interested in the following seven dimensions for i = 4, 5:

dimy (Sh(v;)Pe D), dimy, (Sh(z;)(Pe-7)), dimy, (Sh(z;)(©3:D),
dimy, (Sh(r;)(C29), dimy, (Sh(1;)(€2D),

dimg (Sh(;) (€27, dimy, (Sh(r;) {13:D),
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We have a formula:

+dimy, (Sh(vy) V)

ﬁ Shen Ah) " Tracesn(,)(h)

ﬁ Pohern=xo(x) Mh) " Traces, (0, X)

When H = Dg and A =1 we have 1 = 1.0(1), A = Bo(B) and
C = C?0(C?) we obtain

+dimy, (Sh(vy)Pe:1)

(Traceg, (0, 1) + 3Traces, (o, B) + 2Trace, (o, C?))

=3
=6"1((1-3)+3x (14+i+i*+4°)
+2x (1-1-&—¢&3))
=6"1(-2+2)
=0.
When H = Dg and A = 7 we obtain
+dimy, (Sh(vy)(Pe-7))
= L(Tracey, (0, 1) + 3(—1)Tracey, (0, B) 4 2Tracey, (0, C?))
=6"5(1-3) =3 x (1+i+i%+1i3)
+2x (1-1-&—¢&3))
= 0.
When H = C35 and A\ = 1 we obtain
+dimy (Sh(vy)(@D)
= 1(Tracep, (0, 1) + 2Traces, (7, C?))
— 3 (1-3) +2x (1-1-& &)

=0.
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When H = C5 and A = ¢ we obtain
£dimy, (Sh(vy) @)
= 5(Traces, (0,1) + (& + &) Trace, (0, C?))
=371 3) 4 60— 1~ &~ 83))
+63(1-1-8—-¢&3))
=1
When H = Cy and A = 1 we obtain

+dimy, (Sh(vg)(©21)

1(Traces, (0,1) + Traces, (o, B))
=—-1.
When H = Cy and A = 7 we obtain
+dimy (Sh(v4)(©27)
= 1(Tracey, (0, 1) — Tracey, (0, B))
= -1
When H = {1} and A = 1 we obtain
+dimy, (Sh(vy ) {1H1)
= (Tracez, (0, 1)
= —2.
Next I shall do the same for vs.

+dimy (Sh(vs) M)

:% >ohen Ah) I Tracegy () (h)

TH] 2oheHh=Xo(X) A(h)~ ! Traces, (0, X)
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When H = Dg and A =1 we have 1 = 1.0(1), A = Bo(B) and
C = C?0(C?) we obtain
+dimy, (Sh(vs)PeD)
= 4 (Traceg, (0, 1) 4 3Traceg, (o, B) 4 2Traces, (0, C?))
=6"1((83—-2)+3x(1—2+i+i3)
F2(1+& -6 +& - &)
=6"1(1-3+2)

= 0.
When H = Dg and A = 7 we obtain

dinmy (Sh(vs) P 7))

— L(Tracep, (0, 1) — 3Traces, (0, B) + 2Tracey, (0, C2))

=671(3-2)—3x(1—2+4+i+4)
+2(1+8—&+88-€6))

=6"1(1+3+2)

=1.
When H = C3 and A = 1 we obtain

+dimy, (Sh(vs)(©31D)
= L (Traceg, (0, 1) 4 2Traceg, (7, C?))
=3B -2)+2x (1+& - & +& —€3))

=1
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When H = C5 and A = ¢ we obtain
+dimy, (Sh(vs)(©3:9))

= 3 (Tracey, (0, 1) + (& + £3) Tracey, (0, C?))
=3"1(B-2)+&1+& -G+ - &)

+E(1+& -G+ - €))
=371(1-1)

=0.
When H = C5 and A = 1 we obtain
+dimy, (Sh(vs)(©21)

= 1(Tracey, (0, 1) + Tracey, (0, B))
=271(3-2)-1)
=0.
When H = Cy and A = 7 we obtain
+dimy (Sh(vs)(©27)
= 1(Tracey, (0, 1) — Tracey, (o, B))
=27"5(3-2)+1)
=1
When H = {1} and A =1 we obtain
+dimy, (Sh(vs){1H1)
= Tracep, (0, 1)

=1

10. The observation of Digne-Michel [53]
10.1. Let ¥ be the Frobenius automorphism topologically generat-

ing the absolute Galois group of F,, Gal(F,/F,), so that ¥" generates
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Gal(F,/F,n). By Lang’s Theorem for any U € GLsF,n there exists a posi-
tive integer ¢t and a matrix X € GL/Fy: for some t such that
U=X"13(X).
Observe that
X718(X) € GLFyn

= L(XHErr(X) = XTI5(X)
= XU(X1) = N(XEn (X))

< X¥"(X 1) € GL,F,.
Let Y € GLsFynt be another matrix and suppose that
(3, X7 1%(X)), (5, Y'S(Y)) € G(Fyn /F,) < GLFyn
are conjugate by (1,V) € GL,F,». Hence, say,
(LV)(S, X 1S(X)(1, V)
= (E, VX?lE(X))(L Vﬁl)
= (X, VX IN(XV-1)

— (3, YIR(Y),.
Therefore YVX ! =X(YVX~!) € GLF, and
(LYVX 1) (=", XS (X)) (L XV-1y )
— (S YVX XS (X)) (1, XVlY
— (S YVXIXS (X IXV -1y 1))
= (", Yver(V-ly 1))
= (5, YVVisn(y )

= (Zn,Yysr(y1)).
Therefore
(" XEM(X YY), (EmYE"N(Y ) € G(Fyn /F,) x GLGF,
are conjugate by an element of GL,F, or, equivalently,
XyM(Xh, YY) € GL,F,

are conjugate in GL,F,.
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Conversely, if there exists W € GL,F, such that
XX Y =wys(y Hhw! € GL,F,

then
YWY =Y 'WX) € GLFyn.
Also
(LY 'W1X)(2, X~ 12(X))(1, X 'WY)
= (X, Y 'TWIXXIN(X)(1, X TWY)
=X, Y IWIXXTIS(XXTIWY))
= (, Y 'W-IB(WY))
=, Y 'WIWE(Y))
= (Z,Y7'5(Y))
so that

(2, X718(X)), (B, Y '2(Y)) € G(Fyn /F,) o< GLFyn

are conjugate by an element of GLFn.
Therefore we have proved the following result.

THEOREM 10.2.
There is a one-one correspondence of the form

GLFg4n — conjugacy
conjugacy
classes of
classes in —
elements (X, A) in
GL.F,

G(Fyn /Fy) < GLFyn
given by

XM XH & (2, X712(X))
for X € GLFyn for some ¢.

ProrosiTION 10.3.
In the situation of §10.1 and Theorem 10.2

|GLsFyn| - |GLsF, — conjugacy class of XX (X 1)
= |GLF,|

x|GLsFn — conjugacy class of (3, X 12(X))].
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Proof
The size of the conjugacy class

|GL,F,n — conjugacy class of (3, X '3(X))|

is equal to |GLsF 4| divided by the number of V' € GL,Fg» such that (1,V)
commutes with (3, X ~!3(X)). By the calculation of §10.2 this happens if
and only if VX 13(XV 1) = X ~13(X) or equivalently XVX~! € GL,F,.
Also in this case (1, XV X~!) commutes with (X7, XX"(X~1)).

On the other hand the size of the conjugacy class

|GLF, — conjugacy class of XX™(X 1)

is equal to |GLFy| divided by the number of W € GL,F, which commute
with X¥"(X~!). This happens in and only if V = X7 'WX € GLF,»
and (1,V) commutes with (3, X ~13(X)).

Fixing X this discussion gives a bijection between the V’s and the W’s,
which immediately yields the result. O

REMARK 10.4. Also note that
(Z, X 18(X)"
= (22, X 1B(X)S(X182X)(Z, X 1x(X))"
= (X2, X 122X) (2, X 18(X))" 2
= (33, X I2X2(X L3 X))N(X))n 3

= (3, XIS (X))

— (27, X127X))

REMARK 10.5. Another way in which to derive the results of this sec-
tion is to notice that the arguments yield a bijection between double cosets
and special pairs (h', h”") of the form

GLF\GLFynt /GL,Fn <= {special pairs (h',h")}

where a special pair in (b, h”) € GL;F, x GL,F4n is a pair of elements
constructed from the same double coset in the manner described above but
where i’ is only defined up to GLF4-conjugacy and (X, k") is only defined
up to GL,F4n-conjugacy in the semi-direct product.

In the case of the Glauberman correspondence [5] the analogous double
coset space has only the identity double coset as G-fixed points. However
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generally, in the Shintani case,
(GLFN\GLSF gt /GLF o )21 Eane /Fa) £ 141

since the GLF »-conjugacy class of (2, ") may contain an element whose
second coordinate lies in GL,F,.

10.6. Relation between Shintani descent and Theorem 10.2
The Shintani correspondence [117] is a bijection of the form

Sh: Irr(GL,F )¢ > Irr(GL,F,).

As explained in §4 of this Appendix, this correspondence is characterised in
terms of character functions in the following manner. Let xgy(,) denote the
trace function of the irreducible representation Sh(p). Then there exists an
irreducible linear representation p of the semi-direct product C' o< GL,F
which is a lift of the projective homomorphism of Proposition 3.2. Let x;
denote the trace function of p. This linear lift may be chosen in such a way
that, for all g € GL,[Fa,

Xsh(p) ((Z,9)%) = x5(Z, 9).
The left side of this relation is interpreted in the following manner. By
Theorem 10.2, the C o< GL,F4-conjugacy class of the element

(2,9)" = (1,95(g9)... 2 (9))
intersects GL,F, in a unique GL,F,-conjugacy class. The left side of the
characterising relation denotes xsy(,) applied to any element of this GL,[F-
conjugacy class.

Theorem 10.2 guarantees that the character function relation does in-
deed define a unique virtual representation Sh(p) in R(GL,F,) ® C. More
careful analysis, carried out in [117] shows that Sh(p) is in fact an irre-
ducible representation.

The remainder of this section contains a recapitulation of some of the
main ingredients of Shintani’s paper [117].

10.7. (1117] Lemma 2.2)

Let G be a linear algebraic group defined over F; and assume that the
centraliser of each g € G is connected. Then g,¢’ € G(F,) are conjugate in
G(F,) if and only if they are conjugate in G(Fyn).

This result applies to the parabolic groups P, ;... of which one is
GLFgn.

Therefore for each class function x on GL,F, we can extend to a class
function ¥ on GL,F4» by the formula

x(g") if ¢ € GL,F, is GL;Fy» — conjugate to g

0 otherwise.
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LeEMMA 10.8. ([117] Lemma 1.1)

Denote the cyclic group of order m by C), acting on G. Let p be
an irreducible representation of C,, o G. If ResG™>% () is reducible then
x5(2,9)=0. If Resg’”o‘G([)) is irreducible then

m—1
GI7E Y > (B g)P =mor 0
=0 geG

when k& = 0 (modulo m) or not, respectively.

LEMMA 10.9. ([117] Lemma 1.2)

Let p1 and ps be two irreducible representations of C), o< G whose re-
strictions to G are irreducible and inequivalent. Then, for [ =0,1,... ,m—
1,

> X (B 9)xa (5 g) = 0.
geG

10.10. ([117] Lemma 1.4)
Let p be a representation of G on a vector space V. Let 3 act on the
m-fold tensor product of V' with itself by

S Q@Ua® ... QUp) =0, QU QU @ ... ® Upy_1-
Let g act by a formula of the type
g1 @V @ ... @vm) = X" (g)(v1) ® B?(g)(v2) © ... @ XU (g) (vm)-
Therefore
g XN R1e...0v,)

=Z-9)(12evs®...0 Uy u1)
= S5 (g)(v2) © 5 (g)(15) ® ... & S (g)(01))

= 2% (g)(v1) @ X (g)(v2) @ X% (g)(v3) @ ... @ X~ (g)(vm))
and in order for this to be X(g)(v1 ® v2 ® ... ® v,,) we need that

am=a1+1l,a1 =as+1,... ,am—1 = ap + 1 (modulo m).
This works if
ar=m-—1,an=0,am_1=1an2=2,... ;a2 =m — 2.

Therefore, if {e,} is a basis of V, then
(2,9)(€a; @ €ay ® ... D ea,,)

= (L, g)(3,1)(ea, ®ea, ®... R eq,,)

= Zihim,,, Emil(g)ihameil ® Emil(g)iz,oéleiz D...0 im0t —1Ciy
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whose trace is given by

Zal,@,,__ Em71(g)alyam,zmil(g)OQ’al <o, am 1

= Trace(g - X(g) - ...- X" *(g) - 2™ (g)).

The observation of Digne-Michel applies to any parabolic subgroup of
GLs ([117] Lemma 2.6).

10.11. ([117] Lemma 2.8)

Let f be a class function on the parabolic group IBM(IFqn) and let f be
a class function on P, (F,) such that f(2,g¢”) = f(¢’) in the Digne-Michel
(¢',¢") notation used earlier. Then for all b/ € GL;Fn and h' € GL,F,

we have

GLsFyn mo_ GL:Fy /71
Indip " " (8, 1) = Ind 3 e ().

Shintani uses J.A. Green’s classification of irreducibles of GL,F, and
GL;Fg4n in terms of induction from parabolic groups to make an induction
on s.

To handle the representations which are not parabolically induced Shin-
tani uses the elements of R(GL,F,») given by the conjugacy class func-
tions X! of [69]. The proofs that these are in R(GLgF,) rather than
R(GLsFyn) ® Q uses a criterion for integrality due to Brauer [32].

