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1. PSH-ALGEBRAS OVER THE INTEGERS

A PSH-algebra is a connected, positive self-adjoint Hopf algebra over Z.
The notion was introduced in [11]. Let R = &,,>¢ R,, be an augmented graded
ring over Z with multipication

m: R® R— R.

Suppose also that R is connected, which means that there is an augmentation
ring homomorphism of the form

¢:Z = RyCR.
These maps satisfy associativity and unit conditions.

Associativity:

mm®l)=m(l®m): RER® R — R.

mlee=1=m(®1);RIZ=R=ZZ®R— R®R — R.

R is a Hopf algebra if, in addition, there exist comultiplication and counit
homomorphisms

m' R—RQQR
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and
€:R—Z

such that

Hopf

m* is a ring homomorphism with respect to the product (zr ® y)(z' ®y') =
xx' @ yy' on R ® R and €* is a ring homomorphism restricting to an iso-
morphism on Ry. The homomorphism m is a coalgebra homomorphism with
respect to m*.

The m* and €* also satisfy

Coassociativity:

m*@1)m*=1m" )M :R— RIRX®R— RIRR

mle)=1=mecx1):RQ~ZLEREZZRXIR — RRXR — R.
(I1®e) (e®1);

R is a cocomutative if
Cocommutative:

m'=T-m":R— R®R
where T(z®y) =y®z on R® R.

Suppose now that each R,, (and hence R by direct-sum of bases) is a free
abelian group with a distinguished Z-basis denoted by Q(R,). Hence Q(R)
is the disjoint union of the Q(R,,)’s. With respect to the choice of basis the
positive elements R* of R are defined by

R+:{TER|r:Z mew, my, > 0,w € Q(R)}.

Motivated by the representation theoretic examples the elements of Q(R) are
called the irreducible elements of R and if r = ) m,w € R the elements
w € Q(R) with m, > 0 are call the irreducible constituents of r.

Using the tensor products of basis elements as a basis for R ® R we can
similarly define (R ® R)" and irreducible constituents etc.

Positivity:

R is a positive Hopf algebra if

m((R® R)") c R",m*(R") C (R® R)",e(Z") C R",e"(R") Cc Z*.
Define inner products (—, —) on R, R ® R and Z by requiring the chosen
basis (2(Z) = {1}) to be an orthonormal basis.
A positive Hopf Z-algebra is self-adjoint if
Self-adjoint:
m and m* are adjoint to each other and so are € and ¢*. That is

(m(z®y), 2) N (x@y,m"z)



and similarly for €, €*.
The subgroup of primitive elements P C R is given by

P={reR|m'(r)=re®l+1er}

2. THE DECOMPOSITION THEOREM

Let {R, | @« € A} be a family of PSH algebras. Define the tensor product
PSH algebra

R = RacA Ra

to be the inductive limit of the finite tensor products ®,cs R, with S C A
a finite subset. Define Q(R) to be the disjoint union over finite subsets S of
[es QARa).

The following result of the PSH analogue of a structure theorem for Hopf
algebras over the rationals due to Milnor-Moore [5]

Theorem 2.1.

Any PSH algebra R decomposes into the tensor product of PSH algebras
with only one irreducible primitive element. Precisely, let C = Q[ P denote
the set of irreducible primitive elements in R. For any p € C set

Qp) ={w e Q| (w,p") # 0 for some n > 0}

and
R(p) = Buea(p) Z - w.

Then R(p) is a PSH algebra with set of irreducible elements €2(p), whose
unique irreducible primitive is p and

3. THE PSH ALGEBRA oOF {GL,,F,, m >0}

Let R(G) denote the complex representation ring of a finite group G. Set
R = ®,,>0 R(GL,,F,) with the interpretation that Ry = Z, an isomorphism
which gives both a choice of unit and counit for R.

Let Uy m-r C GL,,F, denote the subgroup of matrices of the form

I, W
X =
0 Im—kz

where W is an k x (m — k) matrix. Let Py ,,—x denote the parabolic subgroup
of GL,,F, given by matrices obtained by replacing the identity matrices I},
and I,,,_ in the condition for membership of Uy ,,,— by matrices from GL;F,
and G L,,_;F, respectively. Hence there is a group extension of the form

Uk,m—k — Pk,m—k — GLqu X GLm_qu.
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If V is a complex representation of GL,,F, then the fixed points VUkm-* is a
representation of GLiF, x GL,,_;F, which gives the (k,m — k) component of

m*: R— R® R.
Given a representation W of GLyIF, x GL,,_F, so that W € R, ® R,,,_i we

may form
GLnF Py
Inde,m,Z (InfGIj:qukx GLp_iFy (W)
which gives the (k,m — k) component of

m: R® R— R.

We choose a basis for R,, to be the irreducible representations of G'L,,,F, so
that Rt consists of the classes of representations (rather than virtual ones).
Therefore it is clear that m, m*, €, €* satisfy positivity. The inner product on
R is given by the Schur inner product so that for two representations V, W
of GL,,[F, we have

<‘/, W> = dimC(HOHlGLm]Fq (‘/, W))

and for m # n R, is orthogonal to R,,. As is well-known, with these choice of
inner product, the basis of irreducible representations for R is an orthonormal
basis.

The irreducible primitive elements are represented by irreducible complex
representations of G'L,,IF, which have no non-zero fixed vector for any of the
subgroups Uy, ,,—i. These representations are usually called cuspidal.

In the remainder of this section we shall verify that R is a PSH algebra, as is
shown in ([11] Chapter III). I believe, in different terminology, this structural
result was known to Sandy Green at the time of writing [3] and to his research
supervisor Phillip Hall.

Theorem 3.1. (Self-adjoint)
If X,Y, Z are complex representations of GL,,,F,, GL,F,, GL,,.,IF, respec-
tively then
mMX®Y),Z)=(XY,m(2)).

Also € and €* are mutually adjoint.

