GAMES FOR AS FEW AS WILL

VICTOR SNAITH

A strategy, to a game theorist, is a step-by-step recipe for getting the best
outcome for oneself out of the confronting situation. This situation must
have a precisely described bunch of rules. These sorts of problems are fun for
certain types of people, hence the “game” in Game Theory. School teachers
sometimes like to entertain their students with strategical puzzles. A favourite
of the classroom is the situation in which you are at a T-junction walking to
London and you do not know which direction to turn. You see two people
there, a few metres away, one on the easterly road and one on the westerly.
You have been told about this pair. One always tells the truth and the other
always lies but you do not know which is which. Also the rules allow you
only one question, askable to either, to ascertain the correct route to London.
What do you ask? A strategy for this “game” consists of finding a question
which will always work. This is a tricky puzzle and after ten minutes of
suggestions the schoolteacher delights in revealing: “If I were to ask the way
to London of the other person, what would he answer?” The trick of the
trade here is to come up with something involving both people and which
will always give the same answer. The teachers’ question in this case will
result in each person pointing away from London and the strategy will then
be to disregard the advice!

Another strategical example appeared during the 1990’s in the newspaper
column “Ask Marilyn”, written by Marilyn Vos-Savant, an American jour-
nalist billed as the person with the highest 1Q ever recorded (228 on the
Stanford-Binet scale - beat that!). It features two goats and a car and made
the headlines because of the hue and cry following Marilyn’s (perfectly cor-
rect) answer. Thousands of, presumably chauvinistically male, mathematics
professors protested that Ms Vos-Savant was wrong. In each of three sheds,
entirely at random, have been placed one of three things - two cantankerous
goats and one gleaming, brand-new Ferrari. This occurs in a TV show and
you are invited by the presenter to choose a shed after which you will be given
free of charge whatever is therein. This strategical problem appeared in an
American newspaper so the presumption was that a new Ferrari is preferable
to a malodourous goat! Once you have chosen the presenter opens a shed,
different from the one you chose, to reveal a goat and gives you the option to
stick-with your original choice or change it to the-othershed-which was not
opened. Ms Vos-Savant advised the counter-intuitive strategy of changing
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your choice. In North America, unbeknownst to the rest of the world, the
fuss over this article raged back and forth for weeks: Were the goats indistin-
guishable? Were the sheds locked? Are we talking Bayesian statistics? Who
cares anyway? The table below shows all the ways of distributing two goats
(all goats look the same except to environmentalists) and a car.

Case| Shed1 | Shed2 | Shed 3
A Goat Goat | Ferrari
B Goat | Ferrari| Goat
C | Ferrari| Goat Goat

Each of case A,B or C is equally likely so when you are given your first choice
you have one chance in three of winning the car. However once you know
that the presenter is going to open a goat shed the following (different) table
shows all the possibilities. From which you can see that if you change your
choice you will win the Ferrari six times out of twelve so the odds of a win
are one in two, which is better than one in three. The point is that the game
of making one choice versus the game of choosing and later having the option
to switch are two different games with different odds. The strategy of making
a choice and then switching has better odds than the game with no switch
option. The same is true of the strategy of making a choice and then sticking
with it.

Your first choice | Shed opened | Shed containing car
Shed 1 Shed 2 Shed 1
Shed 1 Shed 2 Shed 3
Shed 1 Shed 3 Shed 1
Shed 1 Shed 3 Shed 2
Shed 2 Shed 1 Shed 2
Shed 2 Shed 1 Shed 3
Shed 2 Shed 3 Shed 2
Shed 2 Shed 3 Shed 1
Shed 3 Shed 2 Shed 3
Shed 3 Shed 2 Shed 1
Shed 3 Shed 1 Shed 3
Shed 3 Shed 1 Shed 2

Another common source of strategy problems is chess. For those who like
chess problems the following diagram shows White pieces in capital letters
and Black ones in lower case. The problem is to find a strategy for White,

playing up the board, to checkmate Black in two moves. Those who do not
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like chess can skip ahead!!

A|B|C|D|E|F|G|H
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This puzzle came from the 2009-10 British Chess Problem Solving Champi-

onship. The strategy is given later in a footnote, just in case you prefer to
solve it for vourself. It consists of White’s first move and a choice of several
second moves according to what Black does with his move.

Now let us turn our attention to strategy problems involving two or more
participants.