I shall recall all this below.

DEFINITION 10.12. Choose an injective homomorphism 6 : ?Z — C*.
Set ! equal to the following conjugacy class function on GLsF,. For
X € GL,F, let {\1,..., A} denote the set of eigenvalues of X and set

X)) =y 0'(Niy,- .. 5 Ni,) €C.

1<i1<...<ir<s

These functions may be collected int o polynomials if we set

6A\) O ... ... 0

0 6A) 0 ... 0

o . . S .
0 0 ... 0 6

so that the characteristic polynomial of X satisfies

det(X —t1,) = 1° = I + S0 + ...

H(=1)IEH(X) 5+ 4+ (—1)*EL((X)
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and, more generally,

det(X! — 1) =t = S (X)"~! 4 Dh((X)e2 4.

()BT 4+ (1) BL((X).
THEOREM 10.13. ([69] Theorem 1) Identifying R(GLsF,n) ® C, via

sending a representation to its trace function, X — det(X L —¢I,) lies in
R(GLsFyn)[t] for all s,1 > 1,n > 0.

REMARK 10.14. The Adams operations ¢! : R(G) — R(G) is a
ring homomorphism whose trace function is satisfies trace(y!(p))(X) =
trace(p)(X!) so that Theorem 10.13 is implied by the case in which [ = 1.

10.15. Proof of Theorem 10.13 (after [69])
By Brauer’s induction theorem every virtual representation
X € R(GL,Fyn) may be written as a Z-linear combination of the form

t
A= aimnd§ " ()
i=1
where ¢ : J; — C* is a character and J; = H; x C; with H; being a p-group
for some prime p and C; is a cyclic group of order prime to p. In particular
take A = 1 and multiply the relation by a conjugacy class function f to
obtain, via Frobenius reciprocity, a relation between class functions

t
F=3" aif - md$H T (6)) = aulndGE T (ResSH T (f) - )
i=1
which shows that if each ResiLqun (f) € R(J;) C R(J;) ® C then f €
R(GLyF;n) C R(GLFn) @ C.

Therefore it suffices to prove Theorem 10.13 with GLF;~ replaced by
a subgroup of the form H x C where H is a p-group for some prime p and
C is a cyclic group of order prime to p.

Now consider the cyclotomic field Q(€,m_1) where £, = e2mV=1/a and
m is a multiple of n which is large enough so that F;" contains all the
eigenvalues of all the matrices in H x C. Let P < Z[{;m_1] be any prime
ideal dividing the characteristic of F;. Then Z[{;m 1]/P = Fy" where the
isomorphism sends a (g™ — 1)-th root of unity x to its residue class .

We may choose 6 in §10.12 so that 6(T) = z.

Now let [ be the characteristic of F,. If [ does not divide the order
of H x C then it is well-known that there is a complex representation
of the form p : H x C — GLZ[{gm_1] such that reduction modulo P
gives a representation p of H x C over F,» which is equivalent to the Fn-
representation

H xC C GLFyn.
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For ¢ € H x C the eigenvalues of p(g) are precisely the images under 6
of the F, eigenvalues of g. The i-th elementary symmetric function of the
-values of the F, eigenvalues of g is equal to the i-elementary symmetric
function complex eigenvalues of p(g) which is the trace function of the i-th
exterior power representation \¢(p) of p.

Now assume that | does divide the order of H x C. We may write
H x C = Hy x Hy where the order of H; is not divisible by [ and Hs is an
l-group. If g € H x C corresponds to (hi, hy) € Hy x Hs then hy and hoy
are two commuting elements of GL,Fg» and the Fq eigenvalues of hy are
all equal to 1. Therefore elementary matrix algebra shows that in GLFgm
we may simultaneously conjugate (hi,1) and (1,hs) to upper triangular
matrices of the form

[ 1
0 ¢ ... ... 0 1
and
0 0 (s 0 0 1

respectively.

Therefore the f-values of the F, eigenvalues of g = (h1, ha) are exactly
those of (hi,1). This reduces us, by projection onto H; from H x C to the
case in which [ does not divide the order of the subgroup, which completes
the proof. O

REMARK 10.16. In ([126] Proposition 2.1.17) it is shown by algebraic
topological methods that the relation

t
1= Z aiIndiLS]Fq" (¢)

i=1

which occurs at the beginning of the proof of Theorem 10.13 is also true
for a family of J;’s which are M-groups. M-groups are a special type of
solvable group and a proof of Theorem 10.13 ought to be possible based on
reduction to the case of an M-group.



11. Tables of (—)((L)) data

11.1. The subgroups of Cs x Dg up to conjugation are

H ‘ generators ‘ H
CQXD@ (0’,1),14,0 1,T,¢,T¢

Dg AC 1, ¢
Cs x C3 (0,1),C |17, ~ ¢ 79 ~ 70>
Cy x Oy (0,1),A 1,7,¢,7¢

C3 C 1,0, >

Cy A 1,¢

cl (0,1)A 1,¢

cy o, 1) 1,7

{1} 1 1
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In the following tables (H, \)¢ denotes the Line bundle Ind 2> 7524 (k)
for some H C Cy X Dg = Cy X GLyFy C Cy x PGLoFy.

With this notation ((H,\)¢)(()) =37, 5 Ind>Fo"=F (k) (D)

The following tables calculate these invariants when H, J are subgroups
(up to conjugation) of Cy x Dg and k = C.

’ (H, )\)G ‘ ((H, )\)G)((Cz><D6)) ‘ ((H, )\)G)((De)) ‘ ((H, /\)G)((szcs))
(Cy x Dg, )% T 1 T
(Cy x Dg, 9)¢ ¢ ¢ 1
(Cy x Dg,1)¢ 1 1 1

(<(U,1),C>,T¢)G 0 0 T+ TP
((0,1),C),¢)° 0 0 ¢+ ¢
({(o, 1),C>,T)G 0 0 27
(((o,1), A), )% 0 0 0
({((0,1), A), 1) 0 0 0
({(0,1), 4), )¢ 0 0 0
(C’3,¢)G 0 0 0
(C2,9)% 0 0 0
cy e 0 0 0
(cy e 0 0 0
({1}, )¢ 0 0 0
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’ (H, )\)G ‘ ((H, )\)G)((szcz)) ‘ ((H, )\)G)((CS)) ‘ ((H, )\)G)((CQ)) ‘
(Cy x Dg,7)% 27 1 2
(Cy x Dg, )% T+TP 1 2¢
(Cy x Dg,1)¢ 2 1 2

((0,1),C),m9)% 0 ¢+ ¢ 0
((0.1),C), 9)® 0 o+ & 0
({((0,1),C), 1) 0 2 0
(((o,1), A), )% 27 0 2
(0, 1), A), 1)C 2 0 2
(((051)7A>7¢)G ¢+719 0 2¢
(Cs,9)¢ 0 2¢ + 2¢° 0
(Ca, 0)% 0 0 4¢
cy 1% 0 0 0
(cy e 0 0 0
({1}, )¢ 0 0 0
’ (H, )¢ ‘ ((H7)\)G)((C£)) ‘ ((H, )\)G)((Cé’)) ‘ (H,\)G){11) ‘
(Cy x Dg,7)% ¢ T 10
(Cy x Dg, )¢ 1 1 10
(02 X Dﬁ, 1)G 1 1 10
({(0,1),C),70)% 2¢' 27 20
((2,1),C),6)° 2 2 20
(((o,1),C), 7)% 2¢' 27 20
({(c,1), A), 7)) 69’ 67 30
({(0,1), A), 1)¥ 6 6 30
({(0,1), A), )¢ 34 3¢’ 3437 30
(Cs,0)¢ 0 0 40
(Cs, )¢ 0 0 60
cr e 6 6 60
cy,ne 6¢’ 67 60
{1, 1° 0 0 120

11.2. Tedious calculations

The following subsection contains the calculations of the entries in the
table of §11.1. They are accomplished using the following observation and

are included only for completeness.

The Lines of Ind$?*"%%2F4 (k) which are stabilised by (J, u) for some

i must be g ®p ky where jg @ v =g ®g w so that g~ 1Jg C H.
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Case: H =03 x Dg=J.
Since C5 x Dg is its own normaliser in Cy o< GLsF, the only possible
stabilised Line is (1 ® ¢, xp, 1) which J acts on via A.

Case: H # Cy x Dg = J.
In this case no conjugate of .J lies inside H so there are no Lines sta-
bilised.

Case: H = (5 x Dg,J = Dg.

Dg is its own normaliser in PGLsF, so any conjugate of Dg by g &
Cs x Dg does not lie in Cy x Dg. Hence the only stabilised Line is 1 ®¢, x D
1= (0,1) ®c,xps 1 which is acted upon by the restriction of A to De.

Case: H 75 CQ X Dg,DG,J = Dg.

No conjugate of Dg can be a subgroup of these H’s.

Case: H = CQ X D6,J = CQ X 03.

Any conjugate of Cy x C3 contained in C5 x Dg has to be the unique
cyclic subgroup of order six. Hence g lies in the normaliser of Cy x C3 in
Coy < PGLyF, which is Cy x Dg. So the only stabilised Line is 1 ®c, xp, 1
acted upon by the restriction of .

Case: H=J=0Cy x (5.

The stabiliser of Cy x C3 in Cy ox PGLyF, is Cy x Dg so the stabilised
Lines are 1 ®c,xc, 1 and A®c, xc, 1. The first of these Lines is acted upon
by the restriction of A\ and the second by

(Uv 1)A Xy xCy 1= A(Jv 1) Qo xCy 1=A Qo xCy A(Uv 1)

and
CA®cyxcy 1 = AC? @cyxcy 1 = A®c,xcy MC?).

Case: H 75 CQ X Dg,DG,CQ X 03 and J = CQ X 03.
No conjugate of Cy x C3 can be a subgroup of H so there are no Lines
stabilised.

Case: H =y X Dg and J = Cy x Cs.

The copies of Cy x Cy in Cy x Dg are {((c,1),A), {(c,1), AC) and
{(0,1), AC?) which are all conjugate by powers of C € H. Hence if
g 1Cy x Cag C H then g,gC or gC? normalises Cy x Cy. The normaliser
of Cy x Cq in Cy x PGLyF, is {(0,1), A, B). Hence the stabilised lines are
1®cyxpg 1 and B ®c,xpg 1. Now B(o,1)B = A(o,1), BA = AB so the
first Line is acted upon by the restriction of A and the second by

(Uv I)B ®Cyx D 1=B ®Cyx Dg A(A(O'v 1))

and
AB ®C2><D5 1 = B ®02><D6 A(A)'
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Case: H=(Cy x(Czand J=Cy x Cs.

No conjugate of J is a subgroup of H.

Case: H =J =Cy x Cs.

Then g lies in the normaliser of Cy x Cy which is ((o,1), A, B). So the
Lines which are stabilised are 1®¢, xc, 1 and B®c, xc, 1. The first is acted
on by A and the second by

AB ®cyxc, 1 = B®cyxcy MA)

and
(0,1)B®cyxc, 1 = B®c,xc, AM(A(0,1)).

Case: H = C(C3,03,C%,CY {1} and J = Cy x Cs.

No conjugate of J is a subgroup of H.

Case: H =(C5 x Dg and J = Cj.

Any conjugate of C5 lying in H must be C3 so g belongs to the nor-
maliser of C's which is H. Hence there is only one stabilised line acted upon
by the restriction of .

Case: H = Cg X 03 and J = 03.

Any conjugate of C5 in H is J so g € Co X Dg. Therefore the stabilised
Lines are 1®¢, x ¢, 1 and A®¢, xc, 1 which are acted upon via the restriction
of A and A? respectively.

Case: H = Cg X Cg,CQ,Oé,Cg, {1} and J = 03.

No conjugate of J is a subgroup of H.

Case: H =J = (5.

The normaliser of C3 is Cy x Dg so there are four stabilised Lines

1®c, 1, (0’, 1) Ry 1, A ®cy 1, (0, 1)A ®cy 1.
The first two are acted upon via A and the other two by 2.

Case: H = Cy x Dg and J = Cs.

Any conjugate of A lying in H must be A, AC, AC? which are conjugate
to each other by powers of C. The centraliser of A in Co o< PGLoFy is
((e,1), A, B) so there are two lines stabilised 1 ® c,xps 1 and B X¢,xpg 1
which are both acted upon via .

Case: H = CQ X 03 and J = CQ.

Any conjugate of A in H must be (o, 1) but these are not conjugate in
Cy x PGLsF, so there are no stabilised Lines.
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Case: H=Cy x(Cy and J = (5.

Any conjugate of A lying in H cannot be (0,1) and B(c,1)B = A(o, 1),
both of which are not conjugate to A. So g commutes with A and therefore
lies in ((0,1), A, B). Therefore there are two stabilised Lines 1 ®c,xc, 1
and B X¢,xc, 1 both acted upon via A.

Case: H =C3,CY {1} and J = Cs.

No conjugate of A lies in H so no Lines are stabilised.

Case: H =J = (,.

The centraliser of A is ((o,1), A, B). Therefore there are two stabilised
Lines 1 ®,xc, 1 and B X¢,xc, 1 so there are four stabilised Lines

1®c, 1,B Xy 1, (0’, 1) R, 1,B(0’, 1) R, 1
and A acts on each via A.

Case: H = C3 x Dg and J = Cj,.

If A(o,1) is conjugate to an element of H then it is (o, 1) since B(o,1)B =
A(o,1). Therefore the only Line stablised is B ®c,xp, 1 on which A(c,1)
acts like multiplication by A(o,1).

