
GALOIS EXERCISES WITH THE SECOND CHERN CLASS

VICTOR P. SNAITH

Abstract. We examine examples of the behaviour of a formula for the
second Chern class of irreducible representations related by Shintani base
change.
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1. The second Chern class and 4-cocycle c̃4

Let G be a finite group with a subgroup H and suppose that λ̃ : H −→ C∗

is a homomorphism. The coboundary of λ̃ is a homology class [λ] ∈ H2(H; Z)
represented by a 2-cocycle λ on the inhomogeneous bar resolution of H.

The second cohomology class of the complex representation IndG
H(λ̃) is

denoted by c2(IndG
H(λ̃)) ∈ H4(G; Z).

As described in §2 there is a homomorphism

Φx : G −→ Σm

∫
H

where m = [G : H].
In §2 we describe an explicit 4-cocycle

c̃4 ∈ HomZ[Σm
R

H](B4Σm

∫
H, Z)

which gives rise to a cohomology class

Φ∗[c̃4] ∈ H4(G; Z)

Date: 6 January 2018.
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whose relation to the second Chern class is given by

c2(IndG
H(λ̃)) = c2,0(λ) + c1,1(λ) + c0,2(λ)

where
(a) c0,2(λ) = Φ∗[c̃4],
(b) c1,1(λ) = c1(IndG

H(1)) · TraceG
H(λ) .

(c) c2,0(λ) = c2(IndG
H(1)).

The above formulae originate in [3] and [4] and the explicit 4-cocycle was
derived in [14] by following the theory discovered by Lenny Evens. The
formula simplifies when we invert 6 to

c2(IndG
H(λ̃)) = c2,0(λ) ∈ H4(G; Z[1/6])

because 6 kills the low-dimensional integral cohomology of symmetric groups
which contain c1(IndG

H(1)) and c2(IndG
H(1)) ([7], [8]).

The explicit 2n-cocycle c̃2n ∈ H2n(Σm

∫
H; Z) analogous to c̃4 has a similar

form the finding of which I leave as an exercise to the reader. The relation
between c̃2n and the n-th Chern class has more terms in it (see [4]).

2. A 4-cocycle c̃4 and group actions

Now suppose that G is a finite subgroup with subgroup H such that
x1, . . . , xm are coset representatives for G/H = {x1H, . . . , xmH}.

Therefore there is a homomorphism

πG
H : G −→ Σm

such that

gxi = xπG
H(g)(i)hi(g)

where hi(g) ∈ H. Since

g(g′(xi)) = gxπG
H(g′)(i)hi(g

′)

= xπG
H(g)(πG

H(g′)(i))hπ(g′)(i)(g)hi(g
′)

= x(πG
H(gg′)(i)hπ(g′)(i)(g)hi(g

′)

we see that

hi(gg′) = hπ(g′)(i)(g)hi(g
′).

If we set

ΦG
H(g) = (πG

H(g), h1(g), h2(g), . . . , hn(g)) ∈ Σm

∫
H
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we find that

ΦG
H(gg′)

= (πG
H(gg′), h1(gg′), h2(gg′), . . . , hn(gg′))

= (πG
H(g)πG

H(g′), hπG
H(g′)(1)(g)h1(g

′), hπG
H(g′)(2)(g)h2(g

′), . . . , hπG
H(g′)(n)(g)hn(g′))

= (πG
H(g), h1(g), . . . , hn(g)) · (πG

H(g′), h′1(g
′), . . . , h′n(g′))

= ΦG
H(g)ΦG

H(g′)

so that

ΦG
H : G −→ Σm

∫
H

is a homomorphism, depending (up to conjugacy) on the choice of coset rep-
resentatives. See [14] for the conventions concerning the multiplication in the
semi-direct product Σm

∫
H1.

