The Bernstein Centre of Smooth Representations

Victor Snaith

April 2017

G locally compact, totally disconnected group

usually reductive algebraic group over a local field K e.g. SL_nK

A smooth representation is a $G \longrightarrow \operatorname{Aut}_{\mathbb{C}}(V)$

(continuous) and for $v \in V$ Stab_G(v) is open.

Abelian category $\operatorname{Rep}^{sm}(G)$.

The centre Z(A) of abelian category A is the ring of endomorphisms of the identity functor

 $A \in Ob(\mathcal{A}), z_A \in End_{\mathcal{A}}(A)$ such that for all $f: A \longrightarrow B$ we have $fz_A = z_B f$.

The Bernstein Centre is $Z(\operatorname{Rep}^{sm}(G))$.

Bernstein-Zelevinski determined $Z(\operatorname{Rep}^{sm}(GL_nK))$

Deligne [Le "centre" de Bernstein; Hermann Travaux en Cours (1984)] generalised to all Gas above.

Hecke algebras

Assume that G is unimodular - the left/right invariant Haar measures are equal

The Hecke algebra of G, \mathcal{H}_G , is the space $C_c^{\infty}(G)$ of locally constant, compactly supported functions on G with the convolution product

$$(\phi_1 * \phi_2)(g) = \int_G \phi_1(gh)\phi_2(h^{-1})dh$$

Suppose that $K_0 \subseteq G$ is a compact, open subgroup. Define an idempotent

$$e_{K_0} = \frac{1}{\operatorname{vol}(K_0)} \cdot \chi_{K_0}$$

where χ_{K_0} is the characteristic function of K_0 . If $K_0 \subseteq K_1$ then $e_{K_0} * e_{K_1} = e_{K_1}$.

 \mathcal{H}_G is an idempotented algebra - $\mathcal{H}_G = \bigcup e \mathcal{H}_G e$ - e runs through all the poset of idempotents Let X be a totally disconnected, locally compact topological space. As before $C_c^{\infty}(X)$ is the space of locally constant, compactly supported functions on X and $\mathcal{D}(X)$ is the space of distributions on X (i.e. linear functionals on $C_c^{\infty}(X)$).

 $\mathcal{H}_G^{\wedge} \cong \lim_{\leftarrow e_{K_0}} \ \mathcal{H}_G \ast e_{K_0}$ an algebra whose centre

 $Z(\mathcal{H}_G^{\wedge})$ is the space of distributions T on G conjugation-fixed such that $T * e_{K_0}$ has compact support.

Essentially:

Theorem (B-Z and D) $Z(\mathcal{H}_G^{\wedge}) \cong Z(\operatorname{Rep}^{sm}(G))$

The link between $\operatorname{Rep}^{sm}(G)$ and smooth \mathcal{H}_{G} -modules is related to Bruhat's thesis.

Let σ be a smooth representation of H on a vector space V, the induced representation π

$$\pi = \operatorname{Ind}_{H}^{G}(\chi^{1/2}\sigma)$$

 χ is some character depending on H,G

the representation space \mathcal{H} for π is the space of all smooth functions $\psi : G \longrightarrow V$ that are compactly supported modulo H and satisfy, for $x \in G, h \in H$,

$$\psi(xh^{-1}) = \chi(h)^{1/2} \sigma(h) \psi(x).$$

The action of G is given by

$$(\pi(y)\psi)(x) = \psi(y^{-1}x).$$

Let π_1, π_2 be induced representations of G on vector spaces $\mathcal{H}_1, \mathcal{H}_2$ respectively. An intertwining form is a bilinear form $B : \mathcal{H}_1 \times \mathcal{H}_2 \longrightarrow \mathbb{C}$ such that

$$B(\pi_1(g)v_1, \pi_2(g)v_2) = B(v_1, v_2)$$

for all $g \in G, v_i \in \mathcal{H}_i$.

An intertwining operator $T : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ is a linear map such that $T(\pi_1(g)v_1) = \pi_2(g)T(v_1)$.

Bruhat classified B's which is equivalent to classifying T's.

Method: by embedding the B's into a space of invariant distributions on G.

The "classical" account is to be found in $\S4.2$ pp.424-435 of

Daniel Bump: Automorphic forms and representations; Cambridge studies in advanced math. **55** (1998).

Let $(h_1, h_2) \in H_1 \times H_2$ act on the right on Gby $x \cdot v = h_1^{-1}xh_2$. Fix an orbit \mathcal{O} and choose $y \in \mathcal{O}$ with $\operatorname{stab}_{H_1 \times H_2}(y) = \mathcal{H}(y)$. There is the usual mapping

 $\mathcal{H}(y) \backslash H_1 \times H_2 \longrightarrow \mathcal{O}$

which is a homeomorphism. The stabiliser is given by $\mathcal{H}(y) = \{(h_1, y^{-1}h_1y)\} = H_2 \cap y^{-1}H_1y.$

Bruhat refines his embedding into a disjoint union of orbit-by-orbit embeddings (via supports of distributions).