Case: H =C3 x Dg and J = CY.

There are seven elements of order two in H but (o, 1) is only conjugate
to itself. Its centraliser is H so there is only one stabilised Line, acted upon
via A.

Case: H=C3xCsand J=CY. BCYB = Cj.

If a conjugate of (o,1) lies in H it must be (o,1). The centraliser of
(0,1) is Cy x Dg so there are two stabilised Lines 1 ®c, x5 1 and A®c, x o 1
both of which are acted upon via A.

Case: H =C3xCyand J=CY. BCYB = Cj.

If a conjugate of (¢, 1) lies in H it must be (0,1) or A(o,1) = B(o,1)B.
The centraliser of (o, 1) is Co X Dg so there are six stabilised Lines
1®Cz><c'21a C®CQ><0217 02®02X0217 B®CQ><0217 CB®C'2><0217 C2B®C2><Cgl'
The first three are acted upon via A and the last three by multiplication by
AA(o,1)).

Case: H = (3,05 and J=CY. BCYB = C4.

No conjugate of J lies in H.

Case: H=J=CY. BCYB = Cj.

The centraliser of (0,1) is Cy x Dg so there are six stabilised lines
corresponding to g = 1, 4, C, AC, C?, AC? on each of which (o,1) acts via
A



CHAPTER 11

Appendix II: Remarks on a paper of Guy
Henniart

ABSTRACT. This appendix contains an account of a calculation, by
Deligne and Henniart, of wildly ramified local roots numbers modulo
roots of unity. Since this result is relevant to epsilon factors derived
from monomial resolutions of GL,, of a local field I have included the
account which has been gathering dust on my computer since 2010
or earlier and on my homepage since 2012. This is the homepage
version reproduced “as is” - here we go!

Originally, in other lectures in the series which begat this Ap-
pendix, one encounters local L-functions, functional equations and
local epsilon factors of admissible representations. The p-adic Ga-
lois epsilon factors are numbers lying on the unit circle and they
are fundamental in the local Langlands correspondence which was
proved by Mike Harris and Richard Taylor. Later part of the proof
was simplified by Henniart using his “uniqueness theorem”, which is
characterised in terms of p-adic epsilon factors.

This Appendix, which was formerly a lecture in the above men-
tioned series, is mainly expository. In it I shall outline the calculation
by Deligne and Henniart of the p-adic epsilon factors of wild, homoge-
neous Galois representations modulo p-primary roots of unity. This
formula is an important ingredient in the proofs of the uniqueness
theorem. The only novel ingredients in my exposition will be the use
of monomial resolutions to reduce to the one-dimensional case and
an explicit formulae for the Deligne-Henniart “Gauss sum” (which
seems in my opinion to contradict, in the tamely ramified case, one
of the lemmas - claimed in general but used by Henniart only in the
wild case - at the crux of the proof).

1. The basic ingredients

1.1. These notes are an exposition of the papers [49] and [73] which
culminate in the derivation of a formula for Galois local constants (otherwise
known as Galois epsilon factors) modulo p-power roots of unity for wildly
ramified, homogeneous representations on the Weil group of a p-adic local
field.

My account will differ from [49] in §3.3, which I shall derive using
monomial resolutions. Furthermore, since it is well-known how to pass
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to and fro between Galois group and Weil group representations, I shall
restrict the discussion to the Galois case.

I posted this on my webpage in this unpolished form, rather than post-
ing it on the Arxiv, because I have been allowing it to languish completely
unnoticed for nearly two years. I am very grateful to Paul Buckingham and
Guy Henniart for their expert assistance.

1.2. Ramification groups and functions

Let us recall from [114] the properties of the ramification groups
Gal(K/E);, Gal(K/E)* and functions ¢/ g,k associated to a Galois
extension K/F of local fields with residue characteristic p.

Let vg denote the valuation on K, Ok the valuation ring of K and
write G = Gal(K/FE). The ramification groups form a finite chain of normal
subgroups ([114] p.62 Proposition 1)

{1}=G,C...CG1CGC...CG1CGCG1 =G
defined by
Gi={9€G|v(g(x)—x)>i+1foralxec Ok}

The inertia group is Go and G_1/G) is isomorphic to the Galois group of
the residue field extension. If H = Gal(K/M) C G then H; = G;( H.
The quotient Go/G is cyclic of order prime to p while Gy is a p-group and
each G;/G,;y1 with i > 1 is an elementary abelian p-group.

The function ¢ /g : [~1,00) — [~1,00) is a piecewise-linear homeo-
morphism given by

n if —1<u<0,
cleat ifo<u<l
el if 0<u<1,
¢K/E(U) — |Gol
\Gl\+...+|Gm||c-;-(|u—m)\Gm+1| fm<u<mtl
0 — —_ )
1 <'m an integer.

At a positive integer i > 1 the slope of ¢x /g just to the left of i

equals I‘gol\ and just to the right it is ‘CIJGZ‘II Therefore the condition that
Gi = Giy1 is equivalent to ¢, p being linear at 7. If Gy # Giy1 then
¢x/E is concave downward at i and 7 is called a “jump” value for the lower
filtration. If Go = ... = G, # Gr11 then ¢ /p(r) =z if -1 <2 <r and
dr/p(T) <zifr <.

If g € Gy then g € G; if and only if g(mk)/mx = 1 (modulo P%).

The function ¢k /g : [~1,00) — [~1,00) is the piecewise-linear home-
omorphism given by the inverse of ¢x/p. Hence ¢k p(i) = a is not nec-
essarily an integer. To accommodate this we extend the definition of the
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G;’s to G, for any real number u > —1 by setting G, = G; where j is the
smallest integer satisfying u < j.
Given a chain of fields £ C M C K there are chain rules

dn/e(Pr/m (7)) = dx/e(®), Vi/m(Wre(y)) = Y e(Y).

The upper numbering of the ramification groups is defined by the re-
lations

G" = GwK/E(v) and G¢K/E(u) =G,

If H = Gal(K/M) <G is a normal subgroup then (G/H)” = G'H/H.

In §1.5 we shall utilise the extension of the upper numbering filtration
to the case of infinite Galois extensions such as F/E. Following ([114]
Remark 1, p.75) for K/E an infinite Galois extension we set

Gal(K/E)" = lim Gal(K'/E)"

where K’ runs through the set of finite Galois extensions of E contained in
K. The filtration Gal(K/E)" is left continuous in the sense that

Gal(K/E)" = (1] Gal(K/E)".
w<v
As we shall see in Proposition 1.3, the upper filtration Gal(K/E)? is not
right continuous. One says that v is a “jump” for the upper numbering
filtration if Gal(K/E)" # Gal(K/E)"*¢ for all € > 0. Even for finite Galois

extensions an upper numbering jump need not be an integer ([114] Exercise
2, p.77).

PROPOSITION 1.3.

(i) Let K/F be a, not necessarily finite, Galois extension of p-adic local
fields'. Then for any o € R there exists ¥ < a such that Gal(K/E)" =
Gal(K/E)~.

(ii) Let K/FE be an infinite Galois extension of p-adic local fields. Then
the filtration Gal(K/FE)" is not right continuous in the sense that, if v is a
jump for the upper numbering filtration,

U Gal(k/E)" ; Gal(K/E)°.
v<w
Proof

In (i) the set of jumps in the upper ramification filtration is discrete.
Suppose that {8,} is an increasing sequence of real numbers such that
Bn < a tending to o from below. Therefore the sequence G will eventually

am very grateful to Paul Buckingham and Guy Henniart for explaining the proof
of this proposition to me.
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stabilise (i.e. becoming equal for large enough n < «). Therefore there is
one of these (3,,’s, say -, such that

Gal(K/E)* = (] Gal(K/E)” = (] Gal(K/E)" = Gal(K/E)",
w<o w<y

as required.

In (ii) we consider the infimum

a=inf{a e R | Gal(K/E)* C Gal(K/E)"}.
By part (i) there exists 7 < a such that Gal(K/E)Y = Gal(K/E)%. Sup-
pose that Gal(K/E)" C Gal(K/E)" then, by definition, a <  which is a
contradiction. Therefore
Gal(K/E)% = Gal(K/E)” € Gal(K/E)".

However, if v < w then Gal(K/E)* C Gal(K/E)" so that o < w and
therefore Gal(K/E)" C Gal(K/FE)% which implies that

c
| Gal(K/E)" C Gal(K/E)* # Gal(K/E)",
v<w
as required. O
The proof of part (ii) of Proposition 1.3 establishes the following result.

COROLLARY 1.4.
Let K/E be an infinite Galois extension of p-adic local fields. Let v be
a jump for the upper numbering filtration and define

a=inf{a e R | Gal(K/E)* C Gal(K/E)"}.
Then « is strictly smaller than v.

1.5. Wild, homogeneous local Galois representations

All fields are non-Archimedean local containing F//Q,. Let o be a non-
trivial, continuous, finite-dimensional complex representation of Gal(F/E).
The level a(o) is the least a such that o restricted to Gal(F/E)® is non-
trivial but o restricted to Gal(F/E)**€ is trivial for all € > 0. There exists
an upper numbering ramification group with this property by left conti-
nuity of the Gal(F/E)®’s because there are certainly ramification groups
Gal(F/E)" on which ¢ is non-trivial. Define a(c) to be the supremum of
the set of real numbers v such that o is non-trivial on Gal(F/E)?. Therefore

Gal(F/E)*®) = (| Gal(F/E)".
v<a(o)
Then ¢ is wild if (o) > 0. If o is wild and irreducible then ([72] §3)
a(o) = dim(o)(1 + a(o))
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where f(o) = P%(U) is the Artin conductor of o (see §1.10 for the definition
of a(0)).

There exists a finite Galois extension K/F such that o (faithfully) fac-
tors through the finite Galois group Gal(K/FE). Since Gal(F/E)*(?) is the
last ramification group (in the upper numbering) on which o is non-trivial
its image in G = Gal(K/F) is abelian and normal. The representation o is
homogeneous if

Gal(F'/E
ResGalEF§E§a<a) ()
where n = dim(o) and x, : Gal(F/E)*(?) — C* is a character of finite
order.
Suppose that the image of Gal(F/E)*() in G is

A= Gal(K/M) = Gal(K/E)*?) 4 G.

=NXo

Suppose that o is irreducible and wild then it will not necessarily also be
homogeneous but let us suppose that it is.

We remark that, if o is not homogeneous then Clifford theory, which
deals with restriction to normal abelian subgroups, implies that

Resﬁ(a) =mx1Px2P...Bxt)

where the conjugacy G-orbit of i is {x1,...,Xt}. This means that each
of the x;’s is non-trivial on A.

Furthermore, if o is irreducible, wild and homogeneous, then y, will
be fixed under the conjugation action by G. This is because for a € A, g €
GveV

a(a)v = xo(a) - v and o(gag™)(v) = (g)(xo(a) - (o(9) "' (v)) = o(a)v
since o(a) is multiplication by a scalar.

Therefore y, corresponds via class field theory to a character y :
M* — C* which is invariant under the Galois action of G on M. On
1+ P;/I(X)_l X has the form x(1 4+ z) = Y (gz) for g € M* such that g €
M*/14P)y is well-defined. Here 1)y is a choice of additive character, which
depends on the choice of 9 and is then defined as ¢y = ¢r - Tracey p.
Therefore, defining Cg = ((E*/1 + Pg) ® Z[1/p]), we have a well-defined
element

9= 90 € (M*/1+Par) @ Z[1/p))¥ = (E*/1+ Pp) ® Z[1/p]) = Cp.
From the short exact sequence, when p is odd,
0 — (Op/Pr)" ®Z[1/p] — Cp — Z[1/p] — 0

we see that Cp ® Z/2 has four elements.
Note that the element g, can be defined for any wild, homogeneous
representation, irreducible or not.
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1.6. Varying M in §1.5

One can vary the choice of M in the above construction. Suppose
we take another subfield M’ fixed by A = Gal(K/M) = Gal(K/E)*),
Therefore we must have M’ C M and we may as well assume that M’ %= M.
Set A’ = Gal(K/M’) so that A C A’ is a proper subgroup. Note that A’ is
not necessarily abelian (it would be if o were faithful) but A is, in fact it
is cyclic because x is faithful on A.

We shall also assume that o restricted to A’ is equal to ny’ for a
character y/ which must restrict to xy on A. In terms of local class field
theory we have

x=x-N:m oy X e

Consider A = Gal(F/M) = Gal(F/E)*®) and A" = Gal(F/M’). Let
a(M/M'") denote the real number

a(M/M') = inf{a € R | (4')* C A}.

THEOREM 1.7.
In the notation of §1.6

a(M/M') <a(x) =a(x') - 1.
We begin with an intermediate result.

ProPOSITION 1.8.
In the notation of §1.6, a(M/M') < a(x’).

Proof

Since the upper ramification index is preserved under passage to quo-
tient Galois groups it will suffice to prove this by studying the finite ex-
tension K/E as in §1.6, where we continue to assume that o is faithful
although K/FE is not necessarily abelian.