Proof:
This follows from Frobenius reciprocity ([8] Theorem 1.2.39) because the
Schur inner product is given by

m(X®Y),Z) =dimc(Homgy (m(X®Y),Z2))

m+n]Fq
= dimc(Homp,, , Inf; "5 op v (X ®Y), Z))

— dimC(HoumannfgrngqXGLnFq (X®Y), ZUm,n)).

The adjointness of € and €* is obvious. [
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Proposition 3.2. (Associativity and coassociativity)
The coproduct m* is coassociative and the product m is associative.

Proof:

Clearly m* is coassociative because taking fixed-points GL,F, x GL,F, x
GL.F, of a GLyypiF, representation is clearly associative. It follows from
Theorem 3.1 that m is associative, since the Schur inner product is non-
singular. [

Theorem 3.3. (Hopf condition)
The homomorphism m* is an algebra homomorphism with respect to m.
The homomorphism m is a coalgebra homomorphism with respect to m*.

Obviously the coalgebra homomorphism assertion follows from the algebra
homomorphism assertion by the adjointness property of Theorem 3.1.

The discussion which follows will establish Theorem 3.3. It is rather delicate
and involved so I am going to give it in full detail (following ([11] p.167
and p.173 with minor changes). For notational convenience I shall write
G, = GL,F, for the duration of this discussion.

Recall that we are attempting to show that for each (a, m—a) and (a, m—a)
that the R(G,) ® R(Gp—q)-component of m* - m

R(Go) ® R(Grna) 5 R(Gn) ™ R(Go) @ R(Gra)
is equal to the R(G,) ® R(Gy,—q)-component

R(G) @ R(Gmo) ™2 ROR®R®R'ZS' REROR® R™Z R® R.
Let Z be a complex representation of G, then the (a,m — a)-component
of m*(Z) is given by
ZVem-a ¢ R(Gy X G—a) = R(Gy) @ R(G—y)

with the group action given by the induced P, ;;,—q/Us m—q-action.
If Z=m(X®Y) with X, Y representations of G, G,,_, respectively then

Z=m(X@Y)=IdZ (g7 (X®Y)).

—a

Therefore we must study the restriction

Res¢"  (Ind§r — (Inf7gt (X ®Y)))

—a

by means of the Double Coset Formula ([8] Theorem 1.2.40; [9] Chapter 7,
§1). Explicitly the Double Coset Formula in this case gives

Pa,m—a — * Pa,m—a
2 WA (6T (X O Y)
gePa,m—a\Gm/Pa,m—a
where the (g~1)*-action is given by (ghg™')(w) = hw.
The Double Coset Formula isomorphism (downwards) is given by

z ®Pa,m—a w — j ®Pa,m—amgpa,m—ag_1 hw
5



where z = jgh with j € P, ,—q, h € Pa m—o with inverse (upwards) given by

j ®Pa,m—amgpa,m—ag_1 w = jg ®Pa,m—o¢ w.

Next let X, C GL,,[F, denote the symmetric group on m letters embedded
as the subgroup of permutation matrices (i.e. precisely one non-zero entry on
each row and column which is equal to 1).

The following result is proved in ([11] p.173; see also [1] Chapter 1V, §2)

Theorem 3.4. (Bruhat Decomposition)
The inclusion of ¥, into GL,,,F, induces a bijection

S X Lo\ Bm/Za X B — Pam-a\Gm/Pam—a

Now we shall construct a convenient set of double coset representations for
the left-hande side of Theorem 3.4.
Consider the double cosets
Yo X o \Zm/Za X Zm—a-

On page 171 of [11] one finds the assertion that the double cosets in the title
of this section are in bijection with the matrices of non-negative integers

ki1 ki

k2,1 k2,2
which satisfy
/{3171 + ]{71,2 = Q, ]{3271 + k2’2 =m — Q, /{3171 + kz,l = a, k’l’g + /{3272 =m — a.

Let w € ¥, be a permutation of {1,...,m}. Set I = {1,2,...,a}, I, =
{a+1,a+2,....m}, J1 = {1,2,...,a} and Jo = {a+ 1,a+2,...,m}.
Therefore if g € ¥, X X,,_, and ¢ € X, X X,,,_o we have, for ¢ = 1,2 and
v=1,2,

gwg' () (V1o = gw(J) (V1o = g(w(J) (g~ (1) = g(w(J) [ L)-
Therefore if we set
ko = #(w(Jt) ﬂ I,)
we have a well-defined map of sets from the double cosets to the 2 x 2 matrices
of the form described above because

a if v=1,

kl,v + k2,v = #(Iv) =

m—a if v=2
and
Q@ ift=1,

kia+ ko = #(Jy) =
m—a«a if t=2.



Next we consider the passage from the matrix of k; ;s to a double coset. Write

Ty =J(ki) T (k12), Jo = J(kaa) | T (k22)
where J(l{iLl) = {1, . ,]{?1’1} and J(kQ’l) = {Oé + ]., e, + k271}. Slmllarly

write
I = I(ky ) | (ko) o = I(ko) | I(K22)
where I(ky1) ={1,...,ki1} and I(k12) ={a+1,...,a+ ki2}. Since the or-
ders of I(k; ;) and J(k; ;) are both equal to k; ; there is a permutation, denoted
by U}(k}*7*) which sends Jl U JQ to Il U IQ by the 1dent1ty on J(k1,1> = [(l{?111>
and J(kg2) = I(ke2) and interchanges J(k12), J (ko) with I(ki2), (ko) in
an order-preserving manner.
Given the permutation w(k, ) we have

#(w (k) (J1) V1) = #(J (ko) NI (R1a)) = ko,
#(w(ke ) (1) NV 2) = #(w (k) (J (k21)) (VL (k12)) = ka2,
(W (ke ) (J2) V1) = #(w (ke ) (T (F12)) (1 (k20)) = ka2,
(W (ke ) (J2) (N I2) = #(J (k22) (1 (K2,2)) = k22

so that the map k., — X, X X,_qw(ks)X0 X Xp_o is a split injection.
In addition it is straightforward to verify that any permutation whose k, .-
matrix equals that of w(k, .) belongs to the same double coset as w(k, .).
Hence the map is a bijection.

