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G locally compact, totally disconnected group

usually reductive algebraic group over a local

field K e.g. SLnK

A smooth representation is a G −→ AutC(V )

(continuous) and for v ∈ V StabG(v) is open.

Abelian category Repsm(G).

The centre Z(A) of abelian category A is the

ring of endomorphisms of the identity functor

A ∈ Ob(A), zA ∈ EndA(A) such that for all

f : A −→ B we have fzA = zBf .

The Bernstein Centre is Z(Repsm(G)).

Bernstein-Zelevinski determined Z(Repsm(GLnK))

Deligne [Le “centre” de Bernstein; Hermann

Travaux en Cours (1984)] generalised to all G

as above.



Hecke algebras

Assume that G is unimodular - the left/right

invariant Haar measures are equal

The Hecke algebra of G, HG, is the space

C∞c (G) of locally constant,compactly supported

functions on G with the convolution product

(φ1 ∗ φ2)(g) =
∫
G
φ1(gh)φ2(h−1)dh

Suppose that K0 ⊆ G is a compact, open sub-

group. Define an idempotent

eK0
=

1

vol(K0)
· χK0

where χK0
is the characteristic function of K0.

If K0 ⊆ K1 then eK0
∗ eK1

= eK1
.

HG is an idempotented algebra - HG =
⋃
eHGe

- e runs through all the poset of idempotents



Let X be a totally disconnected, locally com-

pact topological space. As before C∞c (X) is

the space of locally constant, compactly sup-

ported functions on X and D(X) is the space

of distributions on X (i.e. linear functionals on

C∞c (X)).

H∧G
∼= lim← eK0

HG ∗ eK0
an algebra whose cen-

tre

Z(H∧G) is the space of distributions T on G

conjugation-fixed such that T ∗ eK0
has com-

pact support.

Essentially:

Theorem (B-Z and D) Z(H∧G) ∼= Z(Repsm(G))

The link between Repsm(G) and smooth HG-

modules is related to Bruhat’s thesis.

Let σ be a smooth representation of H on a

vector space V , the induced representation π



π = IndGH(χ1/2σ)

χ is some character depending on H,G

the representation space H for π is the space

of all smooth functions ψ : G −→ V that are

compactly supported modulo H and satisfy, for

x ∈ G, h ∈ H,

ψ(xh−1) = χ(h)1/2σ(h)ψ(x).

The action of G is given by

(π(y)ψ)(x) = ψ(y−1x).

Let π1, π2 be induced representations of G on

vector spaces H1,H2 respectively. An inter-

twining form is a bilinear form B : H1×H2 −→ C
such that

B(π1(g)v1, π2(g)v2) = B(v1, v2)

for all g ∈ G, vi ∈ Hi.



An intertwining operator T : H1 −→ H2 is a

linear map such that T (π1(g)v1) = π2(g)T (v1).

Bruhat classified B’s which is equivalent to

classifying T ’s.

Method: by embedding the B’s into a space of

invariant distributions on G.

The “classical” account is to be found in §4.2

pp.424-435 of

Daniel Bump: Automorphic forms and rep-

resentations; Cambridge studies in advanced

math. 55 (1998).

Let (h1, h2) ∈ H1 × H2 act on the right on G

by x · v = h−1
1 xh2. Fix an orbit O and choose

y ∈ O with stabH1×H2
(y) = H(y). There is the

usual mapping

H(y)\H1 ×H2 −→ O

which is a homeomorphism. The stabiliser is

given by H(y) = {(h1, y
−1h1y)} = H2

⋂
y−1H1y.



Bruhat refines his embedding into a disjoint

union of orbit-by-orbit embeddings (via sup-

ports of distributions).

Firstly recall the Double Coset formula

ResGJ IndGH(ρ)
∼=−→ ⊕z∈J\G/H IndJ

J∩zHz−1((z−1)∗(ρ))

The DCF plus Frobenius reciprocity splits

HomG(π1, π2) = HomH1
(χ

1/2
1 σ1,ResGH1

(π2))

into a sum over y ∈ H1\G/H2 of summands

HomH1
(χ

1/2
1 σ1, IndH1

H1∩yH2y−1((y−1)∗(π2))).

One can derive Bruhat’s results via the DCF

and the contribution from the H(y)-orbit is

that from the double coset y ∈ H1\G/H2.



With a dictionary between Bruhat’s distribu-

tional approach and the DCF approach one can

attempt to establish Deligne’s result by means

of monomial resolutions which I will now recall.