We can show that a(M/M') < a(x’) by showing that

(A C A,

By definition ([114] p.71, Remark 1) a(o) is a jump because o :
Gal(K/E) — GL,C is one-one and o is non-trivial on A = Gal(K/M) =
Gal(K/E)*(®) but is trivial on Gal(K/E)*@)*¢ for all € > 0 so

{1} = Gal(K/E)*(@)*e £ Gal(K/E)*(*)

for all € > 0.
By the theory of the Herbrand functions ¢ and ¢ (§1.2; see also [114]
Chapter IV §3) there exists a real number v = 9k /p(a(0)) such that

Cal(K/E)*?) = Gal(K/E),.
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This means that Gal(K/E), = Gal(K/E); where 7 is the smallest integer
satisfying ¢/ p(a(o)) = v <. If v < then
a(o) = ¢or/e(7) < dr/p(i) =0

and Gal(K/E)*?) = Gal(K/E)°, which is a contradiction. Therefore
Yi/e(a(c)) = i, an integer. Furthermore ¢ must be a jump for other-
wise GZ = Gi+1 and

Gal(K/E)*(?) = Gal(K/E)?x/2(+1) Therefore we have

{1} = Gal(K/E);41 C Gal(K/E); = Gal(K/E)*).
Now consider A’ (| A which equals, by ([114] p.62 Proposition 2) since
1 is an integer,
A(A=A(Gal(K/E)*) = A'()Gal(K/E); = (A'); = (4')°

for B = ¢/ (i). Since x’ restricted to A is equal to x, which is one-one,
X’ restricted to (A’)? is non-trivial.

Now let j be the largest integer for which the restriction of x’ to (4’);
is non-trivial. Therefore ;7 > ¢ and also, by [114] p.102 Proposition 5),
¢ /m(j) = a(x’). Hence ([114] p.73 Proposition 12)

B=dr/mr (i) < drr(j) = alX).
By definition of a(M/M') we have
a(M/M') < 8 < a(x).

1.9. Proof of Theorem 1.7
Suppose that a(M/M') = a(x’) then, in the notation of the proof of
Proposition 1.8, a(M/M') = 8 = a(x’) and so

A= (4) = (4)0.
Therefore
a(M/M') = inf{a € R | (4')* C (4')*0)}.
By the proof of Proposition 1.3(ii)

(A2 2 gy,
which contradicts the assumption that (4")2(M/M) — (A")e(") O

1.10. Recap of abelian local root numbers

Let us recall from ([94] p.29) the formula for the abelian local roots
numbers. Let x : E* — C* be a character (i.e. with open kernel). Let
a(x) = 0 if x is trivial on O}, and otherwise let a(x) be the least integer
n > 1 such that x is trivial on 14+ P%. The Artin conductor is given by the
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ideal f(x) = PJ%(X). For example, if the residue field satisfies Op/Pg = F
and x restricted to O has the form
NOI'Hled /Fp

then a(x) = 1.
In each of these cases the local root number is given by the formula
(194] p.29)

1 1
WE(X)Z\/J\,—WWE(%Z/PE)* x(w)x(e)” Yr(w/c)

where c¢ is a generator of f(x)Dg.

1.11. The Gauss sum of [73]
Let P = mgOp and let v be the E-adic order of 1g on so that the
inverse different satisfies D;Jl =Pg"".
Suppose that p # 2 and that = € E* satisfies vg(z) + vg is odd.
Therefore we have an integer b such that
0=vE(z)+ve+2b+1.
Hence
en 2Py C szsbqufzqu _ D;{l
so that Yp(zr%¢) =1 for all € € Pg.
Consider the Gauss sum
o(z) = Z Yp(zr2le? /2) € C*.
£€(0Or/Pr)*
Note that there is a misprint? in the definition of ¢ in ([73] §2).
If we replace £ by ¢ + mgu with u € O we have

VYp(zn? (& + mpu)?/2) = Yp(xr?€?)2) - Yp(zn?t(Enpu + m2u?/2)

— ’lpE(SUTF2b§2/2)
so that ¢(z) is well-defined.
If v € OF then

sty = Y gm(enR(we)?/2) = ()
£€(Or/PE)*
and for any a

plari) = > pplaryry2¢?/2) = ¢(x)

£€(Op/Pr)*

2In ([73] §2) the sum is taken over all the elements of the residue field. The error
can be seen by taking E = Qp (see §1.12 below).
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so that we have a function, which is not a homomorphism (see E = Q,, in
§1.12 below),

¢: (E*/(1+Pg))®Z/2 — C*
defined by setting ¢(x) = 1 if vg(x) + vg is even. By the usual argument,

if g is the order of the residue field Op/Pg then ¢(z)? = (—1)@==1/2¢y
if vg(z) + vg is odd. Define a map

Gg: E*/(1+PE) — 4
by the formula

% if vp(z) 4+ vE is odd
Gp(z) =

1 if vg(x) 4+ vg is even.

Since ¢(z) = ¢(zP) because p is odd we may extend Gg to a non-
homomorphic function

Gg:Cp = ((E"/1+Pg)®Z[1/p]) — pa.

When p =2 set Gg(x) =1 for all x.

1.12. The case E = Q, and the misprint of ([73] §2)
When E = Q, with p # 2 we have

Gg, 1 Qp/(Q)) = Q; ® Z/2 — pa.

Now Q3 /(Q2*) = {1,u, p, up} where u € Z and the mod p Legendre symbol
satisfies ([125] p. 267)

We have vg, = 0 and vq, (x) + vq, is even for x = 1,u and vg, (x) + vg, +
2(—1) 4+ 1 =0 when « = p, up. Therefore

Go,(1) =1 = Gg,(u)
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and, if £, = €27V =1/P,

“Tpp—2 52
GQP (p) = ﬁ ZzG(Z/p)* e?wﬁpp /2

1 z2/2
- ﬁZze(Z/p)* gp

= ﬁzze(Z/p)* P "‘ﬁzwe(z/p)* (p) p

_ 1 w w/2
= 5 2we®/p) (E)

= (%) 75 Lwe@/p)* (me) e

(]%) Wo, (I(p)) in the notation of ([125] p.267)

—(g)m if p=3 (mod 4)

p

(2) if p=1 (mod 4).

p

3The sum over all the residue field, as in ([73] §2), would add ﬁ to Gg, (p) and

then its square would not be equal to (—1)(P~1)/2 a5 claimed in ([73] §2)



1. THE BASIC INGREDIENTS 291
_ 1 27r\/71upp_2z2/2
GQp(up) = \/ﬁZze(Z/p)* €

uz?/2

1
= 5 2ec(@/p)r Sp

1 z/2 1 w w/2
= U5 Lee@in) & T 5 Lwe@/p)” (5) B

=& Tucmr (2)8"

=~ (2) %5 Tuewn (%2)8"

— — (2) Wa, (1(p)) in the notation of ([125] p.267)
(2) V=T if p=3 (mod 4)

- (%) if p=1 (mod 4).

Therefore Go, (up) # Go,(u)Gq, (p) which confirms that Gg, is not a
homomorphism.
In general, therefore, the formula for G, is given by ([125] p.267)

9va, ()
Go,(z) = < ) W, (I(2)).

p

1.13. The formula for Gg in general when p # 2
Let NV : ]de — [}, denote the norm. It is a surjective homomorphism,
by Hilbert’s Theorem 90 and element counting, so that we have a surjection

N :F../F2 =F ®Z/2 — F; /F2* =F; Q Z/2

which is therefore an isomorphism since both groups have only two ele-
ments.
The exact sequence

0—O0p —FE*—Z—0
yields a short exact sequence
0— Op®7%Z/2— E*/E* — 7/2 — 0
and in the short exact sequence

0—1+Pg —O0p —F.—0
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the group 1+ Ppg is 2-divisible so that we have an isomorphism
Oy ®ZL/2 - F:QL/2.

Therefore E*/E?* has four elements which are {1,u, 7g,urg} where u €
O3, maps to a non-square in de. If ¢ is a power of p then the condition on

u is equivalent to
Nqu/FP(U) -1
p

Recall that D' = (7g)"=.
Suppose that vg + 2b+ 1 = 0 so that

vg(l)+vg+2b+1=0=vg(u) +vg +2b+ 1.
Therefore for x = 1, u we have

Gp(z) = ﬁzze(om%)* bp(eng2?/2)

N \/ﬁ 2 2e(0n/Pr))" VYp(znilz/2)

Nr , /F, (W)
+ﬁ ZWG(OE/PE))* <qdpp> @Z}E(xﬂ—zEbw/2)

qud/wp@w) 1 Nqu/Fp(w) b
:< P ) N 2w (Op/Pr))* <p )WW%“’)'

It would be nice to be able to apply the Davenport-Hasse theorem ([87]
p.20) to this Gauss sum but this is only immediate in the case of E/Q,
being unramified because the additive character g involves the trace for
E/Q, rather than the trace for their residue fields. When vg is odd then
GE(’LHTE) =1= GE(TFE)

Suppose that vg + 2b + 2 = 0 so that

I/E(TFE)—FVE-I-2b+1:OZVE(UWE)+VE+2b+1.
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Therefore for x = 7, urg we have

Gg(z)
= 2= c(0s/pe) VE((@/TR)THT22/2)

= Iz Yec(on/pry VE((@/mE)TE T 2/2)

Nqu /5, (W)

+ e Scionmon (2 ) wal(afme)nt )

N]qu /7y (2(z/7E)) 1 Nqu /B, (W) 2b1
- ( P Ties 2we©s/Pe)s 5 ) YE(TE T w).

1.14. The case when a(x) =1

Now suppose that ¢ is a generator of f(x)Dg. In the notation of §1.13
the inverse different is given by D' = (1) "2, Therefore if a(x) = 1 and
vE+2b+1 =0 then f(x)Dg = Pp"” = Pz and so ¢! = 7%, Similarly

a(x) = 1 and vg +2b +2 = 0 then f(x)Dg = P5"" = P5?* ! and so
cl= ﬂ%b"'l.

Therefore, if xg : E* — C* satisfies xg(7g) = 1 and

Norm]de JF, (z+ Pg)

XE(2) = ) € {1}
p
for 2 € 0% and E*/E** = {1,u,mp,ung}. the formulae of §1.13 become
N; e (22)
(F“d/;p) Wg(xE) 2 = 1,u and vg odd,
1 r=mng,urg and vg odd,
Gg(z) =
Ne /e, (2(2/7E))
<F“d/rppE> Wg(xg) = =7g,urg and vg even,
1 xr = 1,u and vg even.

2. The formula of ([72] p.123 (5)) for the biquadratic extension
2.1. Consider the formula of ([73] p.123 (5)) for an extension N/E
We(Indy,s(1)) = on/6(9) 'Gnlg) 'Ge(g) N €
which holds for all g € E* but only depends upon

g€ E*/E* = (1,u,7p,urg).
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In this subsection we shall examine the formula in the all important case
when N = E(y/u,/7g). Bear in mind that p is odd so that E(y/u)/E is
unramified and E(,/7g)/E is totally ramified. The extension N/E is the
unique biquadratic extension of F.

Recall that (see §3.4)

We(Indy (1)) = SWa(Indy/g(1)) - We(Det(Indy, (1))

= SWa(Indy/p(1)) - We(dn/E)-

The trace form of N/E is represented (in the sense of Galois de-
scent theory ([125] p.102 Example (2.31)) by the regular representation
of Gal(N/E) X 7/2 x 7.2

(N/E) =1+ U(u) + l(mg) + l(urg)

in the notation of [125]. Therefore the second Hasse-Witt invariant is given
in H?(E;Z/2) = {41} by

HWy((N/E)) =U(uw)l(mg)+ U (w)l(urg) + {(mg)l(urg)
=l(w)l(rg) + (u)(l(u) + (7)) + U(rg)((uv) + (7E))

=l(w)l(mg) +1(-Dl(uw) + I(-D)l(7g).
By a formula of Serre ([116]; [120]; [125] p.95 Corollary 2.8)
SWa(Indy (1)) = HWy((N/E)) + 1(2)dn;5 = HWa((N/E))
since, in cohomological notation
Sn/p = l(u) + () + l(urg) € HY(E;Z/2) = E* | E?

which is trivial because I(u) + l(7g) = l(urg) (c.f. [125] p.102 Example
(2.31)).
Therefore the formula under discussion simplifies to the form

(l(w)l(mg))-(I(=1)l(w)-(I(=1)l(rE)) = We(Indy/g(1)) = Gn(g)~' e {£1}

where the products on the left hand side are cup-products in mod 2 Galois
cohomology.

Next we need to verify that vy is even, which will follow from the
transitivity formula for discriminants ([114] IIT §4). Let us recall how that
goes.

We have the trace Try,x : L — K for an extension of local fields
L/K. The trace form (L/K) : (z,y) — Trp/k(zy) is symmetric and
non-singular on L. Let {e;} be a choice of Og-basis for the free mod-
ule Oy, then the discriminant of L/K is the ideal of Oy, generated by the
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element det(Try x(ese;)) = (det(o(e;))* where o runs through the set of
K-monomorphisms of L into an algebraic closure of K. Set

DZ/lK ={y e L|Tryk(zy) € Ok for all z € O},

which is the inverse different of L/K (or codifferent) and it is the largest
Op-submodule of L whose image under Try/x lies in Og. The inverse of
the codifferent is the different Dy /g which is a non-zero ideal of Or. The
absolute different is the case when K = Q,, the prime field. Transitivity
for the chain of fields Q, € ¥ C N takes the form

Dnyg, = Pn/E - DE/g,-
Also Dg/q, = Dr = (7g)"? and the ramification index of N/E is 2 so that

the order vy of the discriminant of N is even unless E/Q, is unramified.
Suppose that E/Q, is ramified so that vy is even, 7y = /g and

(qudm,, (2(z/7x)

P ) WN(XN) r=7my,unmy and vy even,
GN(m) =

1 xr = 1,uny and vy even.

Therefore Gy (g) =1 for g € E*.

This means that the unique biquadratic of E extends to a QQg-extension,
which is correct because each p-adic local field has a QQg-extension and each
such extension has a unique biquadratic subfield.