Firstly recall the Double Coset formula $\operatorname{Res}_{J}^{G}\operatorname{Ind}_{H}^{G}(\rho) \xrightarrow{\cong} \bigoplus_{z \in J \setminus G/H} \operatorname{Ind}_{J \cap zHz^{-1}}^{J}((z^{-1})^{*}(\rho))$ The DCF plus Frobenius reciprocity splits $\operatorname{Hom}_{G}(\pi_{1}, \pi_{2}) = \operatorname{Hom}_{H_{1}}(\chi_{1}^{1/2}\sigma_{1}, \operatorname{Res}_{H_{1}}^{G}(\pi_{2}))$ into a sum over $y \in H_{1} \setminus G/H_{2}$ of summands

$$\operatorname{Hom}_{H_1}(\chi_1^{1/2}\sigma_1,\operatorname{Ind}_{H_1\cap yH_2y^{-1}}^{H_1}((y^{-1})^*(\pi_2))).$$

One can derive Bruhat's results via the DCF and the contribution from the $\mathcal{H}(y)$ -orbit is that from the double coset $y \in H_1 \setminus G/H_2$. With a dictionary between Bruhat's distributional approach and the DCF approach one can attempt to establish Deligne's result by means of monomial resolutions which I will now recall. Details are in

V.P. Snaith: *Derived Langlands*; research monograph (268 pages) available at http://victorsnaith.staff.shef.ac.uk (June 2016).

Let \mathcal{C} denote the compact open modulo the centre subgroups $H \subseteq G$ containing the centre. Tammo tom Dieck constructed a G-simplicial complex $\underline{E}(G, \mathcal{C})$ such that for any $H \in \mathcal{C} \ \underline{E}(G, \mathcal{C})^H$ is non-empty and contractible.

For a p-adic Lie group this space is G-homotopy equivalent to the Bruhat-Tits building.

Let G be a locally p-adic Lie group and let V be a smooth representation defined on a \mathbb{C} -vector space with central character ϕ . There is an additive but not abelian category $\mathbb{C}[G]$ mon - the monomial category - whose irreducibles are induced representations $\underline{\mathrm{Ind}}_{H}^{G}(\phi)$ where $H \in \mathcal{C}$ and ϕ is a character extending ϕ .

Induced modules have a basis indexed by G/Hand the definition of a morphism and of exactness is defined by reference to these bases.

The morphisms in $_{\mathbb{C}[G]}$ mon a linear combinations of

 $((K,\psi),g,(H,\phi)): \underline{\mathrm{Ind}}_{K}^{G}(\psi) \longrightarrow \underline{\mathrm{Ind}}_{H}^{G}(\phi)$ when $(K,\psi) \leq (gHg^{-1},(g^{-1})^{*}(\phi))$

Write the basis elements as $g' \otimes_H v$ (as if the groups were finite) then

$$((K,\psi),g,(H,\phi))(g'\otimes_K v) = g'g\otimes_H v$$

The DCF and Frobenius reciprocity hold in $\mathbb{C}[G]$ mon and in the decomposition of

$$\operatorname{Hom}_{\mathbb{C}[G]}\operatorname{mon}(\operatorname{Ind}_{K}^{G}(\psi), \operatorname{Ind}_{H}^{G}(\phi))$$

This morphism corresponds to the basis of the one-dimensional summand corresponding to KgH.

Therefore it is easy to find in the DCF dictionary for Bruhat's thesis.

A $_{\mathbb{C}[G],\underline{\phi}}\mathbf{mon}\text{-resolution of }V$ is a chain complex

$$M_*: \dots \xrightarrow{\partial_{i+1}} M_{i+1} \dots \xrightarrow{\partial_1} M_1 \xrightarrow{\partial_0} M_0$$

with $M_i \in_{k[G],\phi}$ mon such that

 $\dots \xrightarrow{\partial_1} M_1^{((H,\phi))} \xrightarrow{\partial_0} M_0^{((H,\phi))} \xrightarrow{\epsilon} V^{(H,\phi)} \longrightarrow 0$

is an exact sequence of \mathbb{C} -modules for each (H, ϕ) .