A husband and wife, Ray and Dotty, are planning a camping trip. The
mountainous region they are planning to visit is criss-crossed by four East-
West trails and four North-South trails with a campsite at each junction of an
East-West route with a North-South one. It is agreed that Ray will choose an
East-West route and Dotty will choose a North-South one, in order to select
their campsite at the intersection of their chosen routes.

Ray likes camping at high altitudes and Dotty prefers low altitudes. How
are they to choose? It may help to know a little more data. In the following
grid the numbers represent altitudes in thousands of feet. Each row lays out in
order, from West to East corresponding to from left to right, the altitudes at
the intersections on the routes which Ray has to choose from and each column
does the same for Dotty’s four routes, from North to South corresponding to
from top to bottom (see the picture of the mountains).

The solution to the checkmate in two problem:
1. N-d4 threatens 2. R - ed ++

-——————Refutations of Black's move: - e e
1. ... Qx4 2. Rxe2++ 1. ... Nxf4 2 N-B++

1. ... Kxf4 2. B-h6++ 1. ... Q-5 2. Q x e5++
1. ... Pxf3 2

. R x f3++ No other Black move can stop the threat e.g. N x el.
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Does this data help?

What is Ray thinking? At once he sees that where he would really like to
camp is at seven thousand feet on his route number one. However, if he goes
for route number one then Dotty would choose her route number four - if she
were allowed to choose second — and they would camp at a mere one thousand
feet. On the other hand, if Dotty chose first she would prefer her route four
and then Ray, if allowed to go second, would choose his route number four
and they would camp at six thousand feet.

This suggests, correctly, that choosing first would be a disadvantage. For
this reason Ray and Dottie agree to choose simultaneously, with no cheating.

Now what? Is Ray still going to go for route one and Dotty for route
four? If Ray goes for route one he realises that he is risking camping at one
thousand feet, choosing route two risks two thousand, route three risks three
thousand and route four risks one thousand.

So? If Ray is a risk-taker he might still go for route one, but if he is as
cautious as the rest of us he will go for route three because it minimises the
risk. That is, cautious Ray would like to settle for route three — because it
is the route with the maximal minimum altitude for a campsite. Similarly
cautious Dotty will settle for the route with the minimal maximum campsite
altitude. For Dotty the maximum altitude for route one is seven thousand
feet, route two is three thousand, route three is five thousand and route four
is six thousand. Therefore Dotty’s minimal maximum is on route two.

As it happens in this example, if Ray chooses route three and Dotty chooses
route two then they will camp at three thousand feet. These choices are
very fortunate because it simultaneously gives Ray’s maximal minimum and
Dotty’s minimal maximum. This is a fluke!

When such a coincidence happens the intersection of the row and column
is called a saddle point. This phenomenon gets its name because the seat of
a saddle goes up at the front and back and down in both lateral directions.
From the saddle point on Ray’s route three the campsite altitude goes up in
both directions, while from the saddle on Dotty’s route two it goes down in
both directions. So far then:

Moral: For happy campers search for a saddle, where the minimal column
maximum and maximal row minimum coincide.
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The bad news is that saddles rarely exist, so we shall have to find a more
general strategy for choosing. However, before leaving the saddle, observe
that Ray and Dotty would still come to the same choice of routes if we had
measured altitudes as distances above one thousand feet rather than from sea
level — after all the mountains are the same.

Dotty
1121314
1(6[1(4]0
Ray 21111(12]13
314121313
41211]01[5

In fact, Ray and Dotty would come to the same choice if we added (or
subtracted) the same quantity from each entry, as in the following examples.

Dotty
TT2(3]4)]
113012512824
Ray 2125(25(26]|27
3(28]26(27)|27
4(26]25|24|29

Dotty
[ 1|12]3]| 4
1 4 -1 2 (-2
Ray 21 -1|-11 0} 1
320 1]1
41 0 [-1{-2| 3

Another observation is that Ray and Dotty would have made the same
choice if the altitudes has been measured in hundreds of feet instead of thou-
sands.

5



Dotty

[T1]2[3]4
702050 | 10
20| 20 | 30 | 40
50 | 30 | 40 | 40
30|20]10] 60
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In fact the same is true if the mountains are all three times higher, seventeen
times higher or, more generally, if all the numbers in the grid are multiplied
by the same positive number.

Dotty
[ T1[2[3[4]
[1][21]6]15] 3
Ray 266912
315(9[12]12
4]l9 (6] 3]18

Dotty
12134
1113511025 5
Ray 2110101520
3]25]15({20]20
4{15]10) 5 | 30

Now let us return to the rarity of the existence of a saddle. A couple of
slightly different grids are the following, neither has a saddle.