It remains to consider the case where E/Q, is unramified and so we
may assume 7 = p. In this case, by the ramification criterion of ([114]
I §5 Theorem 1) Dg/q, = Op and Dy/p = Oy if and only if N/E is
unramified. However E(y/u)/E is unramified but for N/E(y/u) in fact the
inverse different is the fractional ideal generated by 775,1 = J/7E ' so that
vy =1 and

Ny » (27)
<qu/Z> Wn(xn) z=1,uny and vy odd,
Gn(z) =
1 r=mnn,unyTn and vy odd.
Once again, because of the existence of Qg extensions of F we must have,
for g € E~,
NIqu /Fp (2)
p

1=Gnlg) = < )WN(XN)-

Now

p p =D )

(Nqu/]Fp (2)) B <2>dimwp((91\7/731\/) (pz_l)dime(oN/PN)

by the second subsidiary law of quadratic reciprocity.



296 11. APPENDIX II: REMARKS ON A PAPER OF GUY HENNIART

Next we use the Davenport-Hasse theorem to compute the local root
number

1
Wrn) = == Y.  xnpn(w/o),
VNN e OntPa)-
where we have used the fact that xny(c) = 1. Also ¢ generates

fxn)Dn =Py = (V) = (p) so that

Wi (o) = —— S xww)n(w/p).

Nmy we(On/Pn)*

Now let L = Q,(,/p) then
Welxe) =& Sees, (r(e/n)

= ()L Toen (2)dg,(20/)

(2)(—i) if p=3 (modulo 4)

(%) if p=1 (modulo 4),

by ([125] p.266).
Since N/L is unramified the Davenport-Hasse theorem ([87] p.20)

implies that
Wi (xn) = —(=Wr(xp)) e ON/Pr),

The residue degree is even so set dimg, (Oy/Pn) = 2d. Then we have*

($)*(=1)* if p=3 (modulo 4)

(%)2‘1 if p=1 (modulo 4)
(—=1)™1 if p =3 (modulo 4)

-1 if p=1 (modulo 4).

2.2. The Davenport-Hasse theorem when E/Q, is unramified
Suppose that E/Q, is unramified of degree d and that p # 2. The
restriction of the trace

TraceE/Qp : OE — Zp

4This seems to contradict the formula of ([73] p.123 (5)). However this is only a
tamely ramified extension.
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is surjective so that vy = 0 and we may choose 7g = p. Then Gg(1) =
1= GEg(u) and for z = p,up

Nr_q /5, (2(2/P)) 1 Ne_q /5, (W) 1
= (p > 7 Lwe(On/Pr))" <p >1/’E(p w)

Ne /ey (2(2/p) Ne_y 2y (w) -
— (B ) 1) Sacionmanr () vty o)

N]de /¥y (2(2/p)) 1 o\ co
()

N[rpd/l?p(2($/17))

= (1t (BB e, (1)
by the Davenport-Hasse theorem ([87] p.20).

QUESTION 2.3. Perhaps the proof of the Davenport-Hasse theorem
given in ([87] p.20) would evaluate the Gauss sums of §1.13 in general?

3. p-adic epsilon factors modulo p-primary roots of unity

In this section I shall give the proof of the main result of [73].

THEOREM 3.1. o
Let o be a wild, homogeneous representation of Gal(F/E) then

Wg(o) = Det(0)(gs) G r(gs)?°8 ™) (modulo jipe ).

3.2. How to use the strict inequality of ([73] p.121)
We shall use the strict inequality of §1.6 and Theorem 1.7

a(M/M') < a(x'),

assuming which I can run the following argument from ([73] p.121). In this
case, providing that a(M/M’) < n, we have a commutative diagram ([49]
Corollary 3.12(i))
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P/ Prrt (1+ P50/ + Pt
r — 1l4+x
TraceM/M/ NOI'IHM/M/
— 14+
PPt : (1+Py)/(L+ PR

in which the vertical maps are surjective and where m = /5 (n).
If we have the strict inequality a(M/M’) < a(x’) we may take

n=a(x) =a(x’) =1 and m =y (a(x')). By [49]
a(x) = a(x’ - Normp/n) < Yarn (X)) =m

and since Normy, . is surjective the composition x = x’ - Normyg s is
non-trivial on (14 P§)/(1 4+ Pyt so that m < a(x). Therefore

m = a(x) and a(x) =m+ 1.

Now suppose that we have ¢’ € (M')*/(1 + Py ) such that for all
y € Pl ypalt

X'(1+y) =vu(g'y)

and that we have g € M*/(1 4+ Pjs) such that for all x € P;}X)/P;}(XHI

x(1+2) = ¢ (g).
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Taking y = Trace;/y () we have

Yu(gz) =x(1+w)
= x'(Normy /a0 (1 + )
=x(1+y)
= ¢ (9 - y)
= Y (g’ - Tracen a ()
= Y (Tracers/n (9'z))

=1u(g'r)

which shows that choosing x’ instead of x leads to the construction of the
same element

9o € (E*/1+Pr) @ Z[1/p]) = C(E).
We have

C(E) = (E*/14 Pg) @ Z[1/p] — (M")*/1+ Poary) @ Z[1/p)C

o

= (M*/14Pu) ® Z[1/p])C

and we have just shown that g, = ¢», = go,,+ When considered as elements
of C(FE). This means that, if the elements §, € E* and §,,» € (M')* both
represent g, € C(E) then, for some positive integer r,

(gﬁ/?]a,x’)pr €l+Pu.
Therefore, if p: (M')* — C* is a character of finite order then

p(ga)/p(ga,x/) € poo.
In addition
Gur (ga) = Gm (p(go,x’)~

These facts are used below in §3.4.

3.3. The improved induction theorem

Here I shall assume a familiarity with monomial resolutions for finite
groups.

If o is a wild and homogeneous representation of G = Gal(K/E) as
in §1.5 then V(4X) = V and the (A, x)-part of the monomial resolution
for V' gives another monomial resolution in which every stabilising pair
(Gal(K/Mj), x;) is larger than or equal to (A, x). Furthermore the Euler
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characteristic in R4 (G) is well-defined because the Euler characteristic of
the whole monomial resolution is well-defined. Therefore we have

G
o= Z nilndéa /) (Xi) € R(G)
where A C Gal(K/M;) and x;|]A = x for all i. Therefore each
Indgal(K/Mi)(Xi) restricts to [K : M;]x on A. This means that
9o = gInch;al(K/I\/Ii)(Xi)
for each 1.

Note: There is a subtlety here to be careful of.

The entire representation Indgal( k/m;)(Xi) is wild and homogeneous
(with the same associated character as o) but this does not mean that x;
is wild. We know that A is a ramification group for Gal(K/M;) with the
same lower numbering as A has for G but the definition of g,, depends on
the upper numbering which does not intersect well with subgroups!

3.4. The proof of Theorem 3.1

The result is already known when p = 2 [138] so henceforth p is an
odd prime.

Write Ay g = We(Indy, (1)) € pa. The Ay, g’s are a very subtle and
important family of numbers, to the construction of which approximately
200 pages of the 400 pages essay [89] are devoted. In [48] it is shown that,
for any orthogonal Galois representation,

W (o) = SWa(o)Wg(Det(a)).

In ([125] p.274; see also [122]) is given a very quick construction of Wg (o)
when o is orthogonal, which immediately gives the existence and Deligne’s
formula. The formula is used in §2.1.

Suppose the we are given a wild, homogeneous representation ¢ as in
§1.5. Define

¢(0) = Det(0)(gs) ' Gr(go) 8 € C* /1y

so that our objective is to show that

Wi(0) = C(0) € C /.

Notice that if ¢ and 7 are two wild, homogeneous representations such
that g, = gr then ((0 ® 7) = ((0){(7). Furthermore when 7 is one-
dimensional we have Wg(n) = ((n) € C*/up~ by ([64] p.4). Using the
inductivity properties of Wg(—) and the induction theorem of §3.3 we shall
derive Theorem 3.1 from the one-dimensional case.

Consider the equation of §1.5

o= nindgayi K/ (xi) € R(Gal(K/E)).
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By inductivity (in relative dimension zero) of the local constants we have

G lK E ng __ ni n;
H W (Indgaiiay ()™ = TT M, e War, ()

Since, by §3.3, for each ¢
9o = 91nd&

Gal(K/M; )(Xi)

we find that
Gal(K/E ni ”
H C(Indga) ) (xa))™ € C*/ .

Therefore, if we can show that for each ¢

Gal Gal
We(Indgate/ag,) () (gt (6) /i
Wi, (x:) ¢(xi) :
then the result follows because Way, (x:) = ¢(x:) € C*/ppeo

In the situation of §1.5 we have Rebidl(K/E) () =nx, and on

1 +77X4(X“) ! we have Xo(1+ ) = Yar(gox) and g, € C(E)[1/p].
Now suppose (IV, x) is one of the (M;, x;)’s so that

(A, xo) < (H = Gal(K/N),x) and N < M.
Therefore, if 5,5 = Det(Indy/g(1)), in C*/upe we have
We(Indy/e(x)) = An/eWn(X)

=0n/5(9) 'Gn(9) T Grlg) N FIx(9) TGN (9),

by Proposition 3.5, for any g € E* and where on 1 + PX,(X)A we have
x(1+y) =v¥n(gy). Then § =g, € C(M)[1/p] so that Gn(g0) = Gn(9)-

Therefore
We(Indy,2(x)) = 0n/5(9e) " Gr(ge) NPl (§) ™" € C/pipe

but g,/§ lies in a pro-p group so x(§)/x(9s) € ppe=. Hence, by the
formula

Det(Indy, (X)) = Resg- (X)dn/k
of ([47] Proposition 1.2)
Wi (Indy, £ (x)) = Det(Indy5(x) ™ (95)Gr(g0) N € C /e
which implies the general formula for Wg (o) (modulo pye). O

PROPOSITION 3.5. ([73] Proposition 1 p.123)
Let K be a finite extension of £ in F and let g € Cg ® Z[1/p]. Then

We(Indg /(X))
Wi (x)
for every character x of K*.

=0x/p(9) ' Gr(9)F € C/ppe






CHAPTER 12

Appendix III: Finite general linear and
symmetric groups

This Appendix recalls in §1 the characterisation of irreducible complex
representations of the symmetric groups and in §2 those for finite general
linear groups, together with the construction of their zeta functions. §3 de-
scribes how to generalise the Kondo-Gauss sums [85] by means of a formula
in terms of character values and then derives the functorial properties of
the Kondo-style Gauss sums.

1. Symmetric Groups

1.1. Following ([93] Chapter One, §7) we recall the classification of
irreducible representations of the symmetric group X, over an algebraically
closed field of characteristic zero. Without loss of generality we shall stick
to complex representations in this appendix. Denote by A, the algebra
of symmetric polynomials Z[x1, ... ,x,]* whose homogeneous of degree k
part will be written A¥ ([93] p.10) and set A = @,>0 A,,. Hence A is a
graded algebra.

Define p, = > 27 € A and if A = (A1, Aa,...) is an integral partition
we write ([93] p.15)

pA:pMp)\z ...p>\i e

Each permutation w € %, factorises uniquely as a product of disjoint
cycles. If the orders of the cycles are p1,pa,... with p1 > ps > ... we
set p(w) = (p1,p2,...) which is a partition of n called the cycle type of
w. Tt determines the conjugacy class of w in ¥,, giving a bijection between
conjugacy classes and partitions.

Define a mapping ([93] p.60)

X, — A,

by ¢¥(w) = ppw) which satisfies the multiplicative relation ¢ (v x w) =
Y(v)Y(w) where v x w is the disjoint union of the permutations v and w.
Next consider R" = R(X,), the (complex) representation ring of the
symmetric group and R = @,>0 R". This is a graded algebra (in fact, as
explained by Zelevinsky [146], it is a PSH Hopf algebra). The product is

303
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given on z € R"™ and y € R™ by

T-oy= Ind;:;%m (z®7y).

Moreover R carries the Schur inner product

<Z fnaz gn> = Bn <f7l7gn>2n'

There is also a scalar product on A ([93] p.34). For partitions A, u we
define symmetric functions ([93] pp. 11-15)

my = E xPag? .= E <

where o runs through all the permutations of (A1,...,\,), n is the length
of A and for each positive integer r

hy = Z my and  hy =hy hy, ... .
[Al=r
The inner product is characterised by
1 if A=yp,
(P, mg> =
0 otherwise.
The characteristic homomorphism is a Z-linear mapping
ch:R—A®z;Q
which sends f € R™ to

1
ch(f)=— > fwy(w).
T wexn,
If )\ is a partition write m;(A) for the number of integers in A which are
equal to i and define ([93] p.17)

i>1

The integer n!/z) is equal to the number of elements of ¥, which have
cycle type A when |A\| = n. The combinatorial formula for the characteristic
homomorphism is
ch(f) = Z Z;1f£p£
lpl=n

where f, is the value of f at elements of cycle type p.

The following result is important in the classification of irreducible
representations of X,,.

ProOPOSITION 1.2. ([93] p.61)
The characteristic homomorphism is an isometric isomorphism of R
onto A.
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Proof

The characteristic map is a ring homomorphism, by Frobenius reci-
procity, if f € R™,g € R™ then

ch(f-g) = (Indy’ % (f ©9), )5,
= (f ® g, Resy" 5 (©)5,0x3,
= (f.0)x, {9, V)s,
= ch(f)ch(g).