In particular, when $(H, \phi) = (Z(G), \underline{\phi})$ we see that

 $\dots \xrightarrow{\partial_i} M_i \xrightarrow{\partial_{i-1}} \dots \xrightarrow{\partial_1} M_1 \xrightarrow{\partial_0} M_0 \xrightarrow{\epsilon} V \longrightarrow 0$ is an exact sequence in $_{k[G],\phi} \operatorname{mod}$.

The bar-monomial resolution is a functorial monomial resolution for $\operatorname{Res}_{H}^{G}(V)$ which gives a sheaf of monomial chain complexes on $\underline{E}(G, \mathcal{C})$ whose total complex is a $_{\mathbb{C}[G],\phi}$ mon-resolution of V. The morphisms such as $M_1 \xrightarrow{\partial_0} M_0$ are very special cases of the intertwining operators of Bruhat's thesis and can be described via the DCF or via distributions.

This gives the "centre of $_{\mathbb{C}[G],\underline{\phi}}$ mon" in terms of distributions that is, morphisms z_{M_1} and z_{M_0} such that $z_{M_0}\partial_0 = \partial_0 z_{M_1}$ for all ∂_0 .

The z_{M_i} 's induce z_V in the "centre of $\mathbb{C}[G], \phi \operatorname{mod}$ ".

This should describe the relation between the Bernstein centre and the centre of \mathcal{H}_G^\wedge in a new way.

an analogue of Swan's theorem

In [Trans. A.M.Soc. (1962) 264-277] Swan showed that the space of sections of a vector bundle on X is a f.g. projective C(X) and Serre proved the converse.

Let X be a totally disconnected, locally compact topological space. As before $C_c^{\infty}(X)$ is the space of locally constant, compactly supported functions on X and $\mathcal{D}(X)$ is the space of distributions on X (i.e. linear functionals on $C_c^{\infty}(X)$).

A basis for the topology on X is given by $U \in \mathcal{T}_c$, the set of compact open subsets of X.

A C^{∞} -module or a C_c^{∞} -module \mathcal{M} is defined to be cosmooth if for every $x \in \mathcal{M}$ there exists a compact open U such that $\mathbf{1}_U \cdot x = x$ where $\mathbf{1}_U$ is the characteristic function of U.

Let \mathcal{M} be a cosmooth $C_c^{\infty}(X)$ -module. For $U \in \mathcal{T}_c$ let $\mathcal{M}(U) = \mathbf{1}_U \cdot \mathcal{M}$. The transition map $\rho_{U,V}$ is defined by $\rho_{U,V}(m) = \mathbf{1}_V \cdot m$ for $V \subseteq U$. This is a sheaf.

The stalk at x is $\mathcal{M}_x = M/M(x)$ where $M(x) = \{m \in M \mid \mathbf{1}_U \cdot x = 0\}$ for all $U \in \mathcal{T}_c$ containing x.

We have an analogue of Swan's theorem: the following three categories are equivalent:

(i) the category of sheaves of vector spaces over X,

(ii) the category of sheaves of C^{∞} -modules and

(iii) the category of cosmooth modules over $C_c^{\infty}(X)$.

Let \mathcal{F} be a sheaf of C^{∞} -modules on X. Let \mathcal{F}_c denote the corresponding cosmooth module of compactly supported sections. By an \mathcal{F} -distribution on X we mean a linear functional on the vector space \mathcal{F}_c . Let $\mathcal{D}(X,\mathcal{F})$ denote the space of \mathcal{F} -distributions on X.

Let Z be a locally closed subset of X (i.e. the intersection of an open and a closed subset).

The disjoint union of the stalks of \mathcal{F} is called the étale space of \mathcal{F} and denoted by $\hat{\mathcal{F}}$.

If U is an open subset of Z then let $\mathcal{F}_Z(U)$ be the set of sections $s : U \longrightarrow \widehat{\mathcal{F}}$ such that for $x \in U$ and $s(x) \in \mathcal{F}_x$ there exists a section $s' \in \mathcal{F}(V)$ which agrees with s on $V \cap U$.

The stalk of \mathcal{F}_Z at x equals that of \mathcal{F} at x so the étale space of \mathcal{F}_Z is just the restriction of the étale space of \mathcal{F} . So we have a restriction map $\mathcal{F} \longrightarrow \mathcal{F}_Z$.

If Z is closed in X we have an extension of sections by zero on Z giving a canonical map

$$\mathcal{F}_{X-Z} \longrightarrow \mathcal{F}.$$

There are short exact sequences

$$(\mathcal{F}_{X-Z})_c \longrightarrow \mathcal{F}_c \longrightarrow (\mathcal{F}_Z)_c$$

and its dual

 $\mathcal{D}(Z,\mathcal{F}_Z)\longrightarrow \mathcal{D}(X,\mathcal{F})\longrightarrow \mathcal{D}(X-Z,\mathcal{F}_{X-Z}).$

Suppose now that a group G acts on X and let \mathcal{F} be a sheaf on X.

