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The outcome: “mostly framed man-
ifolds of Arf-Kervaire invariant one do
not exist’ .

Here is what Lewis Carroll has to say
about non-existent things!

“TI know what you're thinking about,”
said Tweedledum:; “but it isn't so, no-
how.” *“Contrariwise,” continued Twee-
dledee, “if it was so, it might be; and if
it were so, it would be; but as it isn't;
it ain’t. That's logic.”

Through the Looking Glass by Lewis
Carroll (aka Charles Lutwidge Dodg-
son)



Exotic Spheres

Sm—I—n—l—l — a(Dm—l-l ¢ Dn—l—l)
= pmTl y gnysm x prtl

Given a self-diffeomorphism f of S x
S™ we can form
M; = D™t x §" Js™ x DT
/
which can be “rounded off” to be a

smooth orientable differentiable mani-
fold with the same homology as §™tn+1,

Given differentiable maps

f1:8" — SO(n+1) fo: 8" — SO(m—+1)

f(@,y) = (f2f1(2) (@) (@), f1(=) (W)

yields My = M(f1, f2) - construction due to
John Milnor (1956-1959).

Question M(f1, f>) is homeo to §mt+n+1,
Is it diffeomorphic to §mtnt17



Answer Mostly no - although for S3 yes -
for example S31 has more that 16 x 10° differ-
entiable structures!

Milnor’s method: If m+n+1 = 4k—1 there
exists a 4k dimensional smooth manifold W
with OW = M(f1, f>). Applying Hirzebruch's
Signature Theorem to W gives an invariant

MM (f1,f2) € Q/Z

dependng only on the differentiable manifold

M(f1, f2).

The invariant works for any exotic 4k — 1-
sphere.

Reversing orientation reverses the sign of A(M).

The invariant of a connected sum of two ex-
otic spheres is the sum of the invariants.

There is a formula for A(M) from which one
can estimate the size of the subgroup of A(M)-
values in Q/Z.



Stable homotopy groups of spheres

mr(X) = (based) homotopy classes of contin-
uous maps h : S™ — X such that h(North pole) =
base — point.

72 (S9) =1im (.. g (S™) — T 1 (SPTH) L.

n

There are 2 famous constructions which land
in the abelian group =2 (S9).

The J-homomorphism
J : m(S0) — 2 (S°)
sends h: S" — SO(n) to the adjoint of
h:S" — Map(S™1, s7—1) which is
J(h) : g1 __, gn—1

By work (in the 1960's and 1970's) on J.F.
Adams, M.F. Ativah, M. Mahowald, D. Sulli-
van, D.G. Quillen et al the image of J is known.



The Pontrjagin-Thom construction
Framed manifolds and stable homotopy groups

Let M™ be a compact C* manifold without
boundary and let i : M" — R*t" be an em-
bedding.

The tangent bundle of R**+7, denoted by 7(R"*t7),
may be identified with R*t7 x R+,

The normal bundle of i, denoted by v(M,1),
is the vector bundle whose fibre at z € M is
the subspace of vectors (i(z),z) € RPT x R+
such that x is orthogonal to i«7 (M), where iy
IS the induced embedding of tangent bundles -
i.,e. 7(M) into 7(R"TT).

Let & be a vector bundle over a compact
manifold M endowed with a Riemannian metric
on the fibres. Then the Thom space is defined
to be the quotient of the unit disc bundle D(¢)
of £ with the unit sphere bundle S(¢) collapsed
to a point.



Hence

7€) = o)

IS @ compact topological space with a base-
point given by the image of S(&).

If M admits an embedding with a trivial nor-
mal bundle we say that M has a stably trivial
normal bundle.

Write M4 for the disjoint union of M and a
disjoint base-point. Then there is a canonical
homeomorphism

T(M x R") & 5"(M,)

between the Thom space of the trivial r-dimensional
vector bundle and the r-fold suspension of M_,
(8" x (M4))/(S"V (My)) =S"AN(My).

The Pontrjagin-Thom construction

Suppose that M™ is a manifold together with
a choice of trivialisation of normal bundle v(M, 7).

This choice gives a choice of homeomor-
phism

T(v(M,i)) = 57 (My).



Such a homeomorhism is called a framing of
(M, ).

Now consider the embedding i : M™ — R+
and identify the (n+r)-dimensional sphere S*tT
with the one-point compactification R*+7 U{oo}.
The Pontrjagin-Thom construction is the map

ST T(v(M,3))

given by collapsing the complement of the in-
terior of the unit disc bundle D(v(M,7)) to the
point corresponding to S(v(M,7)) and by map-
ping each point of D(v(M,1)) to itself.