In the first example Dotty would like column two and Ray wants row three
which intersect in 6 which is what Ray expects but not Dotty.

Dotty
1[2[3] 4
1 8]3]2] 2
Ray [2]2(7]2]5
3f12[6]9[12
a2 [5(2[8

In the second example Dotty would like column two and Ray wants row

two which intersect in 7 which is what Dotty expects but not Ray.
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Dotty

(Ti12]3 4
18[2[12]2
Ray [2[3]7]6]5
321219 |2
1]2]5]12]8

To proceed let us restrict ourselves to the smallest possible situation, which
is still interesting. If each of Dotty and Ray have only one option the question
of choosing a good strategy does not arise. Therefore we shall consider the
following picture in which a, b, ¢, d are four numbers and Ray and Dotty have
two strategies each.

Dotty

Ray

0 E

o o—"w

(3] b—-"

This depicts what is called a two-by-two game. It is played as follows.
Simultaneously Dotty and Ray each choose one of the numbers 1 or 2. Then
Dotty gives to Ray the number of tokens (e.g. matchsticks, poker chips,
dollars, pounds, euros etc.) equal to the number lying in Dotty’s chosen
column and Ray’s chosen row. For example, if Dotty chooses 2 and Ray 1
then Dotty gives b tokens to Ray. If 4 is a negative number this is interpreted
to mean Ray gives Dotty (—b) tokens (e.g. 2 tokens from Ray to Dotty if

= -2).

As we shall see, the numbers may be such that no matter what strategy
they choose the game is biased towards one of the players. To compensate
for this we are going to work out an exchange of tokens, the same each time,
before each play so as to make the game unbiased in the long run. After all,
we do not want to run a crooked casino! To do the calculation now would be
to get ahead of ourselves so we shall postpone it while we discuss strategies.

To aid the discussion we shall write @ < b to mean that the number ¢ is
less than or equal to the number b (e.g. —3 < —4, —1 < 1). Suppose that a
saddle occurs, say, at b. We might as well assume this because we can always
renumber the rows and columns to arrange the saddle to appear in the upper
right (e.g. if ¢ is the saddle switch the rows and switch the columns, if a is
the saddle switch the columns and if it is d switch the rows). Since b is the
" minimal column maximum we must have d < b and since it is the maximal
row minimum we have b < a giving d < b < a. How big is ¢? No one knows!
The possibilities ared < b<a<c¢,d<b<c<a,d<c<b<aand
¢ < d < b < a, which all give a saddle at b. If b is a saddle and both players
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play the saddle strategy then Dotty gives b tokens to Ray at every play. To
make it fair Ray should give b tokens to Dotty before each play.

Therefore if both players follow the saddle strategy the fair game results in
no one wining anything. What happens if they abandon the saddle strategy?
If Dotty sticks to it but Ray does not they choose column two and row two
which intersect at d so Ray gives Dotty b tokens beforehand and then wins
back only d tokens, which for Ray is a net loss on the play. If Ray sticks to it
but Dotty does not they choose column one and row one which intersect at a
so Ray gives Dotty b tokens beforehand and then wins back a tokens, which
for Dotty is a net loss on the play. If they both abandon the saddle strategy
then Ray gives Dotty b tokens beforehand and then wins back ¢ tokens, for
which the profit depends on the value of c.

Let us consider a couple of numerical examples, remembering that Ray
likes the row in which the minimum is maximal and Dotty likes the column
where the maximum is minimal. For example in the following game

Dotty

| O o

HE
Ray 16
215

Ray is happy with the top row (where the minimum is 5) and Dotty is happy
with the right-hand column (where the maximum is 5). Therefore we have
found a saddle. If Ray and Dotty choose it each time they play the game
then Dotty contentedly pays Ray five pounds. As it stands this “game” is
unfair to Dotty but we can fix that if we arrange that before each play Ray
gives Dotty five pounds. It is now a fair game. If each player goes for the
saddle strategy they will not lose but if they want to gamble they can choose
differently on some of the plays.

The next example does not have a saddle. Here Ray would like to choose

Dotty

1/2]
Ray 11136
2|54

the bottom row (where the minimum is 4) and Dotty prefers the left-hand
column (where the maximum is 5), which is not a saddle since the intersec-
tion of their preferences does not give the payouts which each expects. The
intersection of these is 5, which more than satisfies Ray but after a couple
of plays Dotty would notice that Ray’s payout was greater than he expected

and she would switch to choosing the right-hand column. Then Ray would
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see an opportunity and switch rows etc etc. The nett result would be chaotic
strategies or. equivalently, no strategy at all.