Details are in

V.P. Snaith: Derived Langlands; research mono-

graph (268 pages) available at http://victor-

snaith.staff.shef.ac.uk (June 2016).

Let C denote the compact open modulo the

centre subgroups H ⊆ G containing the centre.

Tammo tom Dieck constructed a G-simplicial

complex E(G, C) such that for any H ∈ C E(G, C)H

is non-empty and contractible.

For a p-adic Lie group this space is G-homotopy

equivalent to the Bruhat-Tits building.

Let G be a locally p-adic Lie group and let V be

a smooth representation defined on a C-vector

space with central character φ.



There is an additive but not abelian category

C[G]mon - the monomial category - whose ir-

reducibles are induced representations IndGH(φ)

where H ∈ C and φ is a character extending φ.

Induced modules have a basis indexed by G/H

and the definition of a morphism and of exact-

ness is defined by reference to these bases.

The morphisms in C[G]mon a linear combina-

tions of

((K,ψ), g, (H,φ)) : IndGK(ψ) −→ IndGH(φ)

when (K,ψ) ≤ (gHg−1, (g−1)∗(φ))

Write the basis elements as g′ ⊗H v (as if the

groups were finite) then

((K,ψ), g, (H,φ))(g′ ⊗K v) = g′g ⊗H v

The DCF and Frobenius reciprocity hold in

C[G]mon and in the decomposition of

HomC[G]mon(IndGK(ψ), IndGH(φ))



This morphism corresponds to the basis of the
one-dimensional summand corresponding to KgH.

Therefore it is easy to find in the DCF dictio-
nary for Bruhat’s thesis.

A C[G],φmon-resolution of V is a chain complex

M∗ : . . .
∂i+1−→ Mi+1 . . .

∂1−→ M1
∂0−→M0

with Mi ∈k[G],φ mon such that

. . .
∂1−→ M

((H,φ))
1

∂0−→M
((H,φ))
0

ε−→ V (H,φ) −→ 0

is an exact sequence of C-modules for each
(H,φ).

In particular, when (H,φ) = (Z(G), φ) we see
that

. . .
∂i−→Mi

∂i−1−→ . . .
∂1−→ M1

∂0−→M0
ε−→ V −→ 0

is an exact sequence in k[G],φmod.

The bar-monomial resolution is a functorial mono-
mial resolution for ResGH(V ) which gives a sheaf
of monomial chain complexes on E(G, C) whose
total complex is a C[G],φmon-resolution of V .



The morphisms such as M1
∂0−→ M0 are very

special cases of the intertwining operators of

Bruhat’s thesis and can be described via the

DCF or via distributions.

This gives the “centre of C[G],φmon” in terms

of distributions that is, morphisms zM1
and zM0

such that zM0
∂0 = ∂0zM1

for all ∂0.

The zMi
’s induce zV in the “centre of C[G],φmod’.

This should describe the relation between the

Bernstein centre and the centre of H∧G in a new

way.

an analogue of Swan’s theorem

In [Trans. A.M.Soc. (1962) 264-277] Swan

showed that the space of sections of a vector

bundle on X is a f.g. projective C(X) and Serre

proved the converse.



Let X be a totally disconnected, locally com-

pact topological space. As before C∞c (X) is

the space of locally constant, compactly sup-

ported functions on X and D(X) is the space

of distributions on X (i.e. linear functionals on

C∞c (X)).

A basis for the topology on X is given by U ∈
Tc, the set of compact open subsets of X.

A C∞-module or a C∞c -module M is defined to

be cosmooth if for every x ∈ M there exists a

compact open U such that 1U ·x = x where 1U
is the characteristic function of U .

Let M be a cosmooth C∞c (X)-module. For

U ∈ Tc let M(U) = 1U ·M. The transition map

ρU,V is defined by ρU,V (m) = 1V ·m for V ⊆ U .

This is a sheaf.

The stalk at x isMx = M/M(x) where M(x) =

{m ∈ M | 1U · x = 0} for all U ∈ Tc containing

x.



We have an analogue of Swan’s theorem: the

following three categories are equivalent:

(i) the category of sheaves of vector spaces

over X,

(ii) the category of sheaves of C∞-modules

and

(iii) the category of cosmooth modules over

C∞c (X).

Let F be a sheaf of C∞-modules on X. Let

Fc denote the corresponding cosmooth module

of compactly supported sections. By an F-

distribution on X we mean a linear functional

on the vector space Fc. Let D(X,F) denote

the space of F-distributions on X.