Now let 1,, denote the one-dimensional trivial representation of ¥,,. If
A= (A1, A2,...) is a partition of n let 1y = 15,1, .... Since

ch(1,) = Z zg_lpg = hy,

lpl=n

we see that ch(1y) = hy.
Now, for each partition A of n define

x2 = det(1,_i1;) € R"

where the suffices i, j in the matrix each run through 1,2,... ,n. Therefore
X2 is a virtual representation of ¥,, which is characterised by ch(x2) = s A
Since ch is an isometry we obtain

R 1 if A=p,
s, =
0 otherwise.

A counting argument completes the proof. O

1.3. The sy’s (93] pp.23-24)

Writing z% = z{*z5? ... for a strictly non-negative multi-index o =
(a1, ag,...), define
aq = Z sign(w)w(z%),

wEX,

the antisymmetrisation of z<. Since a, is skew symmetric it vanishes unless
the non-negative integers ai,as,...,q, are all distinct. Hence we may
assume aq > g > ... > ay > 0. Therefore we may write o as the sum of
two partitions

a=A+0=A+n—-1,n—2...,1,0)
where o; = X\; +n — 4. In Z[zy,... ,x,] the polynomial ay,s is divisible
by as and we define sy = ax4s/as, which is a symmetric polynomial. Note
that a, is equal to a Vandermond-type determinant whose (i, j)-th entry
. (e %]
is x; 7.



306 12. APPENDIX III: FINITE GENERAL LINEAR AND SYMMETRIC GROUPS

PROPOSITION 1.4. ([93] p.62)
The irreducible representations of ¥,, are {x2; |A| = n}.

Proof

By Proposition 1.2(proof) we know that each y2 is either an irreducible
representation or minus an irreducible representation in R"™. To show that
the latter is not the case it suffices to show that dim(x2) = x2(1) > 0.

We have([93] p.61 (7.2))

_ A
sa=ch(x®) = Y 2, 'Xopp
lpl=n

so that Xﬁ = (s», p£> and in particular

A n
Xé(l) = X(1717.__ 1) = <5A7p1>
so that
W =pl = > x*1sy
[Al=n

Therefore, in the notation for transition matrices of ([93] p.56),
XA(1) = M(h, s)(11,.... 1)

and so x2(1) equals the number of standard tableaux of shape ), which is
a positive integer. O

REMARK 1.5. In the course of the proof of Proposition 1.4 one sees
that the transition matrix M (p, s) gives the character table of 3,,. That is,

Py =32 X
A

1.6. Mazimal terms in as, (x2)

In the notation of Appendix One, Section Five the element ag(p) €
R (G) is an explicit formula for Brauer’s Induction Theorem when G is a
finite group and p is a representation of G over an algebraically closed field
of characteristic zero.

I would like a formula for the coefficient in ax, (x*) of (Cy,, ¢,,)*" where
(Cu, ép) is maximal in My, of the form

Cu=0Cu X Cpy x ... xCy, CEyy X By, XXXy,

and ¢, = dpy ® Pu, ® ... Q ¢y, with C; a cyclic group of order j.
The formula for this is

N5, (Cs )71 DY X2(9),(9)-

gECi
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In order to benefit from the combinatorial formulae of [93] this should be
written in terms of the x%’s.

However, we shall take an easier route.

Now I want to evaluate the terms involving some maximal pairs (H, ¢)*»

in ag, (x2). To do this is will suffice to replace x2 by Ind%;"(l) where

¥y =Sy, X ... x Xy, This representation is denoted by 7, in ([93] p.61).
As explained in ([9] §1) both the Ind%;(l)’s and the y2’s form a free basis
for the abelian group R(X,). Since ch(x2) = sy and ch(nd) = h, there
is an invertible square matrix with integer entries, in the notation of ([93]
p.55) it is the transition matrix M (s, h) such that

Sy = Z M(s, h)A,g N and 2 = Z M(s,h)éyE Indgz(l).
s =

Now suppose that (C,, ¢,,) is a maximal pair as in §1.6 and that ¢, =
Gpy & ... ¢u, where x,,; is a faithful character on C),;. This means that qﬁﬁ
is non-trivial on any subgroup of Cﬂ . Then

coefficient of (C,, ¢&)En in ax, (Ind%(l))

Cul S Sn T 150
=I5 T (Gt (G Resg IndS; (1)) o,

Gyl Cy
= N o] 226\ 2 /5 s I s 1 (D)

[Cul _
= W Gyl 17 € Cu\Zn/Za | G 0280270 = {1}

1.7. An interesting combinatorial polynomial identity

This section describes a result due to Francesco Mezzadri, my son-in-
law. The following sketch of the proof is my responsibility, both for the
method and any errors therein!

Let A be a partition of n. Francesco was interested in factorising the
polynomial

fala) = > A (g)atersthiele)

3 g€y
where length(p(g)) is the length of the partition p(g) corresponding to the
cycle type of g (see [83]). Recall that the length of a permutation whose
expression in terms of disjoint cycles has r; i-cycles is ), ;. Since n!/z,)
equals the number of elements in the conjugacy class of g we have N

A

n! Xp
h@)=5g 2 o,

lpl=n "2
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On the other hand the characteristic homomorphism satisfies ([93]
p.63)

A
v
S\ = Ch(XA) = Z ipp

pl=n 2
in the ring of symmetric polynomials in zi,...,zxy with N > n. The
symmetric polynomials sy are, I believe, called the Schur functions.
If weset 1 =21 = ... = ay we obtain pp|(z,—1, an i} = Nlength(p),
Therefore
n!

fi(N) = XT(DSA‘{IFL all 4}

As is well-known, first observed by Weyl I believe, there is an isomor-
phism of ¥,, x GLyC-representations of the form ([9] §1)

(€M)= = 3" x* @ Homy, (x, (CV)®™).
Al=n

We write Wy = Homy,, (x2, (CV)®"). Hence

N"= Y xMLWa).

|Al=n

The characteristic homomorphism followed by evaluating at 1 = x, =

. = zy gives a homomorphism depending on N from R to the integers.

The theory of polynomial functors, I believe, shows that this homomor-
phism sends 2 to W, (1) so that

’I’L'W)\(l)
f(N) = —22
20 =28
The dimensional equation for (C™)®™ leads to the result, if length(\) <
N, that

Nj—Ap+k—j
WA(l)Xé(l) = H1§j§k§N klij ’
which yields

length())

AN = [ (N-i+ DN —i+2)...(N+x—i).
i=1

Varying N yields the following result:
THEOREM 1.8. (F. Mezzadri 2010; appearing in [83])

length(X)

Ia(z) = H (x—i+D(x—i+2)...(x+ X —1).

i=1
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2. Irreducibles for GL,IF, and their zeta functions

2.1. Irreducible representations of GL,F, (193] §1)

Let IAFZW, denote the group of characters of the multiplicative group of
the field of ¢ elements. When m divides n the (surjective) norm homo-
morphism induces an injective map

N,::’m : ]FZrn — ]F:;n
and we set
[ =lim [},
A

which is a discrete torsion group non-canonically isomorphic to the multi-
plicative group of Fq, the algebraic closure of ;. The Frobenius automor-
phism Fr acts on I' as the ¢g-th power map. Write I';, for the fixed points
of Fr". We have a pairing

(=) % X Fr, — C

given by (7,7) = 7(x).

If f is a Frobenius orbit in T denote by d(f) the number of elements
in f, called the degree of f. The irreducible representations of GL,IF,
are described in the following manner, which originally appeared in [69].
To each Frobenius orbit f € T' with d(f) = n there corresponds a unique
irreducible cuspidal® representation of GL,F, and the remaining irreducible
representations of GL,IF, are constructed from these representations of
GL,,F, for m < n.

Let ni1,...,n, be positive integers whose sum is equal to n. Let
Pr,.....n, C GL,F, be the standard parabolic subgroup consisting of ma-
trices of blocks of the form

Yipn Yip Yigs
0 Yoo Y3
0 0 Yis
0
0
0 0 0 o - Y,

where Y;; € GL,,F, and all blocks below the diagonal are zero. The
parabolic subgroup is a semi-direct product Py, .. n,. = Un,.... n.Dni,... m,

1Cuspidad representations are also sometimes called discrete series representations.
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where Uy, ... n, is the subgroup of P,, . . in which the diagonal blocks
are identity matrices and D,,, ... », is the subgroup in which all off-diagonal
blocks are zero. Hence

Dy, 2GL, Fg x GLp,Fy x ... x GLy, Fy,.

)

Suppose we are given irreducible representations m; of GL,,F, for 1 <
i < r then the iterated tensor product m; ® ma ® ... ® 7, is an irreducible
representation of D, . ... The “induction product” of mi,mg,... 7, is
denoted by 7w o g o ... 0w, and defined by

GL,F Poiim

ML OMy0...0Ty = IndPnly_”q,nTInfDnll)__ (MM ®...0m).

r
Lanpe

The induction product is part of the PSH algebra structure used in the
approach of [146] to the results of [69].

Suppose for the moment that m = 73 = ... =7, = (f), which is a cus-
pidal representation of GL4F, with d = d(f) and n = rd. The commuting
algebra of (f)o (f)o...o(f) = (f)°" is the group-ring of the symmetric
group X,. Therefore the irreducible GL,,F,-components of (f)°" are given
by (f*) = Homg_ (X, (f)°") as A runs through the irreducible representa-
tions of ¥,. From Proposition 1.4 the irreducible representations \ are
indexed by partitions of 7.

More generally suppose that \; is a partition of |\;| for 1 <4 < m and
that f1,..., fm are distinct Frobenius orbits in I' with n = >"1" | d(fi)| ]
then (f*)o(f3?)o...o(fAm) is an irreducible representation of GL,F, and
all irreducible representations are obtained in this way, without repetition.

If we think of the above data as a function A from Frobenius orbits
in I' to partitions given by f; — A; for 1 < i < m and sending every
other Frobenius orbit to zero then we shall denote the resulting irreducible
representation by 7. In other words A — ) gives a canonical bijection
between partition-valued functions on Frobenius orbits of I" and irreducible
representations of GL,F, as n varies.

2.2. Zeta functions for GL,F,

Let ¥ : M,F, — C* be the usual additive character, as used in the
section on Kondo-Gauss sums (Definition 3.1). Let C(M,F,) denote the
space of complex-valued functions on M,,F,, the set of n X n matrices with
entries in F,.

As we shall soon see as we recapitulate the process of ([93] §2), the
finite field case is precisely taking the top level in the Godement-Jacquet
approach to zeta functions for GL,, of a local field (see [40] pp.147-155).

For ® € C(M,F,) the Fourier transform of ® is & € C(M,F,) given
by

b(X)=q Y e(¥V)U(XY).
YEM,F,
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Hence

K>

(X)
:q—n2/2 EYEMnFq é(Y)W(XY)
2 2
— g2 Syerr, ¢ /2 Y zemr, P2 V(Y Z)U(XY)

—n?
=q Yvemr, 2zemr, P(Z2)U(Y(Z+ X))
Fixing Z and hence fixing Z + X we see that Y — U(Y(Z + X)) is a
non-trivial character unless X + 7 = 0 and so this subsum over Y vanishes.

Therefore .
~ 2
O(X)=q" Y O(-X)=2(-X),
YeM,F,

which is the usual relation satisfied by the Fourier transfer.
Let 7 be a finite-dimensional complex representation of GL,IF,. Then
the zeta function associated to ® € C(M,F,) and 7 is defined by

(@m) = 3 SX)T(X) € Maime(m) (C).
XeGL,F,

Define the normalised trace of the zeta function to be

W@ m = Y B(X)(X)eC.

dim(c(ﬂ') XeGL"IE‘q
Hence
Trace(¢(®, 7)) = dime(7) - G (P, 7).

Define
2
W(m U, X)=¢""7 > a¥)¥(YX)
YEGL,F,

and
—n? /2

9
Wi (m, ¥, X) = pren YE;%FQ = (Y)Y X).

For each Z € GL,F, we have
W(r, U, XZ) =q /2 Yvearr, TY)U(YXZ)

2
=q "/ Yvear,r, TYV)V(ZYX)
2
— P Sy g r, T(2) R (ZY)UZYX)

=7(Z)"'W(r, ¥, X)
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and
W(r, ¥, ZX) =W(r, ¥, X)n(Z)" .

PROPOSITION 2.3.
Let m be an irreducible representation of GL,F, such that
(m,1)ar,r, = 0. Then W(m, ¥, X) = 0 for all singular matrices X.

Proof
Let HX)={Y € GL,F, | YX = X}. For Y € H(X) we have

W(r, U, X)=W(rv,YX)=W(r¥, X)r(Y) !
so that

Wm@m—wmgxméngéww)

Therefore it suffices to show that } ey 7(U) is the zero matrix. If
the rank of X is r with 0 <7 < n — 1 then for suitable A, B € GL,F, we
have X = Ae,.B where < 10T 8 ) we have H(X) = AH(e,)A™! so it is
sufficient to assume X = e, in which case

e == 1)

If the matrix ;¢ gr(.,) m(U) is non-zero then the map it induces on the
representation space for m maps it non-trivially into the subspace fixed by
the action of H(e,). Therefore it suffices to show that there is no non-zero
vector in the representation space which is fixed by H(e,), which contains
the subgroup H(e,_1), which is a normal subgroup of the parabolic sub-
group Pp_171.

