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The outcome: “mostly framed man-

ifolds of Arf-Kervaire invariant one do

not exist”.

Here is what Lewis Carroll has to say

about non-existent things!

“I know what you’re thinking about,”

said Tweedledum; “but it isn’t so, no-

how.” “Contrariwise,” continued Twee-

dledee,“if it was so, it might be; and if

it were so, it would be; but as it isn’t;

it ain’t. That’s logic.”

Through the Looking Glass by Lewis

Carroll (aka Charles Lutwidge Dodg-

son)



Exotic Spheres

Sm+n+1 = ∂(Dm+1 ×Dn+1)

= Dm+1 × Sn ⋃
Sm ×Dn+1

Given a self-diffeomorphism f of Sm×
Sn we can form

Mf = Dm+1 × Sn
⋃
f

Sm ×Dn+1

which can be “rounded off” to be a

smooth orientable differentiable mani-

fold with the same homology as Sm+n+1.

Given differentiable maps

f1 : Sm −→ SO(n+1) f2 : Sn −→ SO(m+1)

f(x, y) = (f2(f1(x)(y))
−1(x), f1(x)(y))

yields Mf = M(f1, f2) - construction due to

John Milnor (1956-1959).

Question M(f1, f2) is homeo to Sm+n+1.

Is it diffeomorphic to Sm+n+1?



Answer Mostly no - although for S3 yes -

for example S31 has more that 16×106 differ-

entiable structures!

Milnor’s method: If m+n+1 = 4k−1 there

exists a 4k dimensional smooth manifold W

with ∂W = M(f1, f2). Applying Hirzebruch’s

Signature Theorem to W gives an invariant

λ(M(f1, f2) ∈ Q/Z

dependng only on the differentiable manifold

M(f1, f2).

The invariant works for any exotic 4k − 1-

sphere.

Reversing orientation reverses the sign of λ(M).

The invariant of a connected sum of two ex-

otic spheres is the sum of the invariants.

There is a formula for λ(M) from which one

can estimate the size of the subgroup of λ(M)-

values in Q/Z.



Stable homotopy groups of spheres

πr(X) = (based) homotopy classes of contin-

uous maps h : Sr −→ X such that h(North pole) =

base− point.

πS
r (S0) = lim

→
n

(. . . πr+n(S
n) −→ πr+n+1(S

n+1) . . .).

There are 2 famous constructions which land

in the abelian group πS
r (S0).

The J-homomorphism

J : πr(SO) −→ πS
r (S0)

sends h : Sr −→ SO(n) to the adjoint of

h : Sr −→ Map(Sn−1, Sn−1) which is

J(h) : Sr+n−1 −→ Sn−1.

By work (in the 1960’s and 1970’s) on J.F.

Adams, M.F. Atiyah, M. Mahowald, D. Sulli-

van, D.G. Quillen et al the image of J is known.



The Pontrjagin-Thom construction

Framed manifolds and stable homotopy groups

Let Mn be a compact C∞ manifold without

boundary and let i : Mn −→ Rn+r be an em-

bedding.

The tangent bundle of Rn+r, denoted by τ(Rn+r),

may be identified with Rn+r × Rn+r.

The normal bundle of i, denoted by ν(M, i),

is the vector bundle whose fibre at z ∈ M is

the subspace of vectors (i(z), x) ∈ Rn+r×Rn+r

such that x is orthogonal to i∗τ(M)z where i∗
is the induced embedding of tangent bundles -

i.e. τ(M) into τ(Rn+r).

Let ξ be a vector bundle over a compact

manifold M endowed with a Riemannian metric

on the fibres. Then the Thom space is defined

to be the quotient of the unit disc bundle D(ξ)

of ξ with the unit sphere bundle S(ξ) collapsed

to a point.



Hence

T (ξ) =
D(ξ)

S(ξ)

is a compact topological space with a base-
point given by the image of S(ξ).

If M admits an embedding with a trivial nor-
mal bundle we say that M has a stably trivial
normal bundle.

Write M+ for the disjoint union of M and a
disjoint base-point. Then there is a canonical
homeomorphism

T (M × Rr) ∼= Σr(M+)

between the Thom space of the trivial r-dimensional
vector bundle and the r-fold suspension of M+,
(Sr × (M+))/(Sr ∨ (M+)) = Sr ∧ (M+).

The Pontrjagin-Thom construction

Suppose that Mn is a manifold together with
a choice of trivialisation of normal bundle ν(M, i).

This choice gives a choice of homeomor-
phism

T (ν(M, i)) ∼= Σr(M+).



Such a homeomorhism is called a framing of

(M, i).

Now consider the embedding i : Mn −→ Rn+r

and identify the (n+r)-dimensional sphere Sn+r

with the one-point compactification Rn+r ⋃
{∞}.