Let B∗G denote the inhomogeneous bar resolution of G ([6] p.212 et seq;
[11]). Suppose that λ ∈ HomZ[H](B2H, Z) is a 2-cocycle. Then from [14] we
have a 4-cocycle

c̃4 ∈ HomZ[Σm
R

H](B4Σm

∫
H, Z)

sending the 4-chain (σ̂, σ, σ′, σ′′, σ′′′ ∈ Σm and ĥj, hj, h
′
j.h

′′
j , h

′′′
j ∈ H)

z = (σ̂, ĥ1, . . . )[(σ, h1, . . . )|(σ′, h′1, . . . )|(σ′′, h′′1, . . .)|(σ′′′, h′′′1 , . . . )]

to

c̃4(z) =
∑

1≤i6=j≤m

λ[hσ−1(i)|h′(σσ′)−1(i)] · λ[h′′(σσ′σ′′)−1(j)|h′′′(σσ′σ′′σ′′′)−1(j)],

which defines a cohomology class

[c̃4] ∈ H4(Σm

∫
H; Z) ∼= H3(Σm

∫
H; Q/Z) ∼= Hom(H3(Σm

∫
H; Z), Q/Z).

Let J be a finite group acting (on the left) upon G and preserving the

subgroup H. Suppose that φ ∈ J and that λ̃ : H −→ C∗ is a homomorphism
such that φ∗(λ̃) = λ̃.

We have an isomorphism of cohomology groups

∂ : H1(H; C∗) ∼= Hom(H, C∗)
∼=−→ H2(H; Z).

We shall verify that there is a 2-cocycle λ representing ∂(λ̃) which is
also invariant under φ. Using the inhomogeneous bar resolution to describe

1The product in the semi-direct product J ∝ G differs from that chosen for the multi-
plication in the wreath product.
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H∗(H; M), when H acts trivially on M , the cohomology is the homology of
the chain complex

M −→ Map(H, M) −→ Map(H ×H, M) −→ Map(H ×H ×H, M) −→ . . . .

On the level of this chain complex ∂(λ̃) is given by a representative λ :

H×H −→ Z defined in the following manner. Write λ̃(h) = e2π
√
−1x(h) where

x(h) is a real number in the range 0 ≤ x(h) < 1. Lift λ to λ̂ : H −→ C such

that eλ̂(h) = λ̃(h) given by λ̂(h) = 2π
√
−1x(h). Therefore

d(λ̂) : H ×H −→ C
is given by

d(λ̂)(h1, h2) = λ̂(h2)− λ̂(h1h2) + λ̂(h1) = 2π
√
−1(x2 − [x1 + x2] + x1)

where [x1 + x2] = x1 + x2 if 0 ≤ x1 + x2 < 1 and [x1 + x2] = x1 + x2 − 1 if
1 ≤ x1 + x2 < 2. By definition

λ(h1, h2 = d(λ̂)(h1, h2)/2π
√
−1

so that

λ(h1, h2) =

 0 if 0 ≤ x1 + x2 < 1

1 if 1 ≤ x1 + x2 < 2.

Since the φ-action fixes λ̃ and hence also x1, x2 we see that it fixed λ(h1, h2),
too.

Since J acts on G/H there is a homomorphism φ 7→ Sφ ∈ Σm.
As an important special case we shall first study the case where the J-action

gives a permutation of the coset representatives i.e. φ(xi) = xSφ(i).
We have, as introduced earlier, gxi = xπG

H(g)(i)hi(g) and acting by φ yields

φ(g)xSφ(i) = xS(πG
H(g)(i))φ(hi(g)) = x(SπG

H(g)S−1)(S(i)))φ(hi(g)).

Setting Sφ(i) = j we have

φ(g)xj = x(SφπG
H(g)S−1

φ )(j))φ(hS−1
φ (j)(g)).

From ([14] §5) we have

Φx : GL2Fqn −→ Σm

∫
H

given by

Φx(g)) = (πG
H(g), h1(g), h2(g), . . . , hm(g)) ∈ Σm

∫
H

so that

Φx(φ(g)) = (Sφπ
G
H(g)S−1

φ , φ(hS−1
φ (1)(g)), . . . , φ(hS−1

φ (m)(g))) ∈ Σm

∫
H.

Multiplication in the semi-direct product is given by

(σ, h1, . . . , hn) · (σ′, h′1, . . . , h′n) = (σσ′, hσ′(1)h
′
1, hσ′(2)h

′
2, . . .)
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so that

(Sφ, 1, . . .) · (πG
H(g), φ(h1(g)), . . . , φ(hm(g))) · (S−1

φ , 1, . . .)