For example when a = 3, o = 4, kll =1= kQQ, k’gl = 2, k‘lg =3

100 00O0O 100 00O0O
0001000 0000100
0000100 000O0O0OT1O0
Wk )= 00000 1 0 | wke) 01 00000
01 00000 0010000
00100O0O0 0001O0O0O
00 0O0O0O0T1 000O0O0O0T1
This permutation arises in another way as a permutation of the basis ele-

ments of tensor products of four vector spaces. Let
Vi=F @F2 @ F> @ F.>* and Vo = Fi @ F @ Fi2 @ iz,
We have the linear map
1T (ky) ®1: Vi — V5
which interchanges the order of the two central direct sum factors. The

basis for V; is made in the usual manner from ordered bases {e1,... ek},

{eku-i-lv s ek11+k12}7 {ek11+/€12+17 s €k11+k12+k21} and {€k11+k12+k’21+17 s 6771}

of Fivt, Fiz Frt and FF respectively. Similarly the basis for V3 is made

in the usual manner from ordered bases {v1,... Uk} {415+« Ukyythor b
7



{Uk11+k21+1’ s Uk11+k21+k12} and {Uk11+k21+k‘12+17 s Um} of IFI(;H? Fgm? Fglz and
IF’;?? respectively.

The linear map 1 @ T'(k..) © 1 sends the ordered set {ei, ..., ey} to the
order set {vy, ..., U} by € = Vi(r,.)()-

Clearly

w(k*,*)Gkn X ka X Gk21 X Gk22w(k*,*)_1 - Gku X Gk21 X Gk‘12 X Gk22
from which is it easy to see that

w(k*,*)Ga X Gm—aw(k*,*)_l ﬂ Ga X Gm—a - Gku X Gkgl X ka X Gkgg'

So far we have shown that the (a,m — a)-component of m*(m(X ® Y)) is
the sum of terms, one for each w(k, .), given by the induced G, x G,,,—,-action
on

Indfem-a (w(ke) ™) Inf e (X @Y)).

Poym—aNw(ks,« Po,m—aw(ks,«) ™1
On the other hand, for each w(k, ) there is a (a, m — a)-component of the
other composition we are studying given by

(7)U’€117k12 XUko1 koo

R(Ga X Gm_a) — R(szu X ka X ka X Gkn)

1QT (ks )®1
- R(Gku X Gk21 X lez X GkQQ)

IndInf xIndInf
—_—

R(Gy X Gy)-

Composing this second route with the split surjection

Inf

R(Gy X Gy—q) — R(Pym—a)

is equal to the composition

(7)U’€11J€12 XUko1 kg

R(Ga X Gm—a) - R(Gku X G/ﬁz X ka X Gk22)

10T (ks 1)1 In
R(Gk’u X Gk21 X lez X Gk’22)

R(Pkn,kzhkm,kzz) E R(Paml—a)
because the kernels of the quotient maps Py, koikiokss — Fhiike and
Pym—a — Go X Gp—q are both equal to U, .

This composition takes the Uy, x, X Uky, keo-fixed points of X ® Y with
the Gi,, X Gi, X Giy X Gpyy-action and then conjugates it by w(ky ).
Alternatively it takes the w(kws)Ukyy ke X Ukgy koo (ks ») ' -fixed points of
(w(ky ) ™)*(X ®@Y) with the G, X Gy, X Gryy X Gpyy-action. Now

w(k&*)Uku,km X Uk217k22w<k*7*)71 C Ua,m—a'
8



For example, in the small example given in the Appendix, Uy, k1o X Ukay koo
consists of matrices of the form

1 12 Q13 Q14 0 0 0
01 0 0 00 O
o o 1 0 00 O
D=0 0 0 1 00 0
0 0 0 0 10 asy
0 0 0 0 01 ag7
0 0 0 0 00 1

s0 that w(ks«)Usyy krs X Ukgy koW (ks ) ™! consists of matrices

1 00 12 Q13 0Ai14 0
010 0 0 0 as
001 0 0 0 ae
w(k, ) Dw(k,,)™'=]1000 1 0 0 0
000 0 1 0 0
o000 0 0 1 0
000 0 0 0 1

Since w(k, .)Dw(k, ) '’s act trivially we may inflate the representation to
Py oy ko ey (€. extending the action trivially on Ug,, ks kisks,) and then
induce up to a representation of P, ,,_,.
Now let us describe the isomorphism between the result of sending X ® Y
via the second route and the U, ,,—,-fixed subspace of
Pa,m—a —1\* Pom—a
Ind? (wlke) ™) WG (X © V).

Pa,m—a,mw(k*,*Pa,m—aw(k*«*)_l

There are inclusions
-1
w(k*,*)Pa,m—a)w(k*,*) ﬂ Pam—a C Pryy ko kizkes C Pam—a-

For example, w(ks ) Pom—aW(ke.) " () P34, in the small example of the Ap-
pendix, consists of the matrices of the form

a11 a5 Aig A2 A13 Q14 Q17

0 as5 Qg6 0 0 0 as7

0 g5 Qge 0 0 0 Qg7

E' = 0 0 0 axp ax axy as
0 0 0 azx asz as azy

0 0 0 agp ag3 ags ayr

O O 0 0 0 0 ar

and, as we noted above, w(k, .)Dw(k,.)~" consists of the matrices

{(b2j> S w(k*,*)Pa,m—aw(k*,*)_l m U3,4 | bl? - 0}
9



There is a bijection of cosets
Pk11,k21,k12,k22/w<k*,*)Pa,m*Oé)w(k*,*)_l ﬂ Pa,m*a

= a,mfa/w(k*,*)Pa,mfa)w(k*,*>_1 m U3,4-
Therefore we may take the coset representations X, to lie in the abelian group
Usm—a- In the small example the X,’s may be taken to be of the form

100000 a
01 0b c do
001 e f goO
Xo=10001000
000O0T1O0O0
000O0O0T1O0
00 0O0O0O01

The isomorphism from the image of X ®Y via the second route to the U, y,—q-
fixed subspace of

Pa,m—a — * Pa,m—a
Indpaym%mw(k*y*Pa,miaw(k*y*)_l((w(k*’*) DInf e (X @Y))

is given by

g ®Pk11,k21,k12,k22 U= Z gXa ®w(k*,*)Pa,mfa)w(k?*,*)71ﬂpa,mfa v.
Xa
This concludes the proof of Theorem 3.3. The remainder of the Hopf
condition is given by the following result, which is proved in a similar manner
to Theorem 3.3 (see [11] p.175).