The Pontrjagin-Thom construction is the map

Sn+r −→ T (ν(M, i))

given by collapsing the complement of the in-

terior of the unit disc bundle D(ν(M, i)) to the

point corresponding to S(ν(M, i)) and by map-

ping each point of D(ν(M, i)) to itself.

Identifying the r-dimensional sphere with the

r-fold suspension ΣrS0 of the zero-dimensional

sphere (i.e. two points, one the basepoint) the

map which collapses M to the non-basepoint

yields a basepoint preserving map Σr(M+) −→
Sr.



Therefore, starting from a framed manifold

Mn, the Pontrjagin-Thom construction yields

a based map

Sn+r −→ T (ν(M, i)) ∼= Σr(M+) −→ Sr,

whose homotopy class defines an element of

πn+r(S
r).

To sum up:

PT : {framed n−manifolds} −→ πS
n(S0).

Lev Pontrjagin (1947) introduced this con-

struction in order to use framed manifolds to

study stable homotopy groups. Later René

Thom (1954) developed a generalisation for

the opposite reason, to calculate equivalence

classes of manifolds by reducing to stable ho-

motopy group calculations.



The Arf invariant of a quadratic form

Let V be a finite dimensional vector space

over the field F2 of two elements. A quadratic

form is a function q : V −→ F2 such that q(0) =

0 and

q(x + y)− q(x)− q(y) = (x, y)

is F2-bilinear (and, of course, symmetric). No-

tice that (x, x) = 0 so that (−,−) is a symplec-

tic bilinear form.

Hence dim(V ) = 2n and to say that q is non-

singular means that there is an F2-basis of V ,

{a1, . . . , an, b1, . . . , bn} say, such that (ai, bj) = 0

if i 6= j, (ai, bi) = 1 and (ai, aj) = 0 = (bi, bj)

for all i and j.

In this case the Arf invariant of q is defined

to be

c(q) =
n∑

i=1

q(ai)q(bi) ∈ F2.



Browder used an equivalent definition of the

Arf invariant as the following “democratic in-

variant”. The elements of V “vote” for either

0 or 1 by the function q. The winner of the

election (which is never a tie) is c(q). Here

is a table illustrating this for three possibilities

q, q′, q′′ when V is two-dimensional with basis

{e1, e2}. Having equal Arf invariants q is iso-

morphic to q . Thus the vote is three to one

in each case.

x 0 e1 e2 e1 + e2 value of c

values of q 0 0 0 1 0
values of q′ 0 1 1 1 1
values of q′′ 0 1 0 0 0

Theorem (C. Arf 1941) The invariant c(q)

is independent of the choice of basis and two

quadratic forms on V are equivalent if and only

if their Arf invariants coincide.



The Arf-Kervaire invariant of a framed

manifold

Using the Arf invariant, Michel Kervaire (1960)

defined an F2-valued invariant for compact, (2l−
2)-connnected framed (4l−2)-manifolds which

are smooth in the complement of a point. He

applied it to exhibit a manifold which does not

admit any differentiable structure!

Bill Browder (1969) extended this definition

to any framed, closed (4l − 2)-manifold.

Given a framed manifold M2k and

a ∈ Hk(M ;Z/2) ∼= [M+, K(Z/2, k)]

we compose with the Pontrjagin-Thom map

S2k+N −→ T (ν(M, i)) ∼= ΣN(M+)

to obtain an element of

qM,t(a) ∈ π2k+N(ΣNK(Z/2, k)) ∼= F2.



This is a non-singular quadratic form qM,t on

Hk(M ;Z/2), depending on the framing t and

the Arf-Kervaire invariant of (M, t) is

c(qM,t) ∈ F2.

Theorem (Browder 1969) The Arf invariant

of a framed manifold M4l−2 is trivial unless

l = 2s for some s.

Via the Pontrjagin-Thom construction the

Arf-Kervaire invariant may be considered as a

homomorphism

Arfn : πS
2n−2(S

0) −→ Z/2

for n ≥ 2.

The Arf-Kervaire invariant problem

Is Arfn non-zero?



Let Θk denote the group of diffeomorphism

classes of smooth manifolds Σk which are ho-

motopy equivalent to Sk with group opera-

tion induced by connected sum. When k ≥ 5

Smale’s proof of the Poincaré conjecture (1962)

implies Σk is homeomorphic to Sk.

An exotic sphere embeds into Euclidean space

with a framing on its normal bundle and, by

the Pontrjagin-Thom construction, defines an

element of πk(Σ
∞S0).

Two framings in the normal bundle of Σk

differ by a map into SO so that the above con-

struction yields a homomorphism (k ≥ 5)

τk : Θk −→ πk(Σ
∞S0)/Im(J).

where J is the J-homomorphism introduced

earlier.

The Arf-Kervaire invariant influences the be-

haviour of τk in the following manner:

Theorem If Arf4l+2 = 0 then τ4l+2 is sur-

jective and Ker(τ4l+1)
∼= Z/2.