= (Sφ, 1, . . .) · (πG
H(g)S−1

φ , φ(hS−1
φ (1)(g)), . . . , φ(hS−1

φ (m)(g)))

= (Sφπ
G
H(g)S−1

φ , φ(hS−1
φ (1)(g)), . . . , φ(hS−1

φ (m)(g))).

Therefore Φxextends to a homomorphism on the of semi-direct product
with J , also denoted by Φx,

Φx : J ∝ G −→ Σm

∫
H

given by φ 7→ Sφ. Here the multiplication in J ∝ G is given by

(φ, g)(φ′, g′) = (φφ′, gφ(g′)).

On the inhomogeneous bar resolution in dimension four Φx maps

g0[g1|g2|g3|g4]

to, temporarily denoting πG
H simply by π,

(π(g0), h1(g0), ...)[(π(g1), h1(g1), ...)|(π(g2), h1(g2), ...)|
(π(g3), h1(g3), ...)|(π(g4), h1(g4), ...)]

so that in the notation for the 4-cocycle c̃4 we have

σ̂ = π(g0), σ = π(g1), σ′ = π(g2), σ
′′ = π(g3), σ

′′′ = π(g4)

and

ĥi = hi(g0), hi = hi(g1), h′i = hi(g2), h′′i = hi(g3), h′′′i = hi(g4).

For the 4-cycle which starts by sending g0[g1|g2|g3|g4] to

(π(g0), h1(φ(g0)), ...)[(π(g1), h1(φ(g1)), ...)|(π(g2), h1(φ(g2)), ...) . . .]

we have

σ̂ = π(g0), σ = π(g1), σ′ = π(g2), σ′′ = π(g3), σ′′′ = π(g4)

and
ĥi(g0) = hi(φ(g0)), hi(g1) = hi(φ(g1)), h′i(g2) = hi(φ(g2)),

h′′i (g3) = hi(φ(g3)), h′′′i (g4) = hi(φ(g4)).

From the formula, introduced earlier, defining the 4-cocycle

c̃4 ∈ HomZ[Σm
R

H](B4Σm

∫
H, Z)

sending the 4-chain (σ̂, σ, σ′, σ′′, σ′′′ ∈ Σn and ĥj, hj, h
′
j.h

′′
j , h

′′′
j ∈ H)

z = (σ̂, ĥ1, . . . )[(σ, h1, . . . )|(σ′, h′1, . . . )|(σ′′, h′′1, . . .)|(σ′′′, h′′′1 , . . . )]
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to

c̃4(z) =
∑

1≤i6=j≤m

λ[hσ−1(i)|h′(σσ′)−1(i)] · λ[h′′(σσ′σ′′)−1(j)|h′′′(σσ′σ′′σ′′′)−1(j)].

The two 4-chains

(σ̂, ĥ)[(σ, h)|(σ′, h′)|(σ′′, h′′)|(σ′′′, h′′′)]
introduced above differ only in the fact that φ has been applied to the h’s. If
the 2-cocycle λ is fixed by φ then c̃4 agrees on these two 4-chains.

Therefore, for g ∈ G,

c̃4(Φx(φ(g0))[Φx(φ(g1)) . . .]) = (S − S−1)∗c̃4(Φx(g0)[Φx(g1) . . .]).

Hence the 4-cocycle on G extends to the semi-direct product J ∝ G by
sending the action of φ to (Sφ − S−1

φ ).
The above discussion establishes the following result:

Theorem 2.1.
Let J be a finite group acting on the left of the finite group G and preserving

the subgroup H ⊆ G. Suppose that there exists a set of coset representatives
for G/H which are permuted by the J-action. Let λ ∈ HomZ[H](B2H, Z) be
a J-fixed 2-cocycle defined on the inhomogeneous bar resolution, where all
groups act trivially on Z. Then the 4-cocycle, which was introduced above,

Φ∗
xc̃4 ∈ HomZ[G](B4G, Z)

extends to a 4-cocycle in the bar resolution of the semi-direct product J ∝ G,
by the explicit formula given above.