What are we to do when there is no saddle? An obvious suggestion would
be for each player sometimes to make one choice and sometimes the other in
a random manner. For example, according to the outcome of tossing a coin.
This leads to the notion of a mixed strategy, which was mathematicised in
the pioneering book on game theory by Morgenstern and von Neumann [1].
Let us return to the general two person game.

Dotty

Ray

ols]f~

wo |l
Q. c-“ [

Suppose that Ray has a gadget which randomly tells him which row to
choose in such a way that over a long run of /V games the number of choices is
on average oN top rows and (1—a) N bottom rows for some number o between
0 and 1. For example, an unbiased coin toss would give & = 1/2. If Dotty
always chooses the left-hand column Ray’s pay off would be aNa+(1—-a)Nc
while if she chooses the right-hand it would be aNb+ (1 —a)Nd. From Ray’s
point of view these numbers had better be equal because if not, Dotty could
play consistly in the column giving the smaller value. This means that Ray
would like

aa+(l-a)c=ab+(1—-a)d
or equivalently
ala—b) =(1-a)(d-c).

This means that Ray can calculate what he would like o to be from the
equalities of ratios

top row : bottomrow = : (1 —a)=(d—c) : (a—b).

Since both o and 1 — o are positive numbers less than or equal to one we can
only solve this ratio condition if eitherc < dandb<aord < canda < b.
That is, we must have d — ¢ and a — b either both positive or both negative -
because the ratios x : y and —z : —y are equal.

If Dotty has a similarly random gadget we obtain the following condition.
If Ray always chooses the top row Dotty’s payoff would be N fa + N(1 - 8)b
and if he chooses the lower row if would be NGBc+ N(1 — 8)d so Dotty would
like to find a number 8 between 0 and 1 satisfying

Bla-e)=(1=8)(d-b). ' T
This leads to the ratio condition

left column : right column=48:(1-8)=(d-=b):(a—c).
9



We can only solve this for 3 between 0 and 1 providing that either b < d and
cL<aord<banda<ec

In the above calculations the condition that we can solve for both numbers
0 £ a,8 £ 1 is equivalent to one of the following four cases:

ILa<bd<ca<ed<d

Le<bd<ce<a b d
I: b<a,c<d,a<ec,d<b
IV:b<a,c<d,c<a,b<d

The recipe for a and § appears without the mathematical explanation in
([3] pp.40-41) where a quick way to decide whether we are in one of cases I-IV
or not is given. One subtracts the numbers in the top row from the numbers

below in the bottom row to give a pair of numbers, called the row oddment
in 3]?

row oddment c—ald-b

and one subtracts the numbers in column 1 from those in column 2 to give
the column oddment

:b—a'

column oddment .
_ d—c

One of cases I-IV occurs precisely when the row and column oddments each
consist of one positive and one negative number. By the way, one can subtract
the rows in the opposite order to give

a—cl|lb-d

and the test will still work. (The same is true for columns). Incidentally, let
us agree that if either oddment consists of two zeroes then the game fails the
test. We shall also agree that an oddment consisting of zero and a non-zero
number like either

0o o« [

passes the test.

Let us suppose that the game passes the oddment test. The game as it
stands, with Dotty paying Ray after each play, is clearly biased. We would
like to modify the play to make it into a fair game.

What can we possibly mean by a fair game? If Ray finds a so that aa +
(1-a)c=ab+(1—a)d, he expects in N games to receive Naa+ N(1 —a)c
from Dotty. On the other hand, having found 3 such that 8a + (1 — 3)b =
Be+(1—B)d, Dotty expects to pay NBa+ N(1— )b to Ray. If aa+(1—a)c
is not equal to Ba + (1 — B)b then Ray and Dotty will not be able to agree

2The bottom line of ([3] p.40) is not correct. It states that every two by two game will

pass the oddment test. As we shall see, this is false. What is true is that only when the

oddment test works can the game be made into a fair game by the mixed strategy method.
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about how to make a fair game. But if aa + (1 — a)c = 3a + (1 — 3)b then
they can make the game fair by Ray giving aa + (1 — a)c to Dotty before
each play.