Theorem 3.5.
In the notation of §1, €* is a ring homomorphism restricting to an isomor-
phism on Rj.

4. SEMI-DIRECT PRODUCTS Gal(Fyn/IF,) oc GL,Fyn

Let V be an irreducible representation of GL,F,» and let ¥ € Gal(F/F,)
denote the Frobenius substitution. Hence the representation ¥*(V') given by
transporting the G L,IF jn-action by the i-th power of X is another irreducible
representation. Suppose that n = sd and that

V,R(V), Z3V),..., 25 H(V)

are inequivalent GLFn-irreducibles but that V' and ¥°(V) are equivalent
G L4[F jn-irreducibles.

Therefore V' (c.f. [9] Chapter Two, §6; see also Chapter 8 and Chapter
9, §3) extends to an irreducible representation V of the semi-direct product
Gal(Fn /Fgs) o¢ GLFgn for some b > 1, where Gal(IFn /Fgs) acts via first
projecting onto Gal(Fyn /Fs).

In discussions of the semi-direct product I shall attempt to follow the nota-

tional conventions of ([7] p.36) and ([9] Chapter 9, §3.1) as opposed to those
10



of [6]. Explicitly, if C' acts on G via A : C' — Aut(G) then the semi-direct
product C' o< G is the group whose underlying set is C' x G with multiplication
given by

(c1,91) - (c2, 92) = (c1c2, 1M(c1)(g2)), ¢ € C.g € G.
We may form the induced representation
Gal(F bn/]Fq)ocGLt]F ~
V= IndGal(]F o /Fgs )XGLiF gn (V)
which restricts to give
@2, Y'(V) € R(GL{F ).

Also o
Homeae ,,, /F,)oxGLEn (V,V)

Gal(F bn/F )O(GLtF n ~
4 HOmGal(F vn [Fgs )xGLtFyn (V IndGal(F bn/ﬁrq YXGL{Fn ( ))

= @f;& HOmGal(Fqbn [Fgs)xGLiFyn (‘77 ZZ(V)>

= Homgai(r . /F e )ocGLiF V,V)

as is seen by restricting representations to G L:F .. Since V is irreducible its
endomorphism ring is 1-dimensional and so therefore is that of V.

In the terminology of [6] when s > 1 V is called an irreducible representa-
tion of the second kind and when s = 1 it is called an irreducible representa-
tion of the first kind..

Let 6 : Gal(F n /F;) — C* be a character which is trivial on Gal(F jon /Fgs).
Then Gal(F pp, /Fq)xGLtFn ~ ~

0 - V_IndGa”FZ: eyt (0 V) = V.

All the irreducibles of Gal(F . /F,) oc GLFg» are of the form V for some
s dividing n. For if W is an irreducible of Gal(Fn/Fy) o GLiFgn then its
restriction to GL,[F;» must have the form

mVi @mS(V) @ ... e mX (V)

with V; irreducible and ¥%(V;) = V;. Therefore V; extends to an irreducible
Vi and there is a non-zero map of representations Vi — W which must be
an isomorphism (and so m = 1).

Twisting V by a character § which is non-trivial on Gal(F n /Fgs ) gives a
distinct irreducible. There are bn/s cosets of such 0’s so we have bn/s distinct
irreducibles

01V, 05V, ... Oy V
each restricting to
®iZy XYV) € R(GLF ).
11



By Shintani base change for finite general linear groups ([6]; see also [9]
Chapter 8 and Chapter 9, §3) there is a bijection between G L;[F n-irreducibles
V' such that ¥°(V) = V and the irreducibles of GL;F,. The V’s in the
construction of V are those which are fixed by ¥ but by no X* with u a
proper divisor of s.

En route to the base change result one finds ([6] Theorem 1) that b =1 or

= 2 suffices for the extension to the semi-direct product which was discussed
in this section. This is explained in §6 just after the statement of Theorem
6.1.

5. R AND R"

Let K = R(Gal(Fn/F,)) which is the ring of integral linear combinations of
characters x : Gal(F»/F,) — C*. Suppose that G is a subgroup of GLF
which is preserved by the Gal(F,. /F,)-action. Let S(G) denote the subset of
the irreducibles Irr(Gal(F,» /F,) « G) of the first kind (i.e. representations
which are irreducible when restricted to GG). Tensoring with a Galois character
x permutes the set S(G) making Z[S(G)] into a free K-module.

Define R = @50 R, where R, = R(Gal(F;0/F,) o< GLF,) for a fixed
choice of n. Define R" = @59 S(GLF) C R.

For each Gal(F . /F,)-invariant irreducible V' € Trr(GL,F )¢ Fa"/Fa) choose
an irreducible V' € R, which restricts to V. The set of irreducibles which
restrict to V' are given by {x ® ‘7} as y varies through Galois characters.
Therefore there is an isomorphism of K-modules, depending on the choice of
V’s, of the form

Norie, : K[In(GLF )0 Er /f0] 25 RY = S(GL,Fyn)

given by sending x ® V to x ® V. Hence R is a K-module of which R” =
®i>0 S(GLFn) is a free K-submodule.

The first objective of this section is to make R into a connected, graded K-
algebra! of which R” is a connected, graded K-subalgebra. Clearly we have
an isomorphism € : K — Ry = R/ which shows that these are connected
K-algebras.