In Theorem 2.1 we considered the special situation where the homomor-
phism φ 7→ Sφ could be realised by the action of φ permuting the coset
representatives of G/H. Now we compare this with the general situation in
which all we know is that φ permutes the cosets G/H.

Since φ∗(λ̃) = λ̃ for all φ ∈ J we may extend λ̃ on the semi-direct product

to give a homomorphism, also denoted by λ̃,

λ̃ : J ∝ H −→ C∗

given by λ̃(φ, h) = λ̃(h).

Therefore we have an induced representation IndJ∝G
J∝H(λ̂) whose associated

c̃4 we shall calculate. The cosets satisfy

J ∝ G/J ∝ H = {(1, xi)J ∝ H |1 ≤ i ≤ m}
where the xi ∈ G are the coset representatives for G/H.

Therefore gxi = xπG
H(i)hi(g) with g ∈ G and hi(g) ∈ H. We also have

φ(1, xi) = (1, xSφ(i))(ji
(φ), hi(φ)) with φ ∈ J and (j

i
(φ), hi(φ)) ∈ J ∝ H.

Here S : J −→ Σm is a homomorphism.
Since, in the semi-direct product J ∝ G, we have

(φ, 1)(1, g) = (φ, φ(g)) = (1, φ(g))(1, φ)
6



so that

Sφ · πG
H(g) = πG

H(φ(g)) · Sφ ∈ Σm.

Therefore we have a homomorphism

Φx : J ∝ G −→ Σm

∫
(J ∝ H)

given by

Φx(1, g) = (πG
H(g), (1, h1(g)), (1, h2(g)), . . . , (1, hm(g))) ∈ Σm

∫
(J ∝ H)

and

Φx(1, φ
−1(g)) = (πG

H(φ−1(g)), (1, h1(φ
−1(g))), (1, h2(φ

−1(g))), . . . , (1, hm(φ−1(g))))

and

Φx(φ, 1)) = (Sφ, (j1
(φ), h1(φ)), . . . , (j

m
(φ), hm(φ))) ∈ Σm

∫
(J ∝ H).

Therefore

Φx(φ, g)

= Φx(φ, 1)Φx(1, φ
−1(g))

= (Sφ, (j1
(φ), h1(φ)), . . . , (j

m
(φ), hm(φ)))×

(πG
H(φ−1(g)), (1, h1(φ

−1(g))), (1, h2(φ
−1(g))), . . . , (1, hm(φ−1(g))))

= (Sφπ
G
H(φ−1(g)), (j

πG
H(φ−1(g))(1)

(φ), h(πG
H(φ−1(g))(1))h1(φ

−1(g))), . . . ,

. . . , (j
πG

H(φ−1(g))(m)
(φ), h(πG

H(φ−1(g))(m))hm(φ−1(g)))).

Starting in the inhomogenous bar resolution in dimension four with the
4-chain

(φ0, g0)[(φ1, g1)|(φ2, g2)|(φ3, g3)|(φ4, g4)]

we have, in the notation for the 4-cocycle c̃4 associated to IndJ∝G
J∝H(λ̂),

σ̂ = Sφ0π
G
H(φ−1

0 (g0)), σ = Sφ1π
G
H(φ−1

1 (g1)), σ
′ = Sφ2π

G
H(φ−1

2 (g2)),

σ′′ = Sφ3π
G
H(φ−1

3 (g3)), σ
′′′ = Sφ4π

G
H(φ−1

4 (g4))
7



and
ĥi = (j

πG
H(φ−1

0 (g0))(i)
(φ0), h(πG

H(φ−1
0 (g0))(i))hi(φ

−1
0 (g0))),

hi = (j
πG

H(φ−1
1 (g1))(i)

(φ1), h(πG
H(φ−1

1 (g1))(i))hi(φ
−1
1 (g1))),

h′i = (j
πG

H(φ−1
2 (g2))(i)

(φ2), h(πG
H(φ−1

2 (g2))(i))hi(φ
−1
2 (g2))),

h′′i = (j
πG

H(φ−1
3 (g3))(i)

(φ3), h(πG
H(φ−1

3 (g3))(i))hi(φ
−1
3 (g3))),

h′′′i = (j
πG

H(φ−1
4 (g4))(i)

(φ4), h(πG
H(φ−1

4 (g4))(i))hi(φ
−1
4 (g4))).