Now we skip ahead to the “stop press”:

Theorem (Mike Hill, Mike Hopkins and Doug

Ravenel - announced April 2009) The homo-

morphism Arfn = 0 for n ≥ 8.

Going into the details is the domain of the

specialists. On the other hand Arfn 6= 0 for

n = 2,3,4,5,6 which leaves only the case n = 7

to resolve (Fall 2010: Dung Yung Yan claims

that Arf7 = 0, too! The case n = 6 is a long

and brutal calculation (Barratt-Jones-Mahowald

1987; Kochman 1990).



We can sketch the cases n = 2,3,4,5 with-

out too much technicality by rephrasing the

problem.

If X is a base-pointed space then

QX = lim→
n

Map0(S
n,ΣnX)

satisfies

πS
r (X) ∼= πr(QX) for all r ≥ 0.

For each integer k the maps of degree k gives

a component QkS0 of QS0, all homotopy equiv-

alent. Therefore for r ≥ 1

πS
r (S0) ∼= πr(QS0) ∼= πr(Q0S0) ∼= πr(Q1S0).



Surgery theory yields a mod 2 cohomology

class for n ≥ 2

Arfn ∈ H2n−2(Q1S0), Z/2)

such that

Arfn(f : S2n−2 → Q1S
0)

= f∗(Arfn) ∈ H2n−2(S2n−2, Z/2) ∼= Z/2.

Dually this result may be stated in mod 2

homology: If f : S2n−2 → Q0S0 has Arfn(f) 6= 0

then

0 6= f∗(H2n−2(S
2n−2, Z/2)) ⊆ H2n−2(Q0S0, Z/2)

in the subgroup of primitive elements

PH2n−2(Q0S0, Z/2)

= {x | diag∗(x) = x× 1 + 1⊗ x}.



In fact, f∗(H2n−2(S
2n−2, Z/2)) must lie in

PH2n−2(Q0S0, Z/2)A,

the primitives which are annihilated by the du-

als of the mod Steenrod cohomology opera-

tions.

Theorem (Snaith and Tornehave 1981) The

F2-vector space

PH2n−2(Q0S0, Z/2)A

is one dimensional. Hence Arfn(f) 6= 0 if and

only if 0 6= f∗(H2n−2(S
2n−2, Z/2)).

This result actually gives a formula for the

non-zero element of f∗(H2n−2(S
2n−2, Z/2)).



The proof of the Adams conjecture (Quillen,

Sullivan, Becker-Gottlieb c.1970-75), which al-

most completely determines the image of the

J-homomorphism, relates the classifying spaces

of surgery theory to BO, the classifying space

of the infinite orthogonal group.

This enables us to translate the Arf-Kervaire

problem in terms of πS
2n−2(BO).

The key diagram is (SG = Q1S0) in which

the left-hand vertical is a split surjection (Priddy

1978).

--

--

Q(G/O)Q(G/O)Q(SG)

SG G/O

???

??

??

-

Q(BO)Q(BO(2))QBD8

QA′

D D

QA QA

π

1



This formula together with the relation leads

to the following construction.

If M2n−2 is a connected, framed manifold the

Pontrjagin-Thom construction gives us an ele-

ment θ ∈ πS
2n−2(M+). If E is an k-dimensional

vector bundle over M (k ≥ 2) classified by

h(E) : M −→ BO

we can form

(h(E)+)∗(θ) ∈ πS
2n−2(BO+)

and from this an element

Θ(M, E) ∈ πS
2n−2(S

0).

Theorem (Snaith and Tornehave 1981) If

w2(E) ∈ H2(M, Z/2) is the 2nd Stiefel-Whitney

class of E and [M ] ∈ H2n−2(M, Z/2) is the fun-

damental class of M then

Arfn(Θ(M, E)) = 〈w2(E)2
n−1−1, [M ]〉 ∈ Z/2.

THIS FORMULA DOES NOT REQUIRE KNOWL-

EDGE OF THE FRAMING - EXCEPT ITS

EXISTENCE!



Examples

(a) M = RP1×RP1 ⊆ BO(1)×BO(1) → BO

(b) M = RP3×RP3 ⊆ BO(1)×BO(1) → BO

(c) M = RP7×RP7 ⊆ BO(1)×BO(1) → BO

(d) Let C denote the Riemann surface ob-
tained by putting a thin tube around each edge
of a cube. The natural action D8, of the di-
hedral group of order 8, on the cube induces a
free D8-action on C. Since D8 is the 2-Sylow
subgroup of the permutation on 4 object D8

also acts on

RP7 × RP7 × RP7 × RP7.

Form

M = C ×D8
(RP7 × RP7 × RP7 × RP7).

A simple calculation in K-theory shows that M

is framed (first noticed by John Jones 1975)
and by construction M is a subcomplex of BO(4).

Examples(a)-(d) show the existence non-trivial
Arf-Kervaire invariants in dimensions 2,6,14
and 30.