Multiplication:

Let P,; be the usual parabolic subgroup of GLq3F,n. Then inflation
induces a K-module homomorphism of representation rings

Inf,p : R(Gal(Fyn/F,) & (GLFyn x GLFn)) — R(Gal(Fyn /F,) o< Pyp).
We also have induction maps
Ind,p : R(Gal(Fyn /F,) < P,p) — R(Gal(Fyn /F,) o< GLyipFyn).
!The structure map giving the multiplication in this algebra first appeared in ([6] Defi-

nition 2.4)
12



Let V and W be representations of Gal(F» /F,) o< GL,Fn) and GalF» /F,) o
GLyF ) respectively. Define a representation V@' W of Fyn /F,) o¢ (GLFjn %
GLyF ) on the underlying vector space of V@ W by

(9, X, Y) (v @ w) = (g, X)(v) @ (9, V) (w).
The multiplication on R is defined, following the G LIFjn-case, by
m(V @ W) = Indgy(Inf,,(V @ W)) € Ry
If x belongs to the character group of Gal(IF, /F,) then
m(xV@W) =m(V @ xW) = xm(VeW) € Ry

If V and W are representations in R and R; respectively we shall show
that m(V @ W) € R, ;.

By additivity it suffices to assume that V, W are irreducibles (of the first
kind). Then, by the construction of all the irreducibles of the finite general
linear groups which first appears in [3] and is reiterated in ([4] §1) and (][9]
Chapter 11, §2), m(V @ W) is irreducible when restricted to GLg4Fn unless
W =x® V. In that case m(V ® (x ® W)) = x @ m(V ® V). Restricted to
GLyypFgn the latter is known to be the sum of two irreducibles picked out
by the idempotents of the symmetric group on two letters®>. However these
idempotents also decompose m(V ® V') into two irreducibles of the first kind,
in the same way.

Note that m factorises through

m:R@Kf{—>}~%

which is a K-module homomorphism. Also m is associative.
This discussion established the following result.

Theorem 5.1. ~
With the notation introduced above R is a graded K-algebra of which R”
is a graded K-subalgebra.

Let V' be an irreducible of Gal(Fyn/F;) o< GLyypFgn. We are not going
to define a comultiplication on R. However, we close this section with the
observation that sending V' to its U, -fixed points yields a homomorphism

m* : Rayp — R(Gal(Fyn /F,) o¢ (GLoFypn x GLyFyn))

which covers (via the restriction to general linear groups) the comultiplication
defined in §3 on the PSH algebra @;>9 R(GLFn).

>These idempotents will show up again in §6.
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6. SHINTANI BASE CHANGE

Let us recall the main result of [6] which, for our notation for the semi-direct
product, is stated in the following form:

Theorem 6.1. ([6] Theorem 1; see also Lemmas 2.7 and 2.11)
(i) Let p be a finite-dimensional complex irreducible representation of

GL,F,. Then there exists an irreducible representation p of the semi-direct
product Gal(F,m/F,) o< GL,F;m which satisfies, for all g € GL,Fm,

X5(2,9) = ex,([95(9) .. =" (9)])

where ¢ = +1 is independent of g. Here [¢2(g)...X™ !(g)] denotes the
unique conjugacy class in GL,IF, given by the intersection of the conjugacy
class of ¢g3(g)...X™ (g) in GL,Fym with GL,F,.

(ii) The Shintani base change correspondence (see [9] Appendix I, §4)

Sh : Irr(GL,F g ) S8 Fam /Fa) =, [1p(GL,F,)

is given b
g y Gal(]qu /Fq)O(GLnIqu ~
Sh(Resgy (%) = p.

nFgm

In this Theorem y, denotes the character function of p. In part (ii) of
the theorem it should be noted that p is an irreducible of the first kind

because the x;(X, g)’s are not identically zero ([6] Lemma 1.1(i)) and therefore

Gal(Fgm /Fq)ocGLnFgm , ~ . . . .
Resqy, mom (p) is an irreducible representation.

Given p as in part (i) of the theorem write p(z,1) = X, for z € Gal(F;m /F,)
and p(1,9) = p(g) for g € GL,F,m. Since (1,9)(z,1) = (2, g) we have

Xaplg) = p(2(9))X-
so that y;(%, g) = Trace(p(1, g)Xx) (see [6] Theorem 1)°.

For p and p as in Theorem 6.1 the matrix Xy will satisfy X3 = 1. How-
ever, as mentioned in the statement of ([6] Theorem 1), for a general Galois
invariant p there exists a choice satisfying X3 = £1. When X = 1 the
extension p of p may be constructed as in Theorem 6.1 but when X3! = —1
the extension of p must be a representation of Gal(F,2m /Fy) oc GL,Fgm.

Given a choice of p the irreducible extension p to the semi-direct product,
which we may take to be Gal(FF2m /F;) o< GL,F;m in general, is unique up to
twists by Galois characters.

Next we shall examine the multiplicative property of the Shintani corre-
spondence.

Suppose that p; € Irr(GL,F,) and p, € Irr(GL,F,). By Theorem 6.1 there
exist p; € Irr(Gal(Fym /F,) < GL,F,) and py € Irr(Gal(Fym /F,) o< GL,F,)
such that for 7 = 1,2

X5 (2, 9) = €xp ([95(9) ... 2" (9)])

3The formula of [6] differs from mine because we have used different formulae for the
multiplication in a semi-direct product.
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where ¢; = £1 is independent of g.
Therefore, by ([6] Definition 2.4 and Lemma 2.9),

Xm(r.52) (55 9) = €162Xm(o1,p0) ([92(9) - .. X" (9)])

where on the left-hand side m denotes the multiplication in R of §5 and on
the right-hand side the multiplication in R of §3.