Theorem 2.2.
Let J be a finite group acting on the left of the finite group G and preserv-

ing the subgroup H ⊆ G. Let λ ∈ HomZ[H](B2H, Z) be a J-fixed 2-cocycle,

derived as the coboundary of the homomorphism λ̂, defined on the inho-
mogeneous bar resolution, where all groups act trivially on Z. Then the
4-cocycle, which was introduced above, associated to the induced representa-
tion IndJ∝G

J∝H(λ̂),

Φ∗
xc̃4 ∈ HomZ[G](B4J ∝ G, Z)

is a 4-cocycle in the bar resolution of the semi-direct product J ∝ G, given
by the explicit formula for c̃4 using the parameter-values

σ̂, σ, σ′, σ′′, σ′′′, ĥi, hi, h
′
i, h

′′
i , h

′′′
i

listed immediately above.

The following result is clear from the formulae.

Corollary 2.3.
The 4-cocycles of Theorem 2.1 and Theorem 2.2 coincide in the special case

of Theorem 2.1.

3. Irr(GL2Fq)

In the [12] Chapter Three) the irreducible Weil representation r(Θ) is con-
structed from a character Θ : F∗q2 −→ C∗ which is not fixed by the Frobenius

of Fq2/Fq. I shall recall other constructions of r(Θ) in an Appendix. Before
proceeding further, we shall now construct the remaining irreducible repre-
sentations of GL2Fq.

Suppose that we are given characters of the form

χ, χ1, χ2 : F ∗
q −→ C∗

then we clearly have a one-dimensional representation, L(χ), given by

L(χ) = χ · det : GL2Fq
det−→ F ∗

q

χ−→ C∗.
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If χ1 and χ2 are distinct define

InfB
T (χ1 ⊗ χ2) : B −→ C∗

by inflating χ1 ⊗ χ2 from the diagonal torus, T , to the Borel subgroup, B, of
upper triangular matrices. That is

InfB
T (χ1 ⊗ χ2)(

(
α β
0 δ

)
) = χ1(α)χ2(δ).

Define a (q + 1)-dimensional representation, R(χ1, χ2), by

R(χ1, χ2) = Ind
GL2Fq

B (InfB
T (χ1 ⊗ χ2)).

When χ = χ1 = χ2 we have

InfB
T (χ⊗ χ) = Res

GL2Fq

B (L(χ)) : B −→ C∗

so that there is a canonical surjection of the form

Ind
GL2Fq

B (InfB
T (χ⊗ χ)) −→ Ind

GL2Fq

GL2Fq
(L(χ)) = L(χ).

Therefore we may define a q-dimensional representation, S(χ), by means
of the following split short exact sequence of representations

0 −→ S(χ) −→ Ind
GL2Fq

B (InfB
T (χ⊗ χ)) −→ L(χ) −→ 0.

Theorem 3.1. ([12] Theorem 3.2.4) A complete list of all the irreducible
representations of GL2Fq is given by

(i) L(χ) for χ : F ∗
q −→ C∗,

(ii) S(χ) for χ : F ∗
q −→ C∗,

(iii) R(χ1, χ2) = R(χ2, χ1) for any pair of distinct characters

χ1, χ2 : F ∗
q −→ C∗

and
(iv) r(Θ) = r(F ∗(Θ)) for any character Θ : F ∗

q2 −→ C∗ which is distinct

from its Frobenius conjugate, F ∗(Θ).

