A history of the Arf-Kervaire invariant problem

Victor Snaith

March 2011

The outcome: "mostly framed manifolds of Arf-Kervaire invariant one do not exist".

Here is what Lewis Carroll has to say about non-existent things!

"I know what you're thinking about," said Tweedledum; "but it isn't so, nohow." "Contrariwise," continued Tweedledee, "if it was so, it might be; and if it were so, it would be; but as it isn't; it ain't. That's logic."

Through the Looking Glass by Lewis Carroll (aka Charles Lutwidge Dodgson)

Exotic Spheres

$$S^{m+n+1} = \partial (D^{m+1} \times D^{n+1})$$
$$= D^{m+1} \times S^n \cup S^m \times D^{n+1}$$

Given a self-diffeomorphism f of $S^m \times S^n$ we can form

$$M_f = D^{m+1} \times S^n \bigcup_f S^m \times D^{n+1}$$

which can be "rounded off" to be a smooth orientable differentiable manifold with the same homology as S^{m+n+1} .

Given differentiable maps

$$f_1: S^m \longrightarrow SO(n+1) f_2: S^n \longrightarrow SO(m+1)$$

$$f(x,y) = (f_2(f_1(x)(y))^{-1}(x), f_1(x)(y))$$

yields $M_f = M(f_1, f_2)$ - construction due to John Milnor (1956-1959).

Question $M(f_1, f_2)$ is homeo to S^{m+n+1} . Is it diffeomorphic to S^{m+n+1} ? **Answer** Mostly no - although for S^3 yes for example S^{31} has more that 16×10^6 differentiable structures!

Milnor's method: If m+n+1 = 4k-1 there exists a 4k dimensional smooth manifold Wwith $\partial W = M(f_1, f_2)$. Applying Hirzebruch's Signature Theorem to W gives an invariant

 $\lambda(M(f_1, f_2) \in \mathbb{Q}/\mathbb{Z})$

depending only on the differentiable manifold $M(f_1, f_2)$.

The invariant works for any exotic 4k - 1-sphere.

Reversing orientation reverses the sign of $\lambda(M)$.

The invariant of a connected sum of two exotic spheres is the sum of the invariants.

There is a formula for $\lambda(M)$ from which one can estimate the size of the subgroup of $\lambda(M)$ -values in \mathbb{Q}/\mathbb{Z} .

Stable homotopy groups of spheres

 $\pi_r(X) = (based)$ homotopy classes of continuous maps $h : S^r \longrightarrow X$ such that h(North pole) = base - point.

$$\pi_r^S(S^0) = \lim_{\stackrel{\rightarrow}{n}} (\dots \pi_{r+n}(S^n) \longrightarrow \pi_{r+n+1}(S^{n+1})\dots).$$

There are 2 famous constructions which land in the abelian group $\pi_r^S(S^0)$.

The J-homomorphism

$$J: \pi_r(SO) \longrightarrow \pi_r^S(S^0)$$

sends $h: S^r \longrightarrow SO(n)$ to the adjoint of $h: S^r \longrightarrow Map(S^{n-1}, S^{n-1})$ which is

 $J(h): S^{r+n-1} \longrightarrow S^{n-1}.$

By work (in the 1960's and 1970's) on J.F. Adams, M.F. Atiyah, M. Mahowald, D. Sullivan, D.G. Quillen et al the image of J is known.

The Pontrjagin-Thom construction

Framed manifolds and stable homotopy groups

Let M^n be a compact C^{∞} manifold without boundary and let $i : M^n \longrightarrow \mathbb{R}^{n+r}$ be an embedding.

The tangent bundle of \mathbb{R}^{n+r} , denoted by $\tau(\mathbb{R}^{n+r})$, may be identified with $\mathbb{R}^{n+r} \times \mathbb{R}^{n+r}$.

The normal bundle of i, denoted by $\nu(M, i)$, is the vector bundle whose fibre at $z \in M$ is the subspace of vectors $(i(z), x) \in \mathbb{R}^{n+r} \times \mathbb{R}^{n+r}$ such that x is orthogonal to $i_*\tau(M)_z$ where i_* is the induced embedding of tangent bundles i.e. $\tau(M)$ into $\tau(\mathbb{R}^{n+r})$.

Let ξ be a vector bundle over a compact manifold M endowed with a Riemannian metric on the fibres. Then the Thom space is defined to be the quotient of the unit disc bundle $D(\xi)$ of ξ with the unit sphere bundle $S(\xi)$ collapsed to a point. Hence

$$T(\xi) = \frac{D(\xi)}{S(\xi)}$$

is a compact topological space with a basepoint given by the image of $S(\xi)$.