Identifying the r-dimensional sphere with the
r-fold suspension > 7SO of the zero-dimensional
sphere (i.e. two points, one the basepoint) the
map which collapses M to the non-basepoint
yields a basepoint preserving map X"(My) —
ST,



T herefore, starting from a framed manifold
M™, the Pontrjagin-Thom construction yields
a based map

ST T(v(M,i)) 2 X" (My) — ST,

whose homotopy class defines an element of
7Tn—|—r(Sr)-

TO sum up:

PT : {framed n — manifolds} — = (S°).

Lev Pontrjagin (1947) introduced this con-
struction in order to use framed manifolds to
study stable homotopy groups. Later René
Thom (1954) developed a generalisation for
the opposite reason, to calculate equivalence
classes of manifolds by reducing to stable ho-
motopy group calculations.



The Arf invariant of a quadratic form

Let V be a finite dimensional vector space
over the field F», of two elements. A quadratic
form is a function ¢ : V. — F5 such that ¢(0) =
0 and

q(z +y) —q(z) —q(y) = (z,y)

is Fy-bilinear (and, of course, symmetric). No-
tice that (x,x2) = 0 so that (—,—) is a symplec-
tic bilinear form.

Hence dim(V) = 2n and to say that ¢ is non-
singular means that there is an [F»-basis of V,
{a1,...,an,b1,...,bn} say, such that (a;,b;) =0
if ¢ £ 7, (ai,bi) = 1 and (ai,aj) =0 = (bi,bj)
for all + and j.

In this case the Arf invariant of ¢ is defined
to be

c(q) = ) q(ay)q(b;) € Fa.
i=1



Browder used an equivalent definition of the
Arf invariant as the following “democratic in-
variant” . The elements of V ‘vote” for either
O or 1 by the function q. The winner of the
election (which is never a tie) is c(q). Here
is a table illustrating this for three possibilities
q,q,q" when V is two-dimensional with basis
{e1,e2}. Having equal Arf invariants q is iso-
morphic to g . Thus the vote is three to one
in each case.

x Oleilex|er +eo|value of c
values of ¢ |O| O | O 1 0
valuesof ¢ |0] 1 | 1 1 1
values of ¢ |0 1| O 0 0

Theorem (C. Arf 1941) The invariant ¢(q)
is independent of the choice of basis and two
quadratic forms on V are equivalent if and only
if their Arf invariants coincide.



The Arf-Kervaire invariant of a framed
manifold

Using the Arfinvariant, Michel Kervaire (1960)
defined an Fo-valued invariant for compact, (21—
2)-connnected framed (41— 2)-manifolds which
are smooth in the complement of a point. He
applied it to exhibit a manifold which does not
admit any differentiable structure!

Bill Browder (1969) extended this definition
to any framed, closed (41 — 2)-manifold.

Given a framed manifold M?2% and
a € HY(M;Z/2) & My, K(Z/2,k)]
we compose with the Pontrjagin-Thom map
SN T(v(M, i) =2 =N (M)

to obtain an element of

an(a) € mopan(ZVNK(Z/2,k)) = Fy.



This is a non-singular quadratic form g, ON
H%(M:7Z/2), depending on the framing t and
the Arf-Kervaire invariant of (M,t) is

c(qnrt) € Fo.

Theorem (Browder 1969) The Arf invariant
of a framed manifold M4 =2 is trivial unless
[ = 2% for some s.

Via the Pontrjagin-Thom construction the
Arf-Kervaire invariant may be considered as a
homomorphism

Arfp : m5n_5(S0) — 7/2
for n > 2.

The Arf-Kervaire invariant problem
Is Arf,, non-zero?



Let ©, denote the group of diffeomorphism
classes of smooth manifolds =% which are ho-
motopy equivalent to Sk with group opera-
tion induced by connected sum. When k£ > 5
Smale’s proof of the Poincaré conjecture (1962)
implies >% is homeomorphic to S*.

An exotic sphere embeds into Euclidean space
with a framing on its normal bundle and, by
the Pontrjagin-Thom construction, defines an
element of 7, (X>°59).

Two framings in the normal bundle of >k
differ by a map into SO so that the above con-
struction yields a homomorphism (k > 5)

Tl - @k — Wk(ZOOSO)/Im(J)

where J is the J-homomorphism introduced
earlier.

The Arf-Kervaire invariant influences the be-
haviour of 7 in the following manner:

Theorem If Arfy 4o = 0 then 74,45 is sur-
jective and Ker(7g41) = Z/2.