4. Shintani base change

4.1. Let Σ ∈ Gal(Fqm/Fq) denote the Frobenius automorphism. Let us recall
the main result of [10] which, for our notation used in [13] for the semi-direct
product, is stated in the following form:

Theorem 4.2. ([10] Theorem 1; see also Lemmas 2.7 and 2.11)
(i) Let ρ be a finite-dimensional complex irreducible representation of

GLnFq. Then there exists an irreducible representation ρ̃ of the semi-direct
product Gal(Fqm/Fq) ∝ GLnFqm which satisfies, for all g ∈ GLnFqm ,

χρ̃(Σ, g) = εχρ([gΣ(g) . . . Σm−1(g)])

where ε = ±1 is independent of g. Here [gΣ(g) . . . Σm−1(g)] denotes the
unique conjugacy class in GLnFq given by the intersection of the conjugacy
class of gΣ(g) . . . Σm−1(g) in GLnFqm with GLnFq.
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(ii) The Shintani base change correspondence (see [13] Appendix I, §4),
which is a bijection,

Sh : Irr(GLnFqm)Gal(Fqm/Fq) ∼=−→ Irr(GLnFq)

is given by, in the case where ε may be chosen to equal 1 in part (i),

Sh(Res
Gal(Fqm/Fq)∝GLnFqm

GLnFqm
(ρ̃)) = ρ.

When ε = −1 is the only possibility there is an extension, denoted by ρ′, of
ρ to Gal(Fq2m/Fq) ∝ GLnFqm and

χρ′(Σ, g) = χρ([gΣ(g) . . . Σm−1(g)])

specifies χ(ρ) in this case.

In this Theorem χρ denotes the character function of ρ. In part (ii) of
the theorem it should be noted that ρ̃ is an irreducible of the first kind be-
cause the χρ̃(Σ, g)’s are not identically zero ([10] Lemma 1.1(i)) and therefore

Res
Gal(Fqm/Fq)∝GLnFqm

GLnFqm
(ρ̃) is an irreducible representation.

Given ρ̃ as in part (i) of the theorem write ρ̃(z, 1) = Xz for z ∈ Gal(Fqm/Fq)
and ρ̃(1, g) = ρ̂(g) for g ∈ GLnFqm . Since (1, g)(z, 1) = (z, g) we have

Xzρ̂(g) = ρ̂(z(g))Xz

so that χρ̃(Σ, g) = Trace(ρ̃(1, g)XΣ) (see [10] Theorem 1)2.
For ρ̃ and ρ̂ as in Theorem 4.2 the matrix XΣ will satisfy Xm

Σ = 1. How-
ever, as mentioned in the statement of ([10] Theorem 1), for a general Galois
invariant ρ̂ there exists a choice satisfying Xm

Σ = ±1. When Xm
Σ = 1 the

extension ρ̃ of ρ̂ may be constructed as in Theorem 4.2 but when Xm
Σ = −1

the extension of ρ̂ must be a representation of Gal(Fq2m/Fq) ∝ GLnFqm .
Given a choice of ρ̂ the irreducible extension ρ̃ to the semi-direct product,

which we may take to be Gal(Fq2m/Fq) ∝ GLnFqm in general, is unique up to
twists by Galois characters.

5. Examples of Shintani base change and c2

Example 5.1.
Suppose that r(Θ) ∈ Irr(GL2Fqn)Gal(Fqn/Fq) so that Θ : F∗q2n −→ C∗ and

F (Θ) 6= Θ where F ∈ Gal(Fq2n/Fqn) is the Frobenius. Since r(Θ) is Galois
invariant we have ([12] p.102)

Σ(Res
F∗

q2n

F∗qn
(Θ)) = Res

F∗
q2n

F∗qn
(Θ)

where Σ ∈ Gal(Fqn/Fq) is the Frobenius. Therefore there is a unique character

Θ̃ : F∗q −→ C∗ such that for all z ∈ F∗qn

Θ(z) = Θ̃(N(z))

2The formula of [10] differs from mine because we have used different formulae for the
multiplication in a semi-direct product.
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where N : F∗qn −→ F∗q is the norm. Since Gal(Fq2n/Fq) ∼= Z/2n we shall
denote the Frobenius in this group by Σ also. Since Σ(Θ) and Θ must be
distinct on F∗q2n we must have Σ(Θ) = F (Θ) = Σn(Θ) and so Σn−1(Θ) = Θ.

Since 〈Σn−1〉 must be a proper subgroup of 〈Σ〉 we see that n must be off and

Z/n ∼= 〈Σn−1〉 = Gal(Fq2n/Fq2).