If p1 # po then by the Shintani correspondence the restrictions of p; and
p2 to the general linear groups are distinct so that p; and ps are distinct
irreducible representations. Therefore m(p1, p2) and m(py, p2) are both irre-

ducible and

Gal(Fgm /Fq)G Ly pFgm

Sh(R’eSGLa+b]qu (m(ﬁ17 52))) = m<p17 p2)
However
Gal(Fym /Fg)xGLgpFym - .
ReSGL£+ZIFq/mq) e (m(p1, p2))
Gal(F m Fq (XGLaF m s ~ Gal F m/Fq)O(GL F,om , ~
= m(Resgy g "X (5) Resgpg TN (5)

oon Gal(Fym /Fq)xGLaFym , - . Gal(Fym /Fq)xGLyFym | ~
Therefore, if p; = ResGiiF‘;m/ a)ex ™ (p1) and py = ReSGZEFZm/ a)o<GLEy (p2),

then
Shim(pr, pz)) = m(Sh(1), Sh(p)).
If @ =0 and p; = py and (see §5 on “multiplication”) m(py, p1) is not
irreducible but there is an idempotent e of the symmetric group on two letters
such that

m(p1, p1) = em(p1, p1) + (1 — e)m(p1, p1)
and the two summands on the right are irreducible. Similarly

m(p1, p1) = em(pr, p1) + (1 — e)m(p1, p1)
where the two summands on the right are irreducible. In addition

Xem(pr,51) (25 9) = €1€1Xem(pr,o) ([92(9) - - - %" g)])
and
X(1—eym(pr50) (5 9) = €1€1X1—eymipr.on) ([92(9) - - - 1 (9)]).

Therefore

Sh(em(pr, p1)) = em(Sh(pr), Sh(p1))
and

Sh((1 = e)m(pr, pn)) = (1 = e)m(Sh(pr), Sh(p))

and adding these relations yields

Sh(m(p1, pr)) = m(Sh(p1), Sh(pr)).

Set R’ = @0 R} where R, = Z[lrr(GL,Fm )% Em/Fa)] the subgroup of
R(GLFm) spanned by Z-linear combination of irreducible representations
which are invariant under the Galois action. In Theorem 5.1 we saw that R"
is a subalgebra of R and a similar argument shows that R’ is a subalgebra of

@tZO R(GLt]qu ) .
15



Theorem 6.2.
With the notation introduced above R’ is a graded subalgebra of the algebra
®i>0 R(GLFm). Furthermore the restriction map

R = @0 R(Gal(Fym /F,) o< GLFym) — @50 R(GLFym)
restricts to a surjective algebra homomorphism of the form R” — R’'.

The Shintani correspondence of Theorem 6.1 is a bijection of set of irre-
ducible representations. Extending it by additivity yields an isomorphism of
abelian groups

Sh:R —R.

The preceding discussion concerning the multiplicativity of the Shintani

correspondence establishes the following result.

Theorem 6.3.
The Z-linear extension of the Shintani correspondence of Theorem 6.1
yields an algebra isomorphism

Sh:R —R
between the Hopf algebras R’ introduced above and R of §3.

The algebra isomorphism Sh~! of Theorem 6.3 yields an injective algebra

homomorphism

R R C @50 R(GLFyn)
between two Hopf algebras is not a Hopf algebra homomorphism. This is
illustrated by the following G LoF 2, example of ([6] p.412; see also [9] Chapter
Eight, §1.3).

Suppose that m = 2p. Consider the Galois extension F 2 /F, and the irre-
ducible representation of G LoF 2r given by m(x1, x2) (in [9] this is denoted by
is R(x1, x2)) with x; : F7,, — C* and Frobenius action X(x1) = X2, X(x2) =
X1 so that

" R(x15 x2) = R(xas x2)-

This is decomposable in the Hopf algebra @,>g R(GLF ) and therefore
is not primitive and therefore it is not primitive in R.

Hence Gal(F 2 /F2) = (X?) fixes x1 and o so that, by Hilbert’s Theorem
90,

x1 =6 Norm: Fpo, — F, — C
and
x2 = X°(0) - Norm : Fp,, — Fro — C*.
Therefore © # ¥*(0).

From ([6]; [8], Chapter Two) Sh(R(x1,x2)) = R(O), the Weil representa-
tion associated to ©, which is an irreducible representation of G'LoF,. How-
ever the Weil representation is an example of a irreducible cuspidal represen-
tation of GLoF, and, as explained in [11], these are the same as the positive

primitive irreducibles in the PSH-algebra for GLIF,.
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The character © is an example of a regular character of the multiplicative
group of a finite field. In fact, as a consequence of the Shintani correspondence
together with ([10] Theorem 8-6), the character functions of all the cuspidal
representations of the GL,F,’s are calculated in ([6] Theorem 2) and, in addi-
tion, these cuspidals are shown to be in one-one correspondence with regular
characters®.

7. COUNTING CUSPIDALS IRREDUCIBLES OF GL,F,

This comes from ([6] §3) which culminates in the proof of ([6] Theorem 2).

Let By C GLF;» denote the Borel subgroup of upper triangular matrices so
that By = D;Uy, the semi-direct product of the diagonal and the unitriangular
matrices, D; and Uy, respectively.

Suppose that F; C Fgn C Fym where m = nd. A character x : F, — C*
is regular if g € Gal(F,. /F,) and g(x) = x implies that g = 1 (i.e. x # X'(x)
fori=1,....,n—1).

Define y to be the composition y = y - Norrnngm [Fn ]F;m — C*.

Define a character ¢, : B,F,» — C* by the formula

Oy (Xij) = H Eifl(X) - Normg . /rn (Xiyi)-
=1

Therefore, by the regularity of x, the character ¢, is regular in the sense that
oy # w*(¢y), the conjugate of ¢, by a permutation matrix w.
Define a function v, on GL,F,m» by the formula

Ox(Xiy) if g = (Uij)w(Xiy)
@Z)x(g) =

0 otherwise

where (U, ;) € Uy, (X;;) € B and w is the permutation matrix given by

010 ... ...0
001 ... 0
wl=1:: : - S
000 1
100 0

4There are other ways to prove ([6] Theorem 2). For example, in ([3] Theorem 13 p.439)
the cuspidals are classified and denoted by g*’s. Also the result can be derived from ([2]
Theorem 9.3.2) which asserts that the irreducible Deligne-Lusztig characters +=R%(6), for
regular 6 will be cuspidal if and only if the torus 7" does not lie in any proper Frobenius-
stable Levi subgroup of G. I am grateful to Alexander Stasinski for explaining the latter
argument to me.
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Theorem 7.1. ([6] Theorem 2)°
(i) If x is a regular character of IF}, there exists an m-th root of unity &,
and an irreducible cuspidal representation p, of GL,[F, such that

—m(n—1)/2
EmPx (Nr 0 7, (9)) = q‘BT Z D (X gS(X)).