Since

GL,F GL,F
<IndH(en_ql)(1),7T>GLnIFq = (I,ResH(en_"l)(W»H(en,l) #0

so that the irreducible 7 is a component of

GL,F, Pn_11
Ind )(1) = IndPGL,,L[Fq (IndH ! (1))

H(en,1 n—1,1 (enfl)

But P,—11/H(en—1) & GL,,_1F, so that Indg"(;llfl)(l) is obtained by in-
flating IndflL}"’l]Fq (1)®1 from GL, _1F; x GL,F so that, by the classifica-
tion of irreducibles of GL,F,, w is an irreducible component of 71 o (1)
for some irreducible representation m; of GL,_1F,. This implies that
(m, 1>GL”FQ = 0, which is a contradiction. O
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2.4. Next we observe that
ZXGM,LIFQ (I)(_X>W(7T7 \Ilv X)

=S xeme, WE®X) g2 Yy o O(V)U(-XY)

=2 XeM,F, g > zecr,r, T(Z2)¥(ZX) g/
XZYGMn]Fq O(Y)¥(-YX)

= ZZEGLnIFq m(Z)®(2)

=((®,m).
Taking traces
Trace(¢(®, 7))

= dlm([j(ﬂ') . Ctr(q)7 ﬂ-)

= dime(7) Y xeprr, P(—X)Wir(m, ¥, X).
or

(@)= > B(=X)W(m, ¥, X).
XeM,F,

THEOREM 2.5.
Let m be an irreducible representation of GL,IF, such that
<7T»1>GLnIFq = 0. Then

C((i)» 71_V)Tmnspose — W(Wv, 0, ]-)C((I)v 7T).
Proof
By Proposition 2.3 and §2.4

C((i)v ,/T\/)Transpose

>

= ZXENInFq (*X)W(’/Tv, \I/, X)Transpose

= EXGGL”M ‘I’(X)W(?TV, 0, X)Transpose

= W(r", W, 1)Transpose ZXEGL,,,]Fq (X)m(X)
= W@, U1 Y xeqr,r, SX)T(X)

= W (Y, ¥, 1)¢(P, )
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because W (wY, ¥, 1) is a scalar matrix. O

COROLLARY 2.6.
In the situation of Theorem 2.5

Py 2
Ctr((I)7 7Tv) = q_n /QWGL,,L]FQ (Wv)ctr(q)77r)
where War, r, (rV) is as in §2.2.

2.7. W(m, ¥, X) when 7 is reducible
In §2.2 we defined

WU, X)=¢"" Y x¥)(YX)
YEGL,F,
which is an endomorphism of the representation space of . Suppose that
T=mT1 DM D... D7,

where the 7;’s are irreducible representations (possibly with repetitions).
Suppose that 7; is represented by a homomorphism

pi: GL,Fq — GL4,C

for 1 < i < r. Therefore 7 is represented by the matrix homomorphism
into GLdl-‘,-,,.-‘,-dT(C

p(X) 0 0 0
0 pAX) O 0
X — :
0 0 0 ... 0 p(X)
Therefore the formula for W (m, ¥, X) in terms of a matrix is given by
Wi(p1, ¥, X) 0 0o ... ... 0
0 Wi(p2, ¥, X) 0 ... ... 0
0 0 0 ... 0 W(p,V¥,X)
By Proposition 2.3 if X is singular and (m;,1)gr,r, = 0 then

W(m;, ¥,X)=0. If
.
0= (mV)ar,e, =Y (M, aL,w,
i=1
then each positive integer (m;, 1)gr,F, is zero and so W (m, ¥, X) is the zero
matrix. In other words, we may remove the adjective “irreducible” from
the statement of Proposition 2.3.



3. KONDO-GAUSS SUMS FOR GL,F, 315

PROPOSITION 2.8.

Let m be a finite-dimensional complex representation of GL,F, such
that
(m,1)ar,r, = 0. Then W(m, ¥, X) = 0 for all singular matrices X.

2.9. Theorem 2.5 when m is reducible

The formula of §2.4 does not require that 7 be irreducible so that
Proposition 2.8, §2.4 and the proof of Theorem 2.5 establish the following
result.

THEOREM 2.10.
Let m be a finite-dimensional complex representation of GL,F, such
that
<7T, 1>GLnIFq = 0. Then
C((i), 7T\/)Tmnspose — W(Tl'v, \If, 1)(((1)’ 7'('),
COROLLARY 2.11.
In the situation of Theorem 2.10
(@, 1Y) = ¢ P War,p, (7)o (@, 7)
GL,F,

where Wep, r, (V) is as in §2.2. In particular, if 7 = Ind;; ™ “(p) with
(p, 1) = 0 then

C(ci), IndgLnFq (p\/))Transpose — q_nz/QWH(pV)C((D, IndgLnFq (P))
3. Kondo-Gauss sums for GL,F,

DerFINITION 3.1. Let p : H — GL,C denote a representation of a
subgroup H of GL,F,. If ¢ is a power of the prime p we have the (additive)
trace map

Tr]Fq/IFp : Fq — Fp.
In addition we have the matrix trace map
Trace : GL,Fy, — Fy.

Define a measure map ¥ on matrices X € GL,F, by

zw\/Tlqu/]Fp (Trace(X))
U(X)=e C
which is denoted by e;[X] in [85]. Let x, denote the character function of
p which assigns to X the trace of the complex matrix p(X).
Define a complex number Wi (p) by the formula

Wi (p) = m XX;{ Yo (X)W (X).

When H = GL,F,; and p is irreducible Wer, r, (p) = w(p), the Kondo-
Gauss sum which is introduced and computed in [85].
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THEOREM 3.2.
Let o be a finite-dimensional representation of H C GL,F,. Then for
any subgroup J such that H C J C GL,F,

Wi (o) = Wy(Ind} ().

Proof
Set p = Ind}; (). By definition

Wi(p) = by Lxes Xo(X)¥(X)

= m Yxes Lves, yxv-ten Xo(Y XY HU(X)
by the character formula for an induced representation ([126] Theorem
1.2.43). Consider the free action of J on J x J given by (X,Y)Z =
(Z71XZ,YZ) for XY, Z € J. The map from J x J to J sending (X,Y) to
Y XY ! is constant on each J-orbit. Therefore

Wilp) = m Yxes Lves, yxy-ten Xo(YXY HU(YXY ™)
= e || Zven Xa(U)¥(U)

= WH(J)
LEMMA 3.3.
(dimg(o1)+dime(02)) Wy (01®02) = dime(o1)We (01)+dime(o2) Wi (02).

EXAMPLE 3.4. The Weil representation r(©) of GL,F,

The Weil representation is a very ingenious construction of a (g — 1)-
dimensional irreducible complex representation of GLoF,. It is constructed
from scratch in ([126] Chapter Three). However there is a very simple de-
scription of 7(©) in terms of induced representation, which may be verified
(for example) using the character formulae of ([126] Chapter Three).

There is a copy of IFZz, unique up to conjugation, embedded in G LyIF,.

For example, if ¢ is a non-square in F} then sending a + b\/o to

a bo

b a

gives such an embedding. Let F' denote the generator of Gal(F,:/F,) and
suppose that © : F7, — C* is a character such that F'(©) # ©.

Let H denote the “top line” subgroup consisting of of matrices of the
form

a b
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so that H = [, x F, by sending the above matrix to (a,b/a). Therefore we
have a character on H given by

a b

(O 7) =0(a)¥(b/a).

0 1
Here ¥ is the additive measure defined in Definition 3.1 on n X n matrices
in the case n = 1.

There is a (splt) short exact sequence of complex G LoF-representations

0— IndGLqu(@) IndGLqu (O ¥) — r(O) — 0.

To establish this result I first used the fact that ([126] Chapter Three)
provides an easy description of the right-hand map together with a com-
plicated argument to show that the left-hand representation was inside the
kernel. Then, smugly pleased with the discovery, I check it using the char-
acter values of ([126] Chapter Three) only to find the same result appears
n ([40] p.47)!

By Theorem 3.2 and Lemma 3.3 we have

War.,r, (r(©)) + WFZz () =Wg(O® D).

However
HO® W)= > O(a)¥(b/a)¥(a+1)=0
(a,b)eH
since the sum of the values of a non-trivial character over a finite abelian
group (F, in this case) is zero. Therefore
WerLsr, (1(0)) = =We-, (©)
where the right side in the familiar Gauss sum over a finite field.

PRroPOSITION 3.5.

Fori=1,2let 0; : H, — GL,,C be a representation of H; C GL,,F,.
Then we have a representation of H; x Hy (embedded into GLg, 15, by
direct sum of matrices) given by the tensor product o1 ® oy and

Wh, x#, (01 ®@ 02) = Wi, (01)Wh, (02).
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Proof
We have
Wi, s, (01 ® 02)

= ﬁ ZX1€BX2€H1><H2 Xo100s (X1 ® Xo2) V(X1 & X2)
= ﬁ ZXl@X2€H1XH2 Xoy (X1)Xoo (X2) W (X1) ¥ (X2)

= WHI (Ul)WH2 (02)'

REMARK 3.6. In [85] Kondo gives formulae for his Gauss sums on the
irreducible complex representations of GL,Fy. The calculations of [85] do
not use the function Wy (p) but stick to the case of an irreducible p and
H = GL,F,. The greater freedom and generality of Wy (p) should make
the calculations much simpler.

To obtain Kondo’s formulae and (elsewhere in this monograph) to gen-
eralise to the case in which F, is replace by a local field we need to under-
stand the behaviour of Kondo-Gauss sums under taking spaces of homo-
morphisms of irreducibles of ¥, into p’s.

3.7. Towards Kondo’s formulae

The semi-direct product ¥,, [ Hy consists of elements (7, (X1, X2,... ,X,)) €
3, X H with multiplication defined by

(T, (X17X2a o an)) : (7-/, (X{7Xé> s ’XrIL>)
= (17, (XlX;(l),XgX;(Q), o ,XnX;(n))).
If H, € GL,F, then ¥, le C GLp,Fy. If 0 is a representation of H;
then ¥, [ Hy acts on 0 ®...®0 (the n-fold tensor product) by the formula
(r, (X1, X9y .. ,H)) (11 ®...Qv,) = (T(Xl)(’UT(l)) Q... J(Xn)(UT(n)).
This defines a left action because
(Ta (X17X27 s aHYL)) : (Tlv (X{aXé7 o aX;L))(’Ul D...0 U”)

= (Ta (X17X2a v 7Hn))(U(X{)(vT/(1)) K. J(X’;L)(UT/(’”:)))
— o(X0) (0 (X 1)) (0rrr1) © - © (X)X ) (0r2s0)
— (X1 X! 1)) (Vrrr(1)) @ -+ © 0(Xn X)) (s

= (7—7'/7 (X1X7,'(1)7 X2X7,'(2)’ e 7X’n,X/ ))('Ul ® tte ® Un)

7(n)
as required. These formulae define the exterior n-fold tensor representation
oO" of ¥, [ H;.
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In order to calculate the Kondo Gauss sum for the representation given
by

Homzd(lndgj1 (1), 7% = @7_, Homy, (1,70%)

XX Ba,.

and we can get the Kondo-Gauss sum of Homs, (1, 7O%) by Mébius in-
version from the Kondo Gauss sums of 7O .

Given a representation X of ¥, we may inflate it to give a representation
Inf(\) of ¥, [ Hy. Set H, = %, [ H;. We shall now examine how to
calculate Wy (Inf(\)Y ® 0©") where Inf(\)Y is the contragredient (equals
dual in this case) of Inf(\). It will suffice to calculate this in case of the
free generators A = Indgzlxzwx“.xzum (1) where u = (u1,... ,Up) is a
partition of n by positive integers (i.e. u; >0 and }>; u; =n). Since this
representation is self-dual we shall consider

W, (Inf - Ind3" s, (1)-0©")

7‘,2><...><Z]

Um,

= WHn(Indgzleuzx...xH (Gon))

um

= WHul XX Hy,, (UOTL)

“ I, Wi, (0O).
Therefore it suffices to calculate Wy, (6©™).

3.8. Wy, (0©")
Let vy,v2, ... ,v4 be a basis for the vector space underlying o. Suppose
that X; € H acts via o according to the matrix formula

d
O'(Xi)(’Us) = Z Xi;t,svt-
t=1

It 7 € 3,, then
(T, (Xl,XQ,... ;Xn))(vsl ®®Usn)

= O'(Xl)(’UST(l)) R...Q U(Xn)(vsr(n))

d d d
= Etlzl Zt2:1 Ztnzl X1§t17571 Xl;t27872 "'X1§tn757'n Vi @ Vg & .o @ Vg,

Therefore the trace of (7, (X1, Xa,...,X,)) € H, acting on ¢©O" is equal
to

> Xissrsr, X2isa,50, -+ Xnisnsr, -

1<s1,82,...,8p,<d
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The formula for Wy, (6©") is equal to

W, (0©7)

n

= m 23(7—,(X1,...))»§Hn Xoon (7, (X1, ))U((7, (X1, ..., Xn)))-

Now consider the expression for ¥((7, (X1,...,X,))). When 7 is the
transposition (1,2), in terms of matrices in H, the element
((1,2),(Xq,...,Xp)) corresponds to the product of matrices of d x d blocks

X, 0 0 0 0 100
100 0
0 Xo 0 0
0 0 X 0 0010
_.'3. 00 0 1
0 X; 0 0
X, 0 0 0
| o o Xx3 o

The behaviour for general 7 is clear and we obtain the formula
U((r,(X1,..-,Xn)))

27r«/71Tr]Fq/]Fp (Trace((7,(X1,...,Xn))))
= e r

= L= W(Xi).
Therefore we have the formula

W, (6©7)

_ 1
— dim(o)™ Z(‘n(Xl,‘.. ))EH,

X 21351,52,‘..,%91 Xiisi,s0y -+ Xnisp,sn, Hr(i):i U(X;).

Now let us evaluate some small examples of the above formula.