If M admits an embedding with a trivial normal bundle we say that M has a stably trivial normal bundle.

Write M_+ for the disjoint union of M and a disjoint base-point. Then there is a canonical homeomorphism

$$T(M \times \mathbb{R}^r) \cong \Sigma^r(M_+)$$

between the Thom space of the trivial *r*-dimensional vector bundle and the *r*-fold suspension of M_+ , $(S^r \times (M_+))/(S^r \vee (M_+)) = S^r \wedge (M_+).$

The Pontrjagin-Thom construction

Suppose that M^n is a manifold together with a choice of trivialisation of normal bundle $\nu(M, i)$.

This choice gives a choice of homeomorphism

$$T(\nu(M,i)) \cong \Sigma^r(M_+).$$

Such a homeomorhism is called a framing of (M, i).

Now consider the embedding $i: M^n \longrightarrow \mathbb{R}^{n+r}$ and identify the (n+r)-dimensional sphere S^{n+r} with the one-point compactification $\mathbb{R}^{n+r} \cup \{\infty\}$. The Pontrjagin-Thom construction is the map

 $S^{n+r} \longrightarrow T(\nu(M,i))$

given by collapsing the complement of the interior of the unit disc bundle $D(\nu(M,i))$ to the point corresponding to $S(\nu(M,i))$ and by mapping each point of $D(\nu(M,i))$ to itself.

Identifying the *r*-dimensional sphere with the *r*-fold suspension $\Sigma^r S^0$ of the zero-dimensional sphere (i.e. two points, one the basepoint) the map which collapses M to the non-basepoint yields a basepoint preserving map $\Sigma^r(M_+) \longrightarrow S^r$. Therefore, starting from a framed manifold M^n , the Pontrjagin-Thom construction yields a based map

 $S^{n+r} \longrightarrow T(\nu(M,i)) \cong \Sigma^r(M_+) \longrightarrow S^r,$

whose homotopy class defines an element of $\pi_{n+r}(S^r)$.

To sum up:

 $PT: {\text{framed } n-\text{manifolds}} \longrightarrow \pi_n^S(S^0).$

Lev Pontrjagin (1947) introduced this construction in order to use framed manifolds to study stable homotopy groups. Later René Thom (1954) developed a generalisation for the opposite reason, to calculate equivalence classes of manifolds by reducing to stable homotopy group calculations.

The Arf invariant of a quadratic form

Let V be a finite dimensional vector space over the field \mathbb{F}_2 of two elements. A quadratic form is a function $q: V \longrightarrow \mathbb{F}_2$ such that q(0) =0 and

$$q(x + y) - q(x) - q(y) = (x, y)$$

is \mathbb{F}_2 -bilinear (and, of course, symmetric). Notice that (x, x) = 0 so that (-, -) is a symplectic bilinear form.

Hence dim(V) = 2n and to say that q is nonsingular means that there is an \mathbb{F}_2 -basis of V, $\{a_1, \ldots, a_n, b_1, \ldots, b_n\}$ say, such that $(a_i, b_j) = 0$ if $i \neq j$, $(a_i, b_i) = 1$ and $(a_i, a_j) = 0 = (b_i, b_j)$ for all i and j.

In this case the Arf invariant of q is defined to be

$$c(q) = \sum_{i=1}^{n} q(a_i)q(b_i) \in \mathbb{F}_2.$$

Browder used an equivalent definition of the Arf invariant as the following "democratic invariant". The elements of V "vote" for either 0 or 1 by the function q. The winner of the election (which is never a tie) is c(q). Here is a table illustrating this for three possibilities q, q', q'' when V is two-dimensional with basis $\{e_1, e_2\}$. Having equal Arf invariants q is isomorphic to q. Thus the vote is three to one in each case.

x	0	e_1	<i>e</i> ₂	$e_1 + e_2$	value of c
values of q	0	0	0	1	0
values of q'	0	1	1	1	1
values of q''	0	1	0	0	0

Theorem (C. Arf 1941) The invariant c(q) is independent of the choice of basis and two quadratic forms on V are equivalent if and only if their Arf invariants coincide.