XEGLnIqu

(ii) For two regular characters x1, X2 py; = Py, if and only if x; = X!(x2)
for some [. Moreover any cuspidal of GL,F, is equal to p, for some regular
character x of Fy..

Sketch proof of Theorem 7.1
By Mackey’s irreducibility criterion (proved by Frobenius reciprocity and
the Double Coset Formula for the restriction of an induced representation)

Indgfgfjlm (¢ ) is irreducible. This uses the fact that the permutation matrices

are the double coset representatives of B,F;m\GL,Fm/B,Fm.

In the tensor product notation for this induced representation as a left
GL,Fgm we have g ®@p,p.m 1 = gb @B, F m ¢, (b71) so that we may think of
9 @B,Fm 1 as the complex-valued function f; which is defined by f(z) = 0
unless © € gB,Fm and if = gb with b € B,F,m then f,(z) = ¢,(z71g) =
B(b).

This makes sense because

T @B Em fo(€) = gb @p,5m Ox(b7') = 9 Op,Fm 1.

Note that if ¥ € B,Fym then f,(al) = f,(gbb') = &, (()) 16 1g7tg) =
Oy (V) fo().

In the tensor-product notation for the induced representation the function
fg, transforming as above, corresponds to

g ®Bnqu 1= Z h ®Bnqu fg(h) S (C[GLnqu] ®Bn]qu C¢X.

hEGLn]qu /Bnqu

To switch from Shintani’s conventions to mine we need to define a function
f;ﬁ‘l by f;’}l(a:) = fy(x™1). Then, if b,V € B,Fym, f;lll(bx) = fy(x717) is

zero unless x 710! = g’ and in the latter case

f;ijl(lm) = fg<x_1b_1) = ¢y (bxg) = Cbx(b)fg(z_l) = Cbx(b)f;fbl(x)

Following Shintani if w is a permutation matrix write U, = U (w™ U w
where U = U,F m and U~ is the transpose of U (i.e. the lower unitriangular

SThis result is stated in the conventions for semi-direct products, G L-norms etc of [9]
rather than those of [6].
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matrices). For the permutation matrix introduced above one finds that

1 U2 U3 ... ... Ulnp
0 1 o ... ...

U, ={u= 0 0 r ... ... 0 1.
0 0 o ... ... 1

Now consider the product of a matrix in U__, and an unitriangular matrix

1 a 1 B\ (1 B+aBY (1 0 1 B+aB
o) (o) =(o 2% )= (o 5) (0 %257)

where 3, are row vectors and B is upper unitriangular (n — 1) x (n — 1)
matrix. Also we have the matrix relation

(3 h)e-(51)

Suppose that b is the upper triangular matrix

1 g
sz(oE)

where D is the diagonal matrix D = diag(dy,ds,...,d,). Then there exist
matrices u,u’,v” € U _; where

such that
W uS(b) = wS(D)ww ! ( L %(5) ) — WS (D)w ( =(B) 0 )wlu".

Notice that

and that
otz (FP 1)) = o

In addition, as w runs through U__, so does u".
Then Shintani defines Iy, by the formula

(I fi") (@) = 702 N ol u ().
UEU,;—l
and the above discussion explains why (15 f5")(bx) = ¢y (b)(Is f3")(2).

Therefore, in my conventions, the right hand side of the above equation is

Usfy)(@™) = =02 S f (S uw).

uEU;?1
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In the tensor product notation this is equivalent to

Is(9 ®B,Fm 1) = Z Z h ®p,rm fo(E(h)uw).

hEGLn]qu /Bn]qu UEU7_1
w

Therefore
9'Is(9 ®B,r,m 1)

- ZhEGLnqu/Bn]qu ZUGU;_I 9'h @p,Fm fo(X(h)uw)
= Zh’eGLnIqu/Bn]qu ZueU;_l W @p,m fo(B((g') ) E(R )uw)
= Eh’GGLnIqu/Bn]qu ZUGU;_I B @p,Fm fu(g)e(E(M )uw)

= Ix(3(9")9 ®B.Fm 1)-

Set p = Indgf];fim (¢y). By ([6] Lemma 3.2) I = 1 and

p(2(g") - It = I3 - plg").

The multiplication in my convention for semi-direct products is given by
(e, 9)(c,q") = (cc, gc(g')). With this convention

(E, 1)(17.9) = (27 2(9)) = (172(.9))(27 1)

so the irreducible representation p extends to an irreducible p on Gal(Fym /F,) o
GL,Fm in which (X, g) acts via I" - p(g) = Is-1 - p(g). Therefore, by ([6]
p.409),

B q—m(n—l)/2 )
Trace(p(2, g) = B Fa] Z Uy (XgE(X) 7).
ni qm

XEGLn]qu

To show that Sh(p) = p, is a cuspidal irreducible of GL,F, it suffices to
show that for any pair of irreducibles p; € Irr(GL,F,) and py € Irr(GL,,—,F,)
that p, is not an irreducible constituent of m(p; ® p2). By Theorem 6.3,
applying the Shintani correspondence up to F m, Sh™(p;) must be equivalent
to the PSH algebra product of ¥%(x)’s as i; ranges over some a proper subset
of 1,2,... ,n. However this is impossible because any such product is not
Galois invariant.

Similarly, applying the Shintani correspondence up to Fym, Sh™(py,) =
Sh~'(p,,) implies that the Galois orbits of x; and y» coincide.