Suppose that G extends to an action on \mathcal{F} , which means that we are given for $g \in G$ an isomorphism $\mathcal{F}(U) \longrightarrow \mathcal{F}(gU)$ for each $U \in \mathcal{T}_c$.

Then G acts on \mathcal{F}_c and on $\mathcal{D}(X, \mathcal{F})$.

If Z is a closed subspace mapped to itself by G then G also acts on $(\mathcal{F}_Z)_c$ and $\mathcal{D}(Z, \mathcal{F}_Z)$.

Proposition (Bernstein and Zelevinski)

Let X and Y be totally disconnected, locally compact spaces. Let $p: X \longrightarrow Y$ be a continuous map and let \mathcal{F} be a sheaf on X. Suppose that G acts on X and on \mathcal{F} . Assume that p(gx) = p(x) for all $g \in G, x \in X$. Let χ be a character on G.

(i) Let $y \in Y$ and let $Z = p^{-1}(y)$. Let $\mathcal{F}_c(\chi)$ (resp. $(\mathcal{F}_Z)_c(\chi)$) denote the submodule of \mathcal{F}_c (resp. $(\mathcal{F}_Z)_c$) generated by the elements of the form $g \cdot f - \chi(g)^{-1}f$ for $f \in \mathcal{F}_c$ (resp. $f \in (\mathcal{F}_Z)_c$) and $g \in G$. Then $M = \mathcal{F}_c/\mathcal{F}_c(\chi)$ is a cosmooth C_Y^{∞} -module. Let \mathcal{G} denote the corresponding sheaf on Y. If $y \in Y$ the stalk satisfies

$$\mathcal{G}_y \cong (\mathcal{F}_Z)_c/(\mathcal{F}_Z)_c(\chi).$$

(ii) Assume there are no non-zero distributions D in $\mathcal{D}(p^{-1}(y), \mathcal{F}_{p^{-1}(y)})$ for any $y \in Y$ which satisfy $gD = \chi(g)D$ for all $g \in G$. Then there are no non-zero distributions $D' \in \mathcal{D}(X, \mathcal{F})$ which satisfy $gD' = \chi(g)D'$.

Example A GL_2F application of the Proposition

Consider $G = GL_2K$ where K is a p-adic local field in characteristic zero. Then if D is a distribution on G which is invariant under conjugation then D is invariant under transpose.

Let tr(D) be the transpose of D and consider D - tr(D) which is invariant under conjugation. We must show it is zero. Changing notation then we may assume we have conjugationinvariant D such that tr(D) = -D. Now let $C_2 \propto G$ denote the semi-direct product of C_2 , generated by τ , and G. Then $C_2 \propto G$ acts on D by G fixing it and $\tau(D) = -D$ where $\tau(D) =$ tr(D) = -D. Define $\chi : C_2 \propto G \longrightarrow {\pm 1}$ to be trivial on G and to send τ to -1. Hence $g(D) = \chi(g)D$. Denote by G_{reg} the subset of G having distinct eigenvalues with complement G_{sing} . Then G_{sing} is the locus of $tr(g)^2 - 4\det(g) = 0$. Hence it is closed. Therefore we have a short exact sequence

 $0 \longrightarrow \mathcal{D}(G_{sing}) \longrightarrow \mathcal{D}(G) \longrightarrow \mathcal{D}(G_{reg}) \longrightarrow 0.$

To show that D maps to zero in the right hand group set

$$Y = \{(x, y) \in F \oplus F \mid x^2 \neq 4y\}$$

and set $p: X \longrightarrow Y$ equal to p(g) = (tr(g), det(g)). By Proposition we have to show that there are no distributions on $p^{-1}(y) = Z$ for $y \in Y$ which is a χ eigen-distribution on the (regular) conjugacy class Z.

This is done using some properties of invariant distributions and their relation certain Haar integrals.

Now let C be the scalar matrices. We have an exact sequence

 $0 \longrightarrow \mathcal{D}(C) \longrightarrow \mathcal{D}(G_{sing}) \longrightarrow \mathcal{D}(G_{sing}-C) \longrightarrow 0.$

The above method shows that D maps to zero in the right-hand group in this sequence, too. This time a parameter space for Y is F^* since every conjugacy class in $G_{sing}-C$ is represented by a matrix of the form

$$g = \left(\begin{array}{cc} a & \mathbf{1} \\ & \\ \mathbf{0} & a \end{array}\right).$$

Hence *D* lies in the left-hand group but anything in there is transposition invariant so cannot be in the -1χ -eigenspace, which is a contradiction. \Box