The Arf-Kervaire invariant of a framed manifold

Using the Arf invariant, Michel Kervaire (1960) defined an \mathbb{F}_2 -valued invariant for compact, (2*l*-2)-connnected framed (4*l*-2)-manifolds which are smooth in the complement of a point. He applied it to exhibit a manifold which does not admit any differentiable structure!

Bill Browder (1969) extended this definition to any framed, closed (4l - 2)-manifold.

Given a framed manifold M^{2k} and

$$a \in H^k(M; \mathbb{Z}/2) \cong [M_+, K(\mathbb{Z}/2, k)]$$

we compose with the Pontrjagin-Thom map

$$S^{2k+N} \longrightarrow T(\nu(M,i)) \cong \Sigma^N(M_+)$$

to obtain an element of

$$q_{M,t}(a) \in \pi_{2k+N}(\Sigma^N K(\mathbb{Z}/2,k)) \cong \mathbb{F}_2.$$

This is a non-singular quadratic form $q_{M,t}$ on $H^k(M; \mathbb{Z}/2)$, depending on the framing t and the Arf-Kervaire invariant of (M, t) is

$$c(q_{M,t}) \in \mathbb{F}_2.$$

Theorem (Browder 1969) The Arf invariant of a framed manifold M^{4l-2} is trivial unless $l = 2^s$ for some s.

Via the Pontrjagin-Thom construction the Arf-Kervaire invariant may be considered as a homomorphism

$$\operatorname{Arf}_n: \pi^{S}_{2^n-2}(S^0) \longrightarrow \mathbb{Z}/2$$

for $n \geq 2$.

The Arf-Kervaire invariant problem Is Arf_n non-zero?

Let Θ_k denote the group of diffeomorphism classes of smooth manifolds Σ^k which are homotopy equivalent to S^k with group operation induced by connected sum. When $k \ge 5$ Smale's proof of the Poincaré conjecture (1962) implies Σ^k is homeomorphic to S^k .

An exotic sphere embeds into Euclidean space with a framing on its normal bundle and, by the Pontrjagin-Thom construction, defines an element of $\pi_k(\Sigma^{\infty}S^0)$.

Two framings in the normal bundle of Σ^k differ by a map into SO so that the above construction yields a homomorphism ($k \ge 5$)

$$\tau_k: \Theta_k \longrightarrow \pi_k(\Sigma^{\infty}S^0)/\mathrm{Im}(J).$$

where J is the J-homomorphism introduced earlier.

The Arf-Kervaire invariant influences the behaviour of τ_k in the following manner:

Theorem If $\operatorname{Arf}_{4l+2} = 0$ then τ_{4l+2} is surjective and $\operatorname{Ker}(\tau_{4l+1}) \cong \mathbb{Z}/2$.

Now we skip ahead to the "stop press":

Theorem (Mike Hill, Mike Hopkins and Doug Ravenel - announced April 2009) The homomorphism $Arf_n = 0$ for $n \ge 8$.

Going into the details is the domain of the specialists. On the other hand $Arf_n \neq 0$ for n = 2, 3, 4, 5, 6 which leaves only the case n = 7 to resolve (Fall 2010: Dung Yung Yan claims that $Arf_7 = 0$, too! The case n = 6 is a long and brutal calculation (Barratt-Jones-Mahowald 1987; Kochman 1990).

We can sketch the cases n = 2, 3, 4, 5 without too much technicality by rephrasing the problem.

If X is a base-pointed space then $QX = \lim_{\overrightarrow{n}} \operatorname{Map}_{0}(S^{n}, \Sigma^{n}X)$ satisfies

$$\pi_r^S(X) \cong \pi_r(QX)$$
 for all $r \ge 0$.

For each integer k the maps of degree k gives a component $Q_k S^0$ of QS^0 , all homotopy equivalent. Therefore for $r \ge 1$

$$\pi_r^S(S^0) \cong \pi_r(QS^0) \cong \pi_r(Q_0S^0) \cong \pi_r(Q_1S^0).$$

Surgery theory yields a mod 2 cohomology class for $n\geq 2$

$$\underline{Arf}_n \in H^{2^n-2}(Q_1S^0), \mathbb{Z}/2)$$

such that

$$\operatorname{Arf}_{n}(f: S^{2^{n}-2} \to Q_{1}S^{0})$$
$$= f^{*}(\underline{Arf}_{n}) \in H^{2^{n}-2}(S^{2^{n}-2}, \mathbb{Z}/2) \cong \mathbb{Z}/2$$

•

Dually this result may be stated in mod 2 homology: If $f: S^{2^n-2} \to Q_0 S^0$ has $Arf_n(f) \neq 0$ then

$$0 \neq f_*(H_{2^n-2}(S^{2^n-2}, \mathbb{Z}/2)) \subseteq H_{2^n-2}(Q_0S^0, \mathbb{Z}/2)$$

in the subgroup of primitive elements

$$PH_{2^{n}-2}(Q_{0}S^{0}, \mathbb{Z}/2)$$

= {x | diag_{*}(x) = x × 1 + 1 \otimes x}.