Finally, the discussion shows that the number of distinct regular characters
of F, is less than or equal to the number of inequivalent irreducible cuspidal
representations of GL,F,. The fact that these numbers are in fact equal

follows from a counting argument given in ([10] Theorem 8.6). [
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8. APPENDIX: AN EXAMPLE OF W (ki) Pom—o)W(kss) ™ () Pom—a
In the notation of the discussion of Double Cosets in §3 let
m="Ta=3a=4k1=1=ke,ky=2ko=3

and consider the double coset representative

100 00O0O0
0000100
000O0O0OT10Q0
wke)=]0100000
00 10O0O0O0
0001O0O0O0
00 0O0O0O01
If (a;;) € G7 then the conjugate by w = w(k, .) takes the form

aj; ais Aaig A12 a1z G4 Qv
as1 G55 Q56 As52 As3 (54 (57
a1 Ges GAge Ae2 Ae3 (s Ag7
w (aij) = Q21 Q25 Az A22 «A23 Q24 G27
31 G35 (36 aAz2 a33 G34 G37
A41 Q45 C46 42 Q43 Q44  O47
a7 Qrs Qe Q72 Ar3 Qg Q77

In order that w(a;;) = w(a;)w™" lies in wGy x Gaw™" it must have the
form
ai;r 0 0 app a3 ay 0O
0 as5  (Qs6 0 0 0 asy
0 Qgs  Qgg 0 0 0 ae7
w(aij) = az 0 0 axp ax axy 0
azg; 0 0 az asz azn O
as; 0 0 a4 a3 aggy O
0 Qs Qg 0 0 0 (0rdrd

and so to lie in the intersection w(Gy x G3) () G3 x G4 it must have the form

1 0 0 0 0 0
Q55 As6 0 0 0
Qg5 Qg 0 0 0

0 0 ax a3 ax
0 0 az asz ass
0 0 ag asz ay
0 0 0 0 0 (0drd

a

[y

— A//‘

OO OO oo

OO OO OO

Therefore in this example

wG4 X G3U)_1 ﬂGg X G4 = lel X ka X ka X ka.
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In order that w(a;;) = w(a;)w™* lies in wP;sw™" it must have the form

ail G5 G16 A12 A13 G14 Q17
0 Qs Qs 0 0 0 asy
0 Qes  Qge 0 0 0 Qg7
w (aij) = Q21 Q25 Ag6 A22 (23 G24 QA27
az1 G35 (36 Aagz2 a3z 0a34 Ggz7
Q41 Q45 Q46 A42 Q43 Q44 Q47
0 Qs Qg 0 0 0 (0%rdrd

and so to lie in the intersection wPy 3w~ () P4 it must have the form

11 a5 Qi Ai2 A1z G4 Q17
Q55 QAs6 0 0 0 as7
Qg Qgg 0 0 0 Qg7
0 0 Q92 Q923 Q24 Q27 = C
0 0 azx asz as azy
0 0 ag ag3 ags ayr
0 0 0 0 0 ary

G5 x G4 has the form

0
0
0
0
0
0
N

A matrix in wP473w_1

1 a5 aig O 0 0
as5 Q56 0 0 0
Qgr Qg 0 0 0

0 0 ag azz axs agy =A
0 0 az azz azs asy
0 0 a2 as3 aua agr
0 0 0 0 0 (0%drd

a

[y

o o O

w(a;;) =

DO OO OO

and a matrix in wPyzw ' Us 4 has the form

1 0 0 big biz by bir
01 0 0 0 0 by
001 0 0 0 b
000 o 1 0 O
000 o o0 1 0
000 0o 0 0 1
Choosing
b12 = CL—12,b13 = @,blél = ﬁl
all all all
all alb al6 b17 al7
X = 0 add ab6 |, X | 057 | = | ab7
0 abd ab6 b67 ab7

shows that AB = C and therefore
P3,4 ﬂwP4’3w_1 = ((Gg X G4) ﬂ wP4’3w_1 . (U374 n U)P473U}_1).
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In order that w(a;;) = w(a;;)w™ lies in wU, zw™! it must have the form

1 a5 Qg 0 0O air
0 1 0 000 O
0 0 1 000 O
’LU(G,U> 0 o5 Q926 1 00 (054
0 ass Qa3p 010 asy
0 aygs  Q4p 0 01 Qq7
0O 0 0 000 1

and to lie in wU473w_1 (N G3s x G4 it must have the form

1 a1 Qig 0 00 0

0 1 0 0O0O0 O

0 0 1 00O0 O
wlag)= 0 0 0 100 ay |=A4"

0 0 0 010 asy

0 0 0 0 01 agq7

0 0 0 O0O0O0 1

To lie in wUy 3w~ [ Us 4 a matrix must have the form

1 00 0 0 0 by
01 00O0¢O0 O
0010O0O0 O
wby)= 000100 0 |=5

000O01O0 O
000O0O0OT1 O
000O0O0O0 1

and to lie in wU, sw™" () P34 it must have the form

1 15 Qig 0 00 aiy

0O 1 0 0O0O0 O

0O 0 1 00O0 O

w(a;;) 0 0 0 100 ay | =C"

0 0 0 01 0 asr

0 0 0 0 0 1 ayr

0 0 0 0O0O0 1

Therefore, choosing A’, B’,C’ in a similar manner to the case of A, B,C
shows that

P3’4 ﬂwU473w_1 = ((Gg X G4) ﬂwU473w_1) . (U3’4 ﬂwU473w_1).
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From the matrix immediately preceding A” in order that a matrix lies in
wGy x Gaw™' (Us 4 it must have the form

1 00 b12 1913 b14 0
010 0 0 0 bsr
001 0 0 0 ber
wh;)={ 000 1 0 0 0 |=8B
000 0 1 0 O
000 0 0 1 O
0Ooo0o0 0o 0 0 1
and to lie in to lie in wGy X Gaw™' () P34 it must have the form the form

a0 0 a2 a;z aig 0O

0 Q55  Asg 0 0 0 as57

0 Qg5 Qg 0 0 0 Qg7

’lU(CLZ'j) == 0 0 0 929 Q923 Q24 0 == C//.

0 0 0 Q32 Q33 Q34 0

0 0 0 Q42 Q43 Q44 0

o 0 0 0 0 0 oar

Therefore, choosing A”, B”,C” in a similar manner to the case of A, B,C
shows that

P3,4ﬂwG4 X Ggw_l = ((Gg X G4) ﬂwG4 X Ggw_1> . (U374ﬂwG4 X Ggw_l).
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