A little algebra shows that a(a—b—c+d) =d—cand f(a—b—c+d) = d—b.
If the game has passed the oddment test then a — b — ¢ + d is not zero and
one finds that Ray’s and Dotty’s calculations of the expected payoft are both
equal to —28=%_  In this case, each play of the fair game consists of Ray
giving ~4="%5 to Dotty and then each one simultaneously choosing one of
his/her two strategies and calculating the payoff, which Dotty pays to Ray.
If each player follows their calculated mixed strategy then, in the long run.
they will be quits. That’s fair!

In addition, the payoff will not be zero except in the case where the top
row is proportional to the bottom row (in which case the first column will be
proportional to the second and vice versa).

For convenience, let us record the mixed strategy programme for the game

Dotty

Ray

DE

o .—."
o c—-" o

Step 1: Check that the oddments

To—al
-d_c-

c—ald-»5 and

each consist of one negative and one positive number.
Step 2: Calculate

d—c¢ d—b
a_a—b—c—}-d and 'B—a—b—c-%-d'

Step 3: Calculate the expected average payofl per play from Dotty to Ray

ad — be
P_a—b—c+d'

Step 4: The fair game: at each play Ray pays Dotty P then they simul-
taneously -choose-a-strategy-and-Dotty pays Ray the amount (a,-b;, ¢ or d)
where their chosen strategies intersect.

Let us consider a couple of numerical examples to which the mixed strategy

method does not apply. For example, in the game
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Dotty

Ll1]2)
Ray 1 " 6]5]
2(15]4
the row oddment equals
5-6]d—5]=[-1]-1]

which fails and, not surprisingly. we cannot find « or 3 satisfying a(a —b—c+
d) =d-cand B(a—b—c+d) =d—bbecause a—b—c+d=6—-5-5+4 = 0.
The next numerical example is

Dotty

| /1]
Ray 1 “ g8l{6l
215]4
Herea—b—-c+d =8—-6—-5+4 =1, which is non-zero but the row oddment
is

2]
6]

N

5—8|4— 6= -

w

which fails. On the other hand, the 6 in row 1, column 2 is where Ray finds
the maximal row minimum and Dotty finds the minimum column maximum,
which means it is a saddle. As a labour saving plan, Ray and Dotty will
usually search first for a saddle strategy, since it is easier to apply. For
example, in this example, to make the game fair Ray pays Dotty 6 before
each play.

Unless some of the numbers a, b, c,d are equal there is no game for which
both the saddle strategy and the mixed strategy apply. For example, suppose
that there is a saddle at b in the game

Dotty

N
Ray [1]a]

2]

—

o o-"w

o|e

According to Ray b is the maximal row minimum so that & < a and
min(c,d) < b. According to Dotty b is the minimal column maximum so
that d < b and b < max(a,c). This means that d < b < a and we have one of
the cases:

(i) c<d<b<a
(i) d<c<b<a



(iii) d<b<c<a
(iv) d<b<a<ec

However the row oddment fails for (i)-(iii) and the column oddment fails
for (iv), unless some of the numbers are equal.

Before closing with a “real life” (!) example of a two by two game in action
let us briefly consider the general two person game. This may be depicted by
an array of numbers

Dotty
1 2 3 s |
1 ay a1 a2 Q13 B R T al g
2 asy asa Q93 [P A B P Qs ¢
Ray
t - ]. at-lyl az_l_'z a‘t—-l.B .- oo PP . e at—l_s
¢ Qt.1 a2 a3 NP RO B Qs s

In this game Ray has the choice of ¢ strategies, one for each row, and Dotty
has the choice of s strategies, one for each column. The play consists of each
simultaneously choosing a strategy and then Dotty pays Ray the amount
at the intersection of Dotty’s column and Ray’s row. One may attempt
to calculate how to turn this into a fair game using mixed strategies. For
example, Dotty would try to find numbers 1,19, ... ,Z; lying between 0 and
1 and adding up to 1 to be the frequencies with which some random machine
chooses columns 1,2.... , s respectively. She would like each of the sums

T10)) +~ T201 2+ ... + Tslys,

T1Q2) + TaG22 + ... T Tslag,

1831 + ToQro + . ..+ TsQy sy

to be equal. This amounts to what is known as a set of simultaneous lin-
ear equations. There is a similar set for Ray’s mixed strategy. To make the
game fair we would have to solve Dotty’s and Ray’s equations in a compat-
ible manner. It is hard enough just to solve the two sets of simultaneous

linear equations if s and ¢ are large. With the aid of a computer this may
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be accomplished using the Simplex Method in linear programming. Linear
programming was a technique discovered by Leonid Kantorovich, a Russian
mathematician in 1939. During World War II linear programming was fur-
ther developed as a method to plan expenditures and returns in order to
reduce costs to the army and increase losses to the enemy. It was also used
in order optimally to schedule submarine movements. The techniques were
kept secret until 1947 when George B. Dantzig, its inventor, published the
simplex method. The simplex method, with embellishments by many math-
ematicians including John von Neumann, remained the main technique for
solving sets of simultaneous linear equations or inequalities until 1984 when
Narendra Karmarkar introduced a new interior point method for solving lin-
ear programming problems.