Therefore there exists a unique Θ : F∗q2 −→ C∗ such that Θ(w) = Θ(N(w))

for all w ∈ F∗q2n . If z ∈ F∗q and s ∈ F∗qn satisfy N(s) = z one finds that

Θ(z) = Θ̃(s) ([12] p.102).
Shintani base change in this case satisfies

Sh(r(Θ)) = r(Θ).

From the short exact sequence of Theorem 6.1 the second Chern class of
r(Θ) is given by

c2(r(Θ)) = c2(Ind
GL2Fqn

HFqn
(Θ⊗Ψ))− c2(Ind

GL2Fqn

F∗
q2n

(Θ))

−c1(r(Θ))
⋃

c1(Ind
GL2Fqn

F∗
q2n

(Θ))

where, by the discussion of §1, we have

c2(Ind
GL2Fqn

HFqn
(Θ⊗Ψ)) = Φ∗[c̃4,1] + c1(Ind

GL2Fqn

HFqn
(1)) · Trace

GL2Fqn

HFqn
(λ1)

+c2(Ind
GL2Fqn

HFqn
(1))

where Φ∗[c̃4,1] is the appropriate 4-cocycle introduced in §2 and λ1 is the 1-
dimensional cohomology class given by the character Θ ⊗ Ψ. Similarly we
have

c2(Ind
GL2Fqn

F∗
q2n

(Θ)) = Φ∗[c̃4,2] + c1(Ind
GL2Fqn

F∗
q2n

(1)) · Trace
GL2Fqn

F∗
q2n

(λ2)

+c2(Ind
GL2Fqn

F∗
q2n

(1)).

Shintani base change of r(Θ) is r(Θ) whose second Chern class is given by

c2(r(Θ)) = c2(Ind
GL2Fq

HFq
(Θ⊗Ψ))− c2(Ind

GL2Fq

F∗
q2

(Θ))

−c1(r(Θ))
⋃

c1(Ind
GL2Fq

F∗
q2

(Θ))

where, by the discussion of §1, we have

c2(Ind
GL2Fq

HFq
(Θ⊗Ψ)) = Φ∗[c̃4,3] + c1(Ind

GL2Fq

HFq
(1)) · Trace

GL2Fq

HFq
(λ3)

+c2(Ind
GL2Fq

HFq
(1))
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where Φ∗[c̃4,3] is the appropriate 4-cocycle introduced in §2 and λ3 is the 1-
dimensional cohomology class given by the character Θ ⊗ Ψ. Similarly we
have

c2(Ind
GL2Fq

F∗
q2

(Θ)) = Φ∗[c̃4,4] + c1(Ind
GL2Fq

F∗
q2

(1)) · Trace
GL2Fq

F∗
q2

(λ4)

+c2(Ind
GL2Fq

F∗
q2

(1)).

The above formulae show how one may extract the ingredients for c2(r(Θ))
from those of the formula for c2(r(Θ)). Since H1(Gal(Fqn/Fq); S) is trivial for
S = F∗q2n , HFqn , GL2Fqn the Galois invariants of G/H for any suitable pair of
these is the coset space of the Galois invariants of G and H. This implies that
Φ∗ in Φ∗[c̃4,3] and Φ∗[c̃4,4] is given by the action of the Galois-fixed points of
the coset space used to derive Φ∗[c̃4,1] and Φ∗[c̃4,2] respectively. Similarly the
characters λ3 and λ4 are the unique ones which, composed with the norm,
give λ1 and λ2 respectively.

Example 5.2.
Suppose that R(χ1, χ2) ∈ Irr(GL2Fqn)Gal(Fqn/Fq) but that χi is not Galois

invariant. In this case Σ(χ1) = χ2 and Σ(χ2) = χ1, where Σ ∈ Gal(Fqn/Fq)
is the Frobenius automorphism. Therefore we have a quadratic character

Gal(Fqn/Fq) ∼= Z/n −→ {±1}

given by the Galois permutation of {χ1, χ2}. Write n = 2d then Σ2(χi) = χ1

and there exist characters

χ1, χ2 : F∗q2 −→ C∗

such that χi(z) = χi(N(z)) for z ∈ F∗qn and N is the norm

N : F∗qn −→ F∗q2 .