In fact, $f_*(H_{2^n-2}(S^{2^n-2}, \mathbb{Z}/2))$ must lie in

$$PH_{2^n-2}(Q_0S^0,\mathbb{Z}/2)_{\mathcal{A}},$$

the primitives which are annihilated by the duals of the mod Steenrod cohomology operations.

Theorem (Snaith and Tornehave 1981) The \mathbb{F}_2 -vector space

$$PH_{2^n-2}(Q_0S^0,\mathbb{Z}/2)_{\mathcal{A}}$$

is one dimensional. Hence $\operatorname{Arf}_n(f) \neq 0$ if and only if $0 \neq f_*(H_{2^n-2}(S^{2^n-2},\mathbb{Z}/2))$.

This result actually gives a formula for the non-zero element of $f_*(H_{2^n-2}(S^{2^n-2},\mathbb{Z}/2))$.

The proof of the Adams conjecture (Quillen, Sullivan, Becker-Gottlieb c.1970-75), which almost completely determines the image of the J-homomorphism, relates the classifying spaces of surgery theory to *BO*, the classifying space of the infinite orthogonal group.

This enables us to translate the Arf-Kervaire problem in terms of $\pi_{2^n-2}^S(BO)$.

The key diagram is $(SG = Q_1S^0)$ in which the left-hand vertical is a split surjection (Priddy 1978).

 $QBD_8 \longrightarrow Q(BO(2)) \longrightarrow Q(BO)$

 $Q(SG) \longrightarrow Q(G/O) \xrightarrow{1} Q(G/O)$

This formula together with the relation leads to the following construction.

If M^{2^n-2} is a connected, framed manifold the Pontrjagin-Thom construction gives us an element $\theta \in \pi_{2^n-2}^S(M_+)$. If E is an k-dimensional vector bundle over M ($k \ge 2$) classified by

$$h(E): M \longrightarrow BO$$

we can form

$$(h(E)_{+})_{*}(\theta) \in \pi^{S}_{2^{n}-2}(BO_{+})$$

and from this an element

$$\Theta(M, E) \in \pi_{2^n-2}^S(S^0).$$

Theorem (Snaith and Tornehave 1981) If $w_2(E) \in H^2(M, \mathbb{Z}/2)$ is the 2nd Stiefel-Whitney class of E and $[M] \in H^{2^n-2}(M, \mathbb{Z}/2)$ is the fundamental class of M then

Arf_n($\Theta(M, E)$) = $\langle w_2(E)^{2^{n-1}-1}, [M] \rangle \in \mathbb{Z}/2$. THIS FORMULA DOES NOT REQUIRE KNOWL-EDGE OF THE FRAMING - EXCEPT ITS EXISTENCE!

Examples

(a) $M = \mathbb{R}P^1 \times \mathbb{R}P^1 \subseteq BO(1) \times BO(1) \to BO$

(b) $M = \mathbb{R}P^3 \times \mathbb{R}P^3 \subseteq BO(1) \times BO(1) \to BO$

(c) $M = \mathbb{R}P^7 \times \mathbb{R}P^7 \subseteq BO(1) \times BO(1) \to BO$

(d) Let C denote the Riemann surface obtained by putting a thin tube around each edge of a cube. The natural action D_8 , of the dihedral group of order 8, on the cube induces a free D_8 -action on C. Since D_8 is the 2-Sylow subgroup of the permutation on 4 object D_8 also acts on

$$\mathbb{R}P^7 \times \mathbb{R}P^7 \times \mathbb{R}P^7 \times \mathbb{R}P^7.$$

Form

 $M = C \times_{D_8} (\mathbb{R}P^7 \times \mathbb{R}P^7 \times \mathbb{R}P^7 \times \mathbb{R}P^7).$

A simple calculation in K-theory shows that M is framed (first noticed by John Jones 1975) and by construction M is a subcomplex of BO(4).

Examples(a)-(d) show the existence non-trivial Arf-Kervaire invariants in dimensions 2,6,14 and 30.