Coming from a typical immigrant family of eastern european intellectuals,
in college George Dantzig was a very clever and industrious student. One
day, after arriving late to a lecture of Jerzy Neyman (famous for the Neyman-
Pearson test in statistics) George mistakenly took down, as the homework for
the day, two unsolved and long-standing problems in statistics. Then he went
home and solved the homework!

We shall conclude with two examples of which the first is taken from ([3]
pp. 47-48) and is depicted as follows

Red
HENER
Blue 1) 60 | 100 |
21100 80

The context concerns a Blue bombing mission involving Bomber 1 and
Bomber 2. The mission is apt to be attacked by a Red fighter, which makes
a one-pass attempt at shooting down one of the bombers. These bombers
fly in such a way that Bomber 1 derives considerably more protection from
the guns of Bomber 2 than the latter does from those of Bomber 1. The two
bombers are to carry only one bomb. Which plane should carry it?

Seeing the bombers in formation the pilot of the Red fighter can determine
which plane is better protected. He then has to choose between two strategies

Red 1: attack the less well protected bomber

Red 2: attack the more well protected bomber.
The two strategies of Blue concern where to put the bomb

Blue 1: bomb in the less well protected bomber

Blue 2: bomb in the more well protected bomber.
14



The numbers indicate, as a percentage, the probability that the bomb will
escape unscathed from the attack. If Red adopts strategy 1 it attacks Bomber
2 and if Blue adopts strategy 1 the bomb is in Bomber 2 and will escape 60
percent of the time. If Red adopts strategy 1 it attacks Bomber 2 and if Blue
adopts strategy 2 the bomb is in Bomber 1 and will escape 100 percent of the
time. Conversely, if Red adopts strategy 2 it attacks Bomber 1 and if Blue
adopts strategy 1 the bomb is in Bomber 2 and will escape 100 percent of
the time. If Red adopts strategy 2 it attacks Bomber 1 and if Blue adopts
strategy 2 the bomb is in Bomber 1 and will escape 80 percent of the time.
These figures have a certain amount of realism in that when the bomb is in
the plane which is attacked it fares better when it is in the better protected
Bomber 1.

Now let us return to the question of where to put the bomb. Group Captain
Mike “Buffo” Hawkeye of RAF Bomber Command immediately knew the
answer: “By jove! Go for the better protection, what!” By which we assume
he means put the bomb in Bomber 1. This will ensure that, at worst, the
bomb escapes 80 per cent of the time.

However, the backroom team in Bletchley Park had read an (encrypted,
top secret) account of the method of George B. Dantzig. They notice that
the oddments of this “game” are

:4=0:
40| —20 and [—20]

which both pass the oddment test. Applying the mixed strategy formula we
obtain B %0 — 100 1
* = 80-100-100+80 3

This means that, by adopting the mixed strategy, Blue expects the bomb to
escape attack

(1/3) x 60 + (2/3) x 100 = (1/3) x 100 + (2/3) x 80 = 86.66666..... %

of the time. This represents an improvement over the “Go for the better
protection” strategy by about 8 per cent.

The second concluding example is James Lovelock’s Daisyworld, which
features what is essentially a two person game where the “players” are dark
and light daisies. Lovelock is the British inventor and scientist renowned for
the invention of the microwave oven and for the discovery of polar thinning of
the ozone layer. First published in [2] Daisyworld is a computer simulation.
What it is doing amounts to playing the strategical two daisy game over and
over again. White petalled daisies reflect light, while black petalled daisies
absorb light. The simulation tracks the two daisy populations and the surface

“temperature of Daisyworld as the sun’s rays grow more powerful. The surface

temperature of Daisyworld remains almost constant over a broad range of
solar output. The importance of this example is to show how, from our two-

person game point of view, the mixed strategy of the daisies inadvertently
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works to the benefit of the entire environment. Some of the arguments based
upon this model have been highly contentious, engaging the industry of many
popular science writers in a very entertaining way - for details see Wikipedia.
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