3.9. Small examples of Wi, (6C") when {(o,1) =0
In this subsection (o, 1)y denotes the Schur inner product, which is
zero when the trivial representation does not occur in o.
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When n = 2 we have
Wi, (0©)

= diiml(a-)z D (1(X1,X)) Do1<srsa<d X List,s1 X2isz,s0 P(X1) W (X2)

+dim1(0)2 E((I,Q),(XI,XQ)) Elgshszgd X1§51»32X2§52781

=Wu(0)? + m Z(XLXQ)EHQ Trace(X; X5).

However, as (X1, X3) runs through H? the element X; X5 runs through H
precisely |H| times. Therefore we have

Wi, (097) = Wi (0)? + gy (0 i = Wi (0)?.

When n = 3 consider the contribution to the formula of §3.8 from a
2-cycle, which may as well be 7 = (1,2), and a 3-cycle, which may as well
be 7 = (1,2,3). We have

TEET 2o((1,2),(X1,Xa,Xa)) Do1<s1,02,85<d X1is1,52 X 2582,51 X3555,50 U (X3)
= diml(a')2 Z(Xl,Xg)eHZ Trace(X1X2)Wg (o)

=0
and

1
dim(o)3 Z((1,2,3),(X1,X2,X3)) Zl§51752,53§d X1;51752X2;S2753X3;S3781

HZ
di|m(|o)3 > xen Trace(X)

=0.
Therefore we obtain the formula
Wity (60°) = Wi (0)°.
In general we have the following result.

THEOREM 3.10.
If the Schur inner product (o, 1)y vanishes then

WH (O’On) = WH(O’)H.

n

ProrosiTION 3.11.
In the notation of §2.1
Py, N
WPnl,...,n,. (InfDnllwwm (p) = |Un1,---,m~|WDn1.,.,,n,, (p)-
Also

2 2 2 2
n-—mj;—ngyg—...— N,

‘Unl,n» ,nr| =q
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Proof
We have

Puyo o ny
We,, ., (I (p))

NY,eee N

= |U’ﬂ1,~~,nr

Wb, ..(p)

The order of |U,,,... n.| follows from the fact that there are (n —n;) X n;
arbitrary entries from F, to the right of the diagonal block given by the
n; X n; identity matrix for 1 <¢ <r. O

3.12. Computing WGLnFq((ff‘l) o (f22)o...0(fM)

Let fi,..., fm be distinct Frobenius orbits in I'" in the notation of
§2.1 with degrees d(f;) > 1. Let A1,...,\,, be partitions such that n =
Sorey d(f)|Ae]. We shall use the results of this section to calculate

WGLHFQ((ff\l) o (f32)o...o(fam).

Since

(M) o (f22)o...o(fA)

_ GL,Fq Pacryiagl . d(m) 1 Am| A1 Az
=1 Pd(flmlw,»..,d<fm>|xm\( Dd(f1)\>\1|w---«d(fm)\km\(( e (f2)e
e (fa))

we have
War,r, (fi*) o (f22) 0.0 (fam))

Paryingled(rm)am | A1 A2
_Wpd(fl)‘)\l‘eu«,d(fm)‘)\m|( fDd(f1)|/\1\,,“,d(fm)|)\m\(( 1 )®( 2 )®

@ ()
2 2 2 2 2
=q" —d() Ml == d(Fn) A WDd(fl)D\l\,...,d(fm)p\m|(( 1)\1) ® ( 2/\2)®
@ ()

2- AP = =d( )2 A | A
=q" d(f1)” ] d(fm)”[Am| H:”:l WGLd(mMn(( tt))'
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Now let x», denote the irreducible representation of Xy, | of Proposition
1.4. There exist unique integers a,, such that

E: Zpagl

XA = a#tIndE“: (1)
e a partition of ||

Where Z(Mt,lsﬂtﬂw“vﬂt,u = Eut,l X X tht,u'

Therefore

WGLas i (( t/\t))

= H#t a partition of [A¢| ngl Wd(fﬁ)((ft))utyva”t

M=t 150 st u

= H#t a_partition of x| Wd(ﬁ)((ft))‘)‘tlaﬂt

Ht =t 150 5[0t

and from [93]

Wair) (fe) = (1) g4I 20 (£, By p,9).

Due to laziness I have not attempted to compare these formulae with
those of [85]!

4. The symmetric group’s PSH algebra and Theorem 1.8

4.1. In §3 of [83] a Schur inner-product of some character functions on
the symmetric group are computed. I mentioned (and reproved) the result
in 1.8. To recapitulate the result we need to recall that the length of a
permutation in o € 3,,, the symmetric group on n objects, is ), r; where
[(0) = r; is the number of i-cycles in the expression for o are the product
of disjoint cycles.

Let N be a positive integer. The function l,, : ¢ — [(0) is a function on
the conjugacy classes of permutations in ¥,, and so also is py,n, : 0 — N,
There exist irreducible representations V; of ¥, and complex numbers «;
such that the character function of }, «;Vj is pn,, or, equivalently,

Z ajxv; (o) = pNnn(0)

for all o € ¥,. Here xy is the trace function (i.e. the character) of a
representation V.

Recall (see also Chapter Nine) the PSH-algebra for the symmetric
groups R = ®,>0 R(Z,). This Hopf algebra is the unique PSH-algebra
over the integers with a unique primitive irreducible. The coproduct

R(Xy) — @k R(Zk) @ R(Sh—k)
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has (k,n — k)-component given by the restriction to g x X,,_x. That is, a
representation maps via

Ve Resst s (V) € R(Sk X Spop) = R(Sk) ® R(Sn—k)-

The dual Hopf algebra may be identified with complex class functions.
The product in the PSH algebra is given by mapping

Vi®Vs e R(ZEL) ® R(E,—k)

to Ind%:xzn_k(vl ® Va) = m(V1 ® V). Let us calculate Xy, (v,@v,). The
trace formula for this character is

R 1 A -1
Xm(vieV)(6) = 75—~ > Xviev, (T67 )
TEL,, 767 1EXLXT, _k
which is zero unless & is conjugate in X, to an element (o,0’) € X X ), k.
Two elements of Xj x X, are conjugate in X, if and only if they are
conjugate in X X X, _k, because cycle shape determines conjugacy.
Suppose that & is conjugate in 3, to an element (0,0’) € X X X, k.
Let r;,r, be the numbers of i-cycles in the cycle decomposition for o,o’
respectively. The number of distinct elements in the ¥, -conjugacy class of
(0,0") is
n!
17147 (g 4 1))1272F72 (rg + 7))
while the number in the X;-conjugacy class of ¢ is
k!
1m (7‘1)!2T2 (7‘2)! e
and the number in the X,,_;-conjugacy class of o’ is
(n—k)!
1 (r)2ma(rp)! ..
Therefore the denominators are the orders of the relevant centralisers.
Next we want to simplify the formula for X,,(v,ov;)(6). If ToT 1 €
Y X X there exists p € X X X,k such that ,11/7'6"7'71/1,71 = 7. Setting
71 = pT we see that 1 € Zx (), the centraliser of & in X,,. Therefore
7 = p~ 7 and we have a surjective map

(kX Bpp) x Zy, (6) — {7 €8, 767 €k x Xy i}

sending (v, 1) to v7y. Also vy = v/7{ if and only if

(V/)_ly = 7—{7—1—1 € ZEkXEnqc(U’ 0/)'
Therefore if A = (v')~'v then (v,71) = (A, A\717'). Therefore there is a
bijection

(Zk X Tnk) Xz 5, (007) Z5,(6) = {T € T, 7671 € Ty X Ty}
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Therefore the number of 7’s in the formula for x,,(v,gv,)(0) is
El(n — k)7 () A r)1202 72 (g )L
17 (ry)12r2 (ro)t L 171 () 1272 (rh)) . .

and each 767! gives an element in the X, x X,_j-conjugacy class of
& = (0,0") we find that

177 (g A P27 (g P
17 (ry)12r2 (o)l 173 (r))1272 (r))! .

if 6 is ¥,-conjugate to (0,0’) € X x X, and zero otherwise.

Xm(V1®V2)(aA—) = Xy (U)XV2 (0/)

DEFINITION 4.2. Following ([83] Corollary 3.1), if V' is a representation
(not necessarily irreducible) of the symmetric group ¥,, and N is a strictly
positive integers define

1 N
fvn = dime(V) Z Yy (6) N'enath(9),
GeX,

Up to a scalar factor this is the Schur inner product of V with the
virtual representation (with complex coefficients) whose character function
takes the form & — N'®"&th(%) This function is the analogue for symmetric
groups of the additive character ¥ for finite general linear groups and the
function fy,n is the anaolgue of the Kondo-Gauss sum. The Schur inner
product is the non-generate bilinear form of the PSH-algebra structure of
R = &;>0 R(X;) [146]. This suggests examining the properties of fy. n
with respect to the Hopf algebra structure of R. The following result gives
the behaviour under the product in R.

PROPOSITION 4.3.
If V1 and V, are representations of ¥, and X,_j respectively and
m(V; ® V3) is the product in R then

fm(V1®V2),N = fV17NfV27N'
Proof:

From the preceding discussion about the character values of

Indg:xzn,k(vl ® Vo) =m(V1 @ Va)

we see that

fm(Vi@Ve),N

k!(n—k)! ~ eth(s
- m Z&ezn Xm(V1®V2)(0')Nle gth(s)

’ ’
kl(n—k)! 1771 (e )1272 72 (rg 7))
) Z&ezn L 2 xvi (o)

— nldime(Vi)dime(Vz 171 (r1)1272 (r2) 1. 171 (1] )1272 (1)1

X X Vs (O_/)Nlength(&)
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where the sum is taken over those ¢ in Y, which are conjugate to some
(0,0") in Xy X X,,_. Now if 6 = (0,0’) with legnths as in the preceding
discussion then the ratio of conjugacy class sizes satisfies

|[{Z,, —conjugates of (o,0")}|
[{Xkxs,, _, —conjugates of (o,0')}|

/ o
o n! 171 (r1)1272 (r2)!... 171 (r)1272(r))!...

Tty (r1+r1)!2r2+ré(r2+r’2)!... k! (n—Fk)!

Therefore we may re-write the function as a sum over ¥ x ¥, in the
form

fm(V1®V2)7N
- m Y (roryesx,_p Xvi (@)X, (07) Neneth(®)

= fv,. nfwe,N,

as required. O

EXAMPLE 4.4. Let m, k1, ko, ..., ks > 1 be positive integers such that
1=1

Let 1x, € R(Xk,;) denote the class of the one-dimensional trivial represen-
tation. Then the iterated PSH-algebra product

mly, @lg, @...01;,) = Indggzx,_x%u) € R(Zn).

Therefore

D X

t
fIndEm szt(1)7N = H fl’%"N
=1

and

Jr.n = Z NU) = Nk g, N¥=1 4 4+ N € Z[N].
UEZ;%.

If £ = (k1,...,kt) is a partition of m let us denote Ind%;’zx...xzkt (1)
by my. According to [9] as k runs through the partitions of m the my’s run
through a Z-basis for the free abelian group R(X,,). On the other hand, as
explained in (Appendix III, Proposition 1.4), the irreducible representations
of ¥, are given by x2 as ) runs through the partitions of m. Hence there
are integers tj, x, indexed by ordered pairs of partitions of m such that

XA = Z t&& "My € R(Em)
k
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Consequently we obtain, for all values of N,

AN =D ta frn
k






CHAPTER 13

Appendix IV: Locally p-adic Lie groups

This Appendix assures the reader, without going into a single detail,
that replacing GL, K and its Bruhat-Tits building by any locally p-adic Lie
group and its Baum-Connes space E(G,C), where C is the family of compact
open modulo the centre subgroups H C G, results in a construction of
functorial monomial resolutions for any admissible representation V' of G
with a fixed central character ¢. The construction is accomplished by a
direct imitation of that of Chapter Four.

1. Monomial resolutions for arbitrary locally p-adic Lie groups

1.1. Let G be a locally p-adic Lie group and let V' be a smooth repre-
sentation defined on a k-vector space with central character ¢. A functorial
monomial resolution may be constructed for V' by the same method as that
used in Chapter Four for GL, K.

In order to accomplish this construction one requires a canonical sim-
plicial complex E(G,C) on which G acts simplicially in such a way that,
for every compact open modulo the centre subgroup H C G, the H-fixed
subcomplex E(G,C)H is non-empty and contractible. One then replaces
the Bruhat-Tits building by E(G,C) in the construction of Chapter Four.

The construction of E(G,C) is due to Tammo tom Dieck ([135], [136])
and is discussed in ([100] pp.6-7). Here is a sketch of the construction.

Let M be a zero-dimensional simplicial complex with a G-action. For
example, if C is a family of subgroups of G which is closed under conjugation
and passage to subgroups then we may take M equal to the disjoint union
of all the cosets G/H as H varies throughout C. Form the iterated n-fold
join

Mn)=MxMx*...x M (n copies of M).
Set

E(G.C) =] M(n)

1<n

with the weak topology (A C E(G,C) is closed if and only if A\ M (n) is
closed in M(n) for all n).

329
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If H is a subgroup of G then E(G,C) is empty unless H € C in which
case it is non-empty and contractible because M (n) is an (n — 2)-connected
space.

This G-space is very large but it is canonical and would suffice to give
functorial monomial resolutions for admissible G-representations, as in the
case of GL, K.

Presumably for many families of classical p-adic Lie groups Bruhat-
Tits buildings provide canonical, finite dimensional complexes which are
G-homotopy equivalent to E(G,C). This is what happens in the case of
GL,K.
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