If F ∈ Gal(Fq2/Fq) then F (χ1) = χ2 and F (χ2) = χ1 and there exists

χ1,2 : F∗q −→ C∗

such that χ1(z)χ2(z) = χ1,2(N(z)) for z ∈ F∗qn . Also the restriction of χ1 or
χ2 to F∗q is equal to χ1,2( [12] p.100).

The Shintani base change in this example is given by

Sh(R(χ1, χ2)) = r(χ1) = r(χ2).

The second Chern class of R(χ1, χ2) is given by

c2(R(χ1, χ2)) = Φ∗[c̃4,5] + c1(Ind
GL2Fqn

BFqn
(1))

⋃
Trace

GL2Fqn

BFqn
(λ5)

+c2(Ind
GL2Fqn

BFqn
(1))

12



where Φ∗[c̃4,5] is the appropriate 4-cocycle introduced in §2 and λ5 is the
1-dimensional cohomology class given by the character

χ1 ⊗ χ2 : BFqn −→ F∗qn × F∗qn −→ C∗.

The Shintani base change of R(χ1, χ2) is r(χ1) = r(χ2), whose second
Chern class is given, for i = 1 or i = 2, by

c2(r(χi)) = c2(Ind
GL2Fq

HFq
(χi ⊗Ψ))− c2(Ind

GL2Fq

F∗
q2

(χi))

−c1(r(χi))
⋃

c1(Ind
GL2Fq

F∗
q2

(χi)).

By the discussion of §1 the first two terms in this expression are given by

c2(Ind
GL2Fq

HFq
(χi ⊗Ψ)) = Φ∗[c̃4,6] + c1(Ind

GL2Fq

HFq
(1)) · Trace

GL2Fq

HFq
(λ6)

+c2(Ind
GL2Fq

HFq
(1))

where Φ∗[c̃4,6] is the appropriate 4-cocycle introduced in §2 and λ6 is the
1-dimensional cohomology class given by the character χi and similarly

c2(Ind
GL2Fq

F∗
q2

(χi)) = Φ∗[c̃4,7] + c1(Ind
GL2Fq

F∗
q2

(1)) · Trace
GL2Fq

F∗
q2

(λ7)

+c2(Ind
GL2Fq

F∗
q2

(1)).

Remark 5.3.
In these simple examples of Shintani base change it is plain to see how the

data in the formula for the second Chern class of Sh(ρ) is determined by the
data in the formula for the second Chern class of ρ and vice versa.

The story is similar if one replaces the finite field by a non-Archimedean lo-
cal field in the base change for admissible irreducible complex representations
in the case of GL2.

It would be interesting to see examples of a similar relationship for other
GLn base change examples.

6. Appendix: Weil representations for GL2Fq and monomial
resolutions

Using the notation of ([12] Chapter Three), let r(Θ) denote the Weil rep-
resentation of GL2Fq associated to the character Θ : F∗q2 −→ C∗ such that

F (Θ) 6= Θ.
From ([12] Chapter Three) we know that the natural representation of the

Borel subgroup IndB
H(Θ⊗Ψ) extends to a GL2Fq-action to give r(Θ). Hence

we have

Ind
GL2Fq

H (Θ⊗Ψ) = Ind
GL2Fq

B r(Θ) −→ r(Θ)

by sending g ⊗B w to g · w. This is clearly surjective.
13



The following result is easily proved using the conjugacy class data and
character values given in ([12] Chapter Three). After verifying the character
value calculation just mentioned and after working out a different proof, which
proceeds to prove exactness directly, I chanced to spot this result in ([2] p.47).

The direct proof uses a careful examination of maps in the Double Coset
Formula [12], which is fun but more tricky than we need here. I leave it as
an exercise for the reader!

Theorem 6.1.
There is a short exact sequence of GL2Fq-representations

0 −→ Ind
GL2Fq

F∗
q2

(Θ) −→ Ind
GL2Fq

H (Θ⊗Ψ) −→ r(Θ) −→ 0.
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