Let Z be a locally closed subset of X (i.e. the

intersection of an open and a closed subset).

The disjoint union of the stalks of F is called

the étale space of F and denoted by F̂.

If U is an open subset of Z then let FZ(U)

be the set of sections s : U −→ F̂ such that

for x ∈ U and s(x) ∈ Fx there exists a section

s′ ∈ F(V ) which agrees with s on V
⋂
U .

The stalk of FZ at x equals that of F at x so

the étale space of FZ is just the restriction of

the étale space of F. So we have a restriction

map F −→ FZ.

If Z is closed in X we have an extension of

sections by zero on Z giving a canonical map

FX−Z −→ F .



There are short exact sequences

(FX−Z)c −→ Fc −→ (FZ)c

and its dual

D(Z,FZ) −→ D(X,F) −→ D(X − Z,FX−Z).

Suppose now that a group G acts on X and

let F be a sheaf on X.

Suppose that G extends to an action on F,

which means that we are given for g ∈ G an

isomorphism F(U) −→ F(gU) for each U ∈ Tc.

Then G acts on Fc and on D(X,F).

If Z is a closed subspace mapped to itself by

G then G also acts on (FZ)c and D(Z,FZ).



Proposition (Bernstein and Zelevinski)

Let X and Y be totally disconnected, locally

compact spaces. Let p : X −→ Y be a contin-

uous map and let F be a sheaf on X. Suppose

that G acts on X and on F. Assume that

p(gx) = p(x) for all g ∈ G, x ∈ X. Let χ be a

character on G.

(i) Let y ∈ Y and let Z = p−1(y). Let Fc(χ)

(resp. (FZ)c(χ)) denote the submodule of Fc
(resp. (FZ)c) generated by the elements of the

form g ·f−χ(g)−1f for f ∈ Fc (resp. f ∈ (FZ)c)

and g ∈ G. Then M = Fc/Fc(χ) is a cosmooth

C∞Y -module. Let G denote the corresponding

sheaf on Y . If y ∈ Y the stalk satisfies

Gy ∼= (FZ)c/(FZ)c(χ).

(ii) Assume there are no non-zero distributions

D in D(p−1(y),Fp−1(y)) for any y ∈ Y which

satisfy gD = χ(g)D for all g ∈ G. Then there

are no non-zero distributions D′ ∈ D(X,F) which

satisfy gD′ = χ(g)D′.



Example A GL2F application of the Proposi-

tion

Consider G = GL2K where K is a p-adic lo-

cal field in characteristic zero. Then if D is a

distribution on G which is invariant under con-

jugation then D is invariant under transpose.

Let tr(D) be the transpose of D and consider

D − tr(D) which is invariant under conjuga-

tion. We must show it is zero. Changing nota-

tion then we may assume we have conjugation-

invariant D such that tr(D) = −D. Now let

C2 ∝ G denote the semi-direct product of C2,

generated by τ , and G. Then C2 ∝ G acts on

D by G fixing it and τ(D) = −D where τ(D) =

tr(D) = −D. Define χ : C2 ∝ G −→ {±1} to

be trivial on G and to send τ to −1. Hence

g(D) = χ(g)D.



Denote by Greg the subset of G having distinct

eigenvalues with complement Gsing. Then Gsing
is the locus of tr(g)2 − 4det(g) = 0. Hence it

is closed. Therefore we have a short exact se-

quence

0 −→ D(Gsing) −→ D(G) −→ D(Greg) −→ 0.

To show that D maps to zero in the right hand

group set

Y = {(x, y) ∈ F ⊕ F | x2 6= 4y}

and set p : X −→ Y equal to p(g) = (tr(g),det(g)).

By Proposition we have to show that there are

no distributions on p−1(y) = Z for y ∈ Y which

is a χ eigen-distribution on the (regular) con-

jugacy class Z.

This is done using some properties of invariant

distributions and their relation certain Haar in-

tegrals.



Now let C be the scalar matrices. We have an

exact sequence

0 −→ D(C) −→ D(Gsing) −→ D(Gsing−C) −→ 0.

The above method shows that D maps to zero

in the right-hand group in this sequence, too.

This time a parameter space for Y is F ∗ since

every conjugacy class in Gsing−C is represented

by a matrix of the form

g =

 a 1

0 a

 .
Hence D lies in the left-hand group but any-

thing in there is transposition invariant so can-

not be in the −1 χ-eigenspace, which is a con-

tradiction. �


