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1. PSH-algebras over the integers

A PSH-algebra is a connected, positive self-adjoint Hopf algebra over Z.
The notion was introduced in [11]. Let R = ⊕n≥0 Rn be an augmented graded
ring over Z with multipication

m : R⊗R −→ R.

Suppose also that R is connected, which means that there is an augmentation
ring homomorphism of the form

ε : Z
∼=−→ R0 ⊂ R.

These maps satisfy associativity and unit conditions.
Associativity:

m(m⊗ 1) = m(1⊗m) : R⊗R⊗R −→ R.

Unit:

m(1⊗ ε) = 1 = m(ε⊗ 1);R⊗ Z ∼= R ∼= Z⊗R −→ R⊗R −→ R.

R is a Hopf algebra if, in addition, there exist comultiplication and counit
homomorphisms

m∗ : R −→ R⊗R
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and

ε∗ : R −→ Z
such that

Hopf
m∗ is a ring homomorphism with respect to the product (x⊗ y)(x′⊗ y′) =

xx′ ⊗ yy′ on R ⊗ R and ε∗ is a ring homomorphism restricting to an iso-
morphism on R0. The homomorphism m is a coalgebra homomorphism with
respect to m∗.

The m∗ and ε∗ also satisfy
Coassociativity:

(m∗ ⊗ 1)m∗ = (1⊗m∗)m∗ : R −→ R⊗R⊗R −→ R⊗R⊗R

Counit:

m(1⊗ ε) = 1 = m(ε⊗ 1);R⊗ Z ∼= R ∼= Z⊗R −→ R⊗R −→ R.

R is a cocomutative if
Cocommutative:

m∗ = T ·m∗ : R −→ R⊗R

where T (x⊗ y) = y ⊗ x on R⊗R.
Suppose now that each Rn (and hence R by direct-sum of bases) is a free

abelian group with a distinguished Z-basis denoted by Ω(Rn). Hence Ω(R)
is the disjoint union of the Ω(Rn)’s. With respect to the choice of basis the
positive elements R+ of R are defined by

R+ = {r ∈ R | r =
∑

mωω, mω ≥ 0, ω ∈ Ω(R)}.

Motivated by the representation theoretic examples the elements of Ω(R) are
called the irreducible elements of R and if r =

∑
mωω ∈ R+ the elements

ω ∈ Ω(R) with mω > 0 are call the irreducible constituents of r.
Using the tensor products of basis elements as a basis for R ⊗ R we can

similarly define (R⊗R)+ and irreducible constituents etc.
Positivity:
R is a positive Hopf algebra if

m((R⊗R)+) ⊂ R+,m∗(R+) ⊂ (R⊗R)+, ε(Z+) ⊂ R+, ε∗(R+) ⊂ Z+.

Define inner products 〈−,−〉 on R, R ⊗ R and Z by requiring the chosen
basis (Ω(Z) = {1}) to be an orthonormal basis.

A positive Hopf Z-algebra is self-adjoint if
Self-adjoint:
m and m∗ are adjoint to each other and so are ε and ε∗. That is

〈m(x⊗ y), z〉 = 〈x⊗ y,m∗z〉
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and similarly for ε, ε∗.
The subgroup of primitive elements P ⊂ R is given by

P = {r ∈ R | m∗(r) = r ⊗ 1 + 1⊗ r}

2. The Decomposition Theorem

Let {Rα | α ∈ A} be a family of PSH algebras. Define the tensor product
PSH algebra

R = ⊗α∈A Rα

to be the inductive limit of the finite tensor products ⊗α∈S Rα with S ⊂ A
a finite subset. Define Ω(R) to be the disjoint union over finite subsets S of∏

α∈S Ω(Rα).
The following result of the PSH analogue of a structure theorem for Hopf

algebras over the rationals due to Milnor-Moore [5]

Theorem 2.1.
Any PSH algebra R decomposes into the tensor product of PSH algebras

with only one irreducible primitive element. Precisely, let C = Ω
⋂
P denote

the set of irreducible primitive elements in R. For any ρ ∈ C set

Ω(ρ) = {ω ∈ Ω | 〈ω, ρn〉 6= 0 for some n ≥ 0}

and

R(ρ) = ⊕ω∈Ω(ρ) Z · ω.
Then R(ρ) is a PSH algebra with set of irreducible elements Ω(ρ), whose
unique irreducible primitive is ρ and

R = ⊗ρ∈C R(ρ).

3. The PSH algebra of {GLmFq, m ≥ 0}

Let R(G) denote the complex representation ring of a finite group G. Set
R = ⊕m≥0 R(GLmFq) with the interpretation that R0

∼= Z, an isomorphism
which gives both a choice of unit and counit for R.

Let Uk,m−k ⊂ GLmFq denote the subgroup of matrices of the form

X =

 Ik W

0 Im−k


where W is an k× (m−k) matrix. Let Pk,m−k denote the parabolic subgroup
of GLmFq given by matrices obtained by replacing the identity matrices Ik
and Im−k in the condition for membership of Uk,m−k by matrices from GLkFq

and GLm−kFq respectively. Hence there is a group extension of the form

Uk,m−k −→ Pk,m−k −→ GLkFq ×GLm−kFq.
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If V is a complex representation of GLmFq then the fixed points V Uk,m−k is a
representation of GLkFq×GLm−kFq which gives the (k,m−k) component of

m∗ : R −→ R⊗R.

Given a representation W of GLkFq ×GLm−kFq so that W ∈ Rk ⊗Rm−k we
may form

Ind
GLmFq

Pk,m−k
(Inf

Pk,m−k

GLkFq×GLm−kFq
(W ))

which gives the (k,m− k) component of

m : R⊗R −→ R.

We choose a basis for Rm to be the irreducible representations of GLmFq so
that R+ consists of the classes of representations (rather than virtual ones).
Therefore it is clear that m,m∗, ε, ε∗ satisfy positivity. The inner product on
R is given by the Schur inner product so that for two representations V,W
of GLmFq we have

〈V,W 〉 = dimC(HomGLmFq(V,W ))

and for m 6= n Rn is orthogonal to Rm. As is well-known, with these choice of
inner product, the basis of irreducible representations for R is an orthonormal
basis.

The irreducible primitive elements are represented by irreducible complex
representations of GLmFq which have no non-zero fixed vector for any of the
subgroups Uk,m−k. These representations are usually called cuspidal.

In the remainder of this section we shall verify that R is a PSH algebra, as is
shown in ([11] Chapter III). I believe, in different terminology, this structural
result was known to Sandy Green at the time of writing [3] and to his research
supervisor Phillip Hall.

Theorem 3.1. (Self-adjoint)
If X, Y, Z are complex representations of GLmFq, GLnFq, GLm+nFq respec-

tively then

〈m(X ⊗ Y ), Z〉 = 〈X ⊗ Y,m∗(Z)〉.
Also ε and ε∗ are mutually adjoint.

Proof:
This follows from Frobenius reciprocity ([8] Theorem 1.2.39) because the

Schur inner product is given by

〈m(X ⊗ Y ), Z〉 = dimC(HomGLm+nFq(m(X ⊗ Y ), Z))

= dimC(HomPm,nInf
Pm,n

GLmFq×GLnFq
(X ⊗ Y ), Z))

= dimC(HomPm,nInf
Pm,n

GLmFq×GLnFq
(X ⊗ Y ), ZUm,n)).

The adjointness of ε and ε∗ is obvious. �
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Proposition 3.2. (Associativity and coassociativity)
The coproduct m∗ is coassociative and the product m is associative.

Proof:
Clearly m∗ is coassociative because taking fixed-points GLaFq × GLbFq ×

GLcFq of a GLa+b+cFq representation is clearly associative. It follows from
Theorem 3.1 that m is associative, since the Schur inner product is non-
singular. �

Theorem 3.3. (Hopf condition)
The homomorphism m∗ is an algebra homomorphism with respect to m.

The homomorphism m is a coalgebra homomorphism with respect to m∗.

Obviously the coalgebra homomorphism assertion follows from the algebra
homomorphism assertion by the adjointness property of Theorem 3.1.

The discussion which follows will establish Theorem 3.3. It is rather delicate
and involved so I am going to give it in full detail (following ([11] p.167
and p.173 with minor changes). For notational convenience I shall write
Gn = GLnFq for the duration of this discussion.

Recall that we are attempting to show that for each (α,m−α) and (a,m−a)
that the R(Ga)⊗R(Gm−a)-component of m∗ ·m

R(Gα)⊗R(Gm−α)
m−→ R(Gm)

m∗
−→ R(Ga)⊗R(Gm−a)

is equal to the R(Ga)⊗R(Gm−a)-component

R(Gα)⊗R(Gm−α)
m∗⊗m∗
−→ R⊗R⊗R⊗R

1⊗T⊗1−→ R⊗R⊗R⊗R
m⊗m−→ R⊗R.

Let Z be a complex representation of Gm then the (a,m − a)-component
of m∗(Z) is given by

ZUa,m−a ∈ R(Ga ×Gm−a) ∼= R(Ga)⊗R(Gm−a)

with the group action given by the induced Pa,m−a/Ua,m−a-action.
If Z = m(X⊗Y ) with X, Y representations of Gα, Gm−α respectively then

Z = m(X ⊗ Y ) = IndGm
Pα,m−α

(Inf
Pα,m−α

Gα×Gm−α
(X ⊗ Y )).

Therefore we must study the restriction

ResGm
Pa,m−a

(IndGm
Pα,m−α

(Inf
Pα,m−α

Gα×Gm−α
(X ⊗ Y )))

by means of the Double Coset Formula ([8] Theorem 1.2.40; [9] Chapter 7,
§1). Explicitly the Double Coset Formula in this case gives∑

g∈Pa,m−a\Gm/Pα,m−α

Ind
Pa,m−a

Pa,m−a∩gPα,m−αg−1((g
−1)∗Inf

Pα,m−α

Gα×Gm−α
(X ⊗ Y ))

where the (g−1)∗-action is given by (ghg−1)(w) = hw.
The Double Coset Formula isomorphism (downwards) is given by

z ⊗Pα,m−α w 7→ j ⊗Pa,m−a∩gPα,m−αg−1 hw
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where z = jgh with j ∈ Pa,m−a, h ∈ Pα,m−α with inverse (upwards) given by

j ⊗Pa,m−a∩gPα,m−αg−1 w 7→ jg ⊗Pα,m−α w.

Next let Σm ⊂ GLmFq denote the symmetric group on m letters embedded
as the subgroup of permutation matrices (i.e. precisely one non-zero entry on
each row and column which is equal to 1).

The following result is proved in ([11] p.173; see also [1] Chapter IV, §2)

Theorem 3.4. (Bruhat Decomposition)
The inclusion of Σm into GLmFq induces a bijection

Σa × Σm−a\Σm/Σα × Σm−α

∼=−→ Pa,m−a\Gm/Pα,m−α

Now we shall construct a convenient set of double coset representations for
the left-hande side of Theorem 3.4.

Consider the double cosets

Σa × Σm−a\Σm/Σα × Σm−α.

On page 171 of [11] one finds the assertion that the double cosets in the title
of this section are in bijection with the matrices of non-negative integers k1,1 k1,2

k2,1 k2,2


which satisfy

k1,1 + k1,2 = α, k2,1 + k2,2 = m− α, k1,1 + k2,1 = a, k1,2 + k2,2 = m− a.

Let w ∈ Σm be a permutation of {1, . . . ,m}. Set I1 = {1, 2, . . . , a}, I2 =
{a + 1, a + 2, . . . ,m}, J1 = {1, 2, . . . , α} and J2 = {α + 1, α + 2, . . . ,m}.
Therefore if g ∈ Σa × Σm−a and g′ ∈ Σα × Σm−α we have, for t = 1, 2 and
v = 1, 2,

gwg′(Jt)
⋂

Iv = gw(Jt)
⋂

Iv = g(w(Jt)
⋂

g−1(Iv)) = g(w(Jt)
⋂

Iv).

Therefore if we set

kt,v = #(w(Jt)
⋂

Iv)

we have a well-defined map of sets from the double cosets to the 2×2 matrices
of the form described above because

k1,v + k2,v = #(Iv) =

 a if v = 1,

m− a if v = 2

and

kt,1 + kt,2, = #(Jt) =

 α if t = 1,

m− α if t = 2.
6



Next we consider the passage from the matrix of ki,j’s to a double coset. Write

J1 = J(k1,1)
⋃

J(k1,2), J2 = J(k2,1)
⋃

J(k2,2)

where J(k1,1) = {1, . . . , k1,1} and J(k2,1) = {α + 1, . . . , α + k2,1}. Similarly
write

I1 = I(k1,1)
⋃

I(k2,1), I2 = I(k1,2)
⋃

I(k2,2)

where I(k1,1) = {1, . . . , k1,1} and I(k1,2) = {a+ 1, . . . , a+ k1,2}. Since the or-
ders of I(ki,j) and J(ki,j) are both equal to ki,j there is a permutation, denoted
by w(k∗,∗) which sends J1

⋃
J2 to I1

⋃
I2 by the identity on J(k1,1) = I(k1,1)

and J(k2,2) = I(k2,2) and interchanges J(k1,2), J(k2,1) with I(k1,2), I(k2,1) in
an order-preserving manner.

Given the permutation w(k∗,∗) we have

#(w(k∗,∗)(J1)
⋂
I1) = #(J(k1,1)

⋂
I(k1,1)) = k1,1,

#(w(k∗,∗)(J1)
⋂
I2) = #(w(k∗,∗)(J(k2,1))

⋂
I(k1,2)) = k1,2,

#(w(k∗,∗)(J2)
⋂
I1) = #(w(k∗,∗)(J(k1,2))

⋂
I(k2,1)) = k2,1,

#(w(k∗,∗)(J2)
⋂
I2) = #(J(k2,2)

⋂
I(k2,2)) = k2,2

so that the map k∗,∗ 7→ Σa × Σm−aw(k∗,∗)Σα × Σm−α is a split injection.
In addition it is straightforward to verify that any permutation whose k∗,∗-
matrix equals that of w(k∗,∗) belongs to the same double coset as w(k∗,∗).
Hence the map is a bijection.

For example when a = 3, α = 4, k11 = 1 = k22, k21 = 2, k12 = 3

w(k∗,∗)
−1 =



1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1


w(k∗,∗) =



1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1


.

This permutation arises in another way as a permutation of the basis ele-
ments of tensor products of four vector spaces. Let

V1 = Fk11
q ⊕ Fk12

q ⊕ Fk21
q ⊕ Fk22

q and V2 = Fk11
q ⊕ Fk21

q ⊕ Fk12
q ⊕ Fk22

q .

We have the linear map

1⊕ T (k∗,∗)⊕ 1 : V1 −→ V2

which interchanges the order of the two central direct sum factors. The
basis for V1 is made in the usual manner from ordered bases {e1, . . . ek11},
{ek11+1, . . . ek11+k12}, {ek11+k12+1, . . . ek11+k12+k21} and {ek11+k12+k21+1, . . . em}
of Fk11

q , Fk12
q , Fk21

q and Fk22
q respectively. Similarly the basis for V2 is made

in the usual manner from ordered bases {v1, . . . vk11}, {vk11+1, . . . vk11+k21},
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{vk11+k21+1, . . . vk11+k21+k12} and {vk11+k21+k12+1, . . . vm} of Fk11
q , Fk21

q , Fk12
q and

Fk22
q respectively.
The linear map 1 ⊕ T (k∗,∗) ⊕ 1 sends the ordered set {e1, . . . , em} to the

order set {v1, . . . , vm} by ej 7→ vw(k∗,∗)(j).
Clearly

w(k∗,∗)Gk11 ×Gk12 ×Gk21 ×Gk22w(k∗,∗)
−1 = Gk11 ×Gk21 ×Gk12 ×Gk22

from which is it easy to see that

w(k∗,∗)Gα ×Gm−αw(k∗,∗)
−1

⋂
Ga ×Gm−a = Gk11 ×Gk21 ×Gk12 ×Gk22 .

So far we have shown that the (a,m− a)-component of m∗(m(X ⊗ Y )) is
the sum of terms, one for each w(k∗,∗), given by the induced Ga×Gm−a-action
on

Ind
Pa,m−a

Pa,m−a∩w(k∗,∗Pα,m−αw(k∗,∗)−1((w(k∗,∗)
−1)∗Inf

Pα,m−α

Gα×Gm−α
(X ⊗ Y )).

On the other hand, for each w(k∗,∗) there is a (a,m− a)-component of the
other composition we are studying given by

R(Gα ×Gm−α)
(−)

Uk11,k12
×Uk21,k22

−→ R(Gk11 ×Gk12 ×Gk21 ×Gk22)

1⊗T (k∗,∗)⊗1−→ R(Gk11 ×Gk21 ×Gk12 ×Gk22)

IndInf×IndInf−→ R(Ga ×Gm−a).

Composing this second route with the split surjection

R(Ga ×Gm−a)
Inf−→ R(Pa,m−a)

is equal to the composition

R(Gα ×Gm−α)
(−)

Uk11,k12
×Uk21,k22

−→ R(Gk11 ×Gk12 ×Gk21 ×Gk22)

1⊗T (k∗,∗)⊗1−→ R(Gk11 ×Gk21 ×Gk12 ×Gk22)
Inf−→

R(Pk11,k21,k12,k22)
Ind−→ R(Pa,m−a)

because the kernels of the quotient maps Pk11,k21,k12,k22 −→ Pk11,k21 and
Pa,m−a −→ Ga ×Gm−a are both equal to Ua,m−a.

This composition takes the Uk11,k12 × Uk21,k22-fixed points of X ⊗ Y with
the Gk11 × Gk12 × Gk21 × Gk22-action and then conjugates it by w(k∗,∗).
Alternatively it takes the w(k∗,∗)Uk11,k12 × Uk21,k22w(k∗,∗)

−1-fixed points of
(w(k∗,∗)

−1)∗(X ⊗ Y ) with the Gk11 ×Gk21 ×Gk12 ×Gk22-action. Now

w(k∗,∗)Uk11,k12 × Uk21,k22w(k∗,∗)
−1 ⊂ Ua,m−a.
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For example, in the small example given in the Appendix, Uk11,k12 × Uk21,k22

consists of matrices of the form

D =



1 a12 a13 a14 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 a57

0 0 0 0 0 1 a67

0 0 0 0 0 0 1


so that w(k∗,∗)Uk11,k12 × Uk21,k22w(k∗,∗)

−1 consists of matrices

w(k∗,∗)Dw(k∗,∗)
−1 =



1 0 0 a12 a13 a14 0
0 1 0 0 0 0 a57

0 0 1 0 0 0 a67

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

Since w(k∗,∗)Dw(k∗,∗)
−1’s act trivially we may inflate the representation to

Pk11,k21,k12,k22 (i.e. extending the action trivially on Uk11,k21,k12,k22) and then
induce up to a representation of Pa,m−a.

Now let us describe the isomorphism between the result of sending X ⊗ Y
via the second route and the Ua,m−a-fixed subspace of

Ind
Pa,m−a

Pa,m−a∩w(k∗,∗Pα,m−αw(k∗,∗)−1((w(k∗,∗)
−1)∗Inf

Pα,m−α

Gα×Gm−α
(X ⊗ Y )).

There are inclusions

w(k∗,∗)Pα,m−α)w(k∗,∗)
−1

⋂
Pa,m−a ⊂ Pk11,k21,k12,k22 ⊂ Pa,m−a.

For example, w(k∗,∗)Pα,m−αw(k∗,∗)
−1

⋂
P3,4, in the small example of the Ap-

pendix, consists of the matrices of the form

E ′ =



a11 a15 a16 a12 a13 a14 a17

0 a55 a56 0 0 0 a57

0 a65 a66 0 0 0 a67

0 0 0 a22 a23 a24 a27

0 0 0 a32 a33 a34 a37

0 0 0 a42 a43 a44 a47

0 0 0 0 0 0 a77


and, as we noted above, w(k∗,∗)Dw(k∗,∗)

−1 consists of the matrices

{(bij) ∈ w(k∗,∗)Pα,m−αw(k∗,∗)
−1

⋂
U3,4 | b17 = 0}.
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There is a bijection of cosets

Pk11,k21,k12,k22/w(k∗,∗)Pα,m−α)w(k∗,∗)
−1

⋂
Pa,m−a

∼= Ua,m−a/w(k∗,∗)Pα,m−α)w(k∗,∗)
−1

⋂
U3,4.

Therefore we may take the coset representationsXα to lie in the abelian group
Ua,m−a. In the small example the Xα’s may be taken to be of the form

Xα =



1 0 0 0 0 0 a
0 1 0 b c d 0
0 0 1 e f g 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

The isomorphism from the image of X⊗Y via the second route to the Ua,m−a-
fixed subspace of

Ind
Pa,m−a

Pa,m−a∩w(k∗,∗Pα,m−αw(k∗,∗)−1((w(k∗,∗)
−1)∗Inf

Pα,m−α

Gα×Gm−α
(X ⊗ Y ))

is given by

g ⊗Pk11,k21,k12,k22
v 7→

∑
Xα

gXα ⊗w(k∗,∗)Pα,m−α)w(k∗,∗)−1
T

Pa,m−a
v.

This concludes the proof of Theorem 3.3. The remainder of the Hopf
condition is given by the following result, which is proved in a similar manner
to Theorem 3.3 (see [11] p.175).

Theorem 3.5.
In the notation of §1, ε∗ is a ring homomorphism restricting to an isomor-

phism on R0.

4. Semi-direct products Gal(Fqn/Fq) ∝ GLtFqn

Let V be an irreducible representation of GLtFqn and let Σ ∈ Gal(Fqn/Fq)
denote the Frobenius substitution. Hence the representation Σi(V ) given by
transporting the GLtFqn-action by the i-th power of Σ is another irreducible
representation. Suppose that n = sd and that

V,Σ(V ),Σ2(V ), . . . ,Σs−1(V )

are inequivalent GLtFqn-irreducibles but that V and Σs(V ) are equivalent
GLtFqn-irreducibles.

Therefore V (c.f. [9] Chapter Two, §6; see also Chapter 8 and Chapter
9, §3) extends to an irreducible representation Ṽ of the semi-direct product
Gal(Fqbn/Fqs) ∝ GLtFqn for some b ≥ 1, where Gal(Fqbn/Fqs) acts via first
projecting onto Gal(Fqn/Fqs).

In discussions of the semi-direct product I shall attempt to follow the nota-
tional conventions of ([7] p.36) and ([9] Chapter 9, §3.1) as opposed to those
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of [6]. Explicitly, if C acts on G via λ : C −→ Aut(G) then the semi-direct
product C ∝ G is the group whose underlying set is C×G with multiplication
given by

(c1, g1) · (c2, g2) = (c1c2, g1λ(c1)(g2)), ci ∈ C, gi ∈ G.
We may form the induced representation

V̂ = Ind
Gal(F

qbn/Fq)∝GLtFqn

Gal(F
qbn/Fqs )∝GLtFqn

(Ṽ )

which restricts to give

⊕s−1
i=0 Σi(V ) ∈ R(GLtFqn).

Also
HomGal(F

qbn/Fq)∝GLtFqn (V̂ , V̂ )

∼= HomGal(F
qbn/Fqs )∝GLtFqn (Ṽ , Ind

Gal(F
qbn/Fq)∝GLtFqn

Gal(F
qbn/Fqs )∝GLtFqn

(Ṽ ))

∼= ⊕s−1
i=0 HomGal(F

qbn/Fqs )∝GLtFqn (Ṽ ,Σi(Ṽ ))

= HomGal(F
qbn/Fqs )∝GLtFqn (Ṽ , Ṽ )

as is seen by restricting representations to GLtFqn . Since Ṽ is irreducible its

endomorphism ring is 1-dimensional and so therefore is that of V̂ .
In the terminology of [6] when s > 1 V̂ is called an irreducible representa-

tion of the second kind and when s = 1 it is called an irreducible representa-
tion of the first kind..

Let θ : Gal(Fqbn/Fq) −→ C∗ be a character which is trivial on Gal(Fqbn/Fqs).
Then

θ · V̂ = Ind
Gal(F

qbn/Fq)∝GLtFqn

Gal(F
qbn/Fqs )∝GLtFqn

(θ · Ṽ ) = V̂ .

All the irreducibles of Gal(Fqbn/Fq) ∝ GLtFqn are of the form V̂ for some
s dividing n. For if W is an irreducible of Gal(Fqbn/Fq) ∝ GLtFqn then its
restriction to GLtFqn must have the form

mV1 ⊕mΣ(V1)⊕ . . .⊕mΣs−1(V1)

with V1 irreducible and Σs(V1) = V1. Therefore V1 extends to an irreducible

Ṽ1 and there is a non-zero map of representations V̂1 −→ W which must be
an isomorphism (and so m = 1).

Twisting V̂ by a character θ which is non-trivial on Gal(Fqbn/Fqs) gives a
distinct irreducible. There are bn/s cosets of such θ’s so we have bn/s distinct
irreducibles

θ1V̂ , θ2V̂ , . . . , θbn/sV̂

each restricting to

⊕s−1
i=0 Σi(V ) ∈ R(GLtFqn).

11



By Shintani base change for finite general linear groups ([6]; see also [9]
Chapter 8 and Chapter 9, §3) there is a bijection between GLtFqn-irreducibles
V such that Σs(V ) = V and the irreducibles of GLtFqs . The V ’s in the

construction of V̂ are those which are fixed by Σs but by no Σu with u a
proper divisor of s.

En route to the base change result one finds ([6] Theorem 1) that b = 1 or
b = 2 suffices for the extension to the semi-direct product which was discussed
in this section. This is explained in §6 just after the statement of Theorem
6.1.

5. R̃ and R′′

LetK = R(Gal(Fqn/Fq)) which is the ring of integral linear combinations of
characters χ : Gal(Fqn/Fq) −→ C∗. Suppose that G is a subgroup of GLtFqn

which is preserved by the Gal(Fqn/Fq)-action. Let S(G) denote the subset of
the irreducibles Irr(Gal(Fqn/Fq) ∝ G) of the first kind (i.e. representations
which are irreducible when restricted toG). Tensoring with a Galois character
χ permutes the set S(G) making Z[S(G)] into a free K-module.

Define R̃ = ⊕t≥0 R̃t where R̃t = R(Gal(Fqn/Fq) ∝ GLtFqn) for a fixed

choice of n. Define R′′ = ⊕t≥0 S(GLtFqn) ⊂ R̃.
For each Gal(Fqn/Fq)-invariant irreducible V ∈ Irr(GLtFqn)Gal(Fqn/Fq) choose

an irreducible Ṽ ∈ R̃t which restricts to V . The set of irreducibles which
restrict to V are given by {χ ⊗ Ṽ } as χ varies through Galois characters.
Therefore there is an isomorphism of K-modules, depending on the choice of
Ṽ ’s, of the form

λGLtFqn : K[Irr(GLtFqn)Gal(Fqn/Fq)]
∼=−→ R′′

t = S(GLtFqn)

given by sending χ ⊗ V to χ ⊗ Ṽ . Hence R̃ is a K-module of which R′′ =
⊕t≥0 S(GLtFqn) is a free K-submodule.

The first objective of this section is to make R̃ into a connected, graded K-
algebra1 of which R′′ is a connected, graded K-subalgebra. Clearly we have
an isomorphism ε : K −→ R̃0 = R′′

0 which shows that these are connected
K-algebras.

Multiplication:

Let Pa,b be the usual parabolic subgroup of GLa+bFqn . Then inflation
induces a K-module homomorphism of representation rings

Infa,b : R(Gal(Fqn/Fq) ∝ (GLaFqn ×GLbFqn)) −→ R(Gal(Fqn/Fq) ∝ Pa,b).

We also have induction maps

Inda,b : R(Gal(Fqn/Fq) ∝ Pa,b) −→ R(Gal(Fqn/Fq) ∝ GLa+bFqn).

1The structure map giving the multiplication in this algebra first appeared in ([6] Defi-
nition 2.4)
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Let V andW be representations of Gal(Fqn/Fq) ∝ GLaFqn) and GalFqn/Fq) ∝
GLbFqn) respectively. Define a representation V ⊗′W of Fqn/Fq) ∝ (GLaFqn×
GLbFqn) on the underlying vector space of V ⊗W by

(g,X, Y )(v ⊗ w) = (g,X)(v)⊗ (g, Y )(w).

The multiplication on R̃ is defined, following the GLFqn-case, by

m(V ⊗W ) = Inda,b(Infa,b(V ⊗′W )) ∈ R̃a+b.

If χ belongs to the character group of Gal(Fqn/Fq) then

m(χV ⊗W ) = m(V ⊗ χW ) = χm(V ⊗W ) ∈ R̃a+b.

If V and W are representations in R′′
a and R′′

b respectively we shall show
that m(V ⊗W ) ∈ R′′

a+b.
By additivity it suffices to assume that V,W are irreducibles (of the first

kind). Then, by the construction of all the irreducibles of the finite general
linear groups which first appears in [3] and is reiterated in ([4] §1) and ([9]
Chapter 11, §2), m(V ⊗W ) is irreducible when restricted to GLa+bFqn unless
W = χ ⊗ V . In that case m(V ⊗ (χ ⊗W )) = χ ⊗m(V ⊗ V ). Restricted to
GLa+bFqn the latter is known to be the sum of two irreducibles picked out
by the idempotents of the symmetric group on two letters2. However these
idempotents also decompose m(V ⊗V ) into two irreducibles of the first kind,
in the same way.

Note that m factorises through

m : R̃⊗K R̃ −→ R̃

which is a K-module homomorphism. Also m is associative.
This discussion established the following result.

Theorem 5.1.
With the notation introduced above R̃ is a graded K-algebra of which R′′

is a graded K-subalgebra.

Let V be an irreducible of Gal(Fqn/Fq) ∝ GLa+bFqn . We are not going

to define a comultiplication on R̃. However, we close this section with the
observation that sending V to its Ua,b-fixed points yields a homomorphism

m∗ : R̃a+b −→ R(Gal(Fqn/Fq) ∝ (GLaFqn ×GLbFqn))

which covers (via the restriction to general linear groups) the comultiplication
defined in §3 on the PSH algebra ⊕t≥0 R(GLtFqn).

2These