Now we skip ahead to the ‘'stop press’:

Theorem (Mike Hill, Mike Hopkins and Doug
Ravenel - announced April 2009) The homo-
morphism Arf,, = 0 for n > 8.

Going into the details is the domain of the
specialists. On the other hand Arf, #*# 0 for
n=2,3,4,5,6 which leaves only thecasen =7
to resolve (Fall 2010: Dung Yung Yan claims
that Arf7y = 0, too! The case n = 6 is a long
and brutal calculation (Barratt-Jones-Mahowald
1987; Kochman 1990).



We can sketch the cases n = 2,3,4,5 with-
out too much technicality by rephrasing the
problem.

If X is a base-pointed space then
QX =lim— Mapg(S", 3Z"X)
satisfies
3 (X) £ 1-(QX) for all r > 0.

For each integer k the maps of degree k gives
a component QkSO of QS9, all homotopy equiv-
alent. Therefore for r > 1

72(5%) 2 71.(QS°) 2 1-(QpS°) = 7(Q159).



Surgery theory vields a mod 2 cohomology
class for n > 2

Arfn € H*' 72(Q15°),Z/2)
such that
Arfa(f:S2"-2 - Q1S9)

= f*(Arfp) € H*'72(52"72,2,/2) 2 7/2.

Dually this result may be stated in mod 2
homology: If f: §2"~2 — Qg5 has Arfn(f) £ 0
then

0 # fu(Hon_2(8%"72,Z/2)) C Hon_(QoS°,Z/2)
in the subgroup of primitive elements

PHon_2(QoS%,Z/2)

= {z | diagy(z) = x 1+ 1Qx}.



In fact, fu(Hon_o(S2"~2 7/2)) must lie in

PHon_5(QoS°,7/2) 4,

the primitives which are annihilated by the du-
als of the mod Steenrod cohomology opera-
tions.

Theorem (Snaith and Tornehave 1981) The
F>-vector space
PHon_5(Q0S°, Z/2) 4
is one dimensional. Hence Arfh(f) # 0 if and

only if 0 # fu(Hon_5(S82"72,7/2)).

This result actually gives a formula for the
non-zero element of fx(Hon_»(52" =2 7/2)).



The proof of the Adams conjecture (Quillen,
Sullivan, Becker-Gottlieb c.1970-75), which al-
most completely determines the image of the
J-homomorphism, relates the classifying spaces
of surgery theory to BO, the classifying space
of the infinite orthogonal group.

This enables us to translate the Arf-Kervaire
problem in terms of 75,_,(BO).

The key diagram is (SG = Q159 in which
the left-hand vertical is a split surjection (Priddy
19783).
@BDsg

Q(BO(2)) — Q(BO)
\QA’ \QA 0A
Q(SG) - Q(G/0) L1 .qQ(G/0o)
0 0

SG

G/O



This formula together with the relation leads
to the following construction.

If M2"—2 is a connected, framed manifold the
Pontrjagin-Thom construction gives us an ele-
ment 0 € wgn_z(M_|_). If £ is an k-dimensional
vector bundle over M (k > 2) classified by

h(E): M — BO

we can form

(h(B)4)«(0) € 75n_o(BO)

and from this an element

O(M, E) € m5n_-(5°).

Theorem (Snaith and Tornehave 1981) If
wo(E) € H2(M,7/2) is the 2nd Stiefel-Whitney
class of E and [M] € H2"=2(M,Z/?2) is the fun-
damental class of M then

Arfo(©(M, E)) = (wo(E)2" '—1 [M]) € Z/2.

THIS FORMULA DOES NOT REQUIRE KNOWL-
EDGE OF THE FRAMING - EXCEPT ITS
EXISTENCE!



Examples

(a) M =RPIxRP! C BO(1) x BO(1) — BO
(b) M =RP3xRP3C BO(1)x BO(1) — BO
(c) M =RP’"xRP’" C BO(1) x BO(1) — BO

(d) Let C denote the Riemann surface ob-
tained by putting a thin tube around each edge
of a cube. The natural action Dg, of the di-
hedral group of order 8, on the cube induces a
free Dg-action on C. Since Dg is the 2-Sylow
subgroup of the permutation on 4 object Dg
also acts on

RP’ x RP" x RP" x RP".
Form
M = C xp, (RP" x RP" x RP" x RP").

A simple calculation in K-theory shows that M
is framed (first noticed by John Jones 1975)
and by construction M is a subcomplex of BO(4).

Examples(a)-(d) show the existence non-trivial
Arf-Kervaire invariants in dimensions 2,6, 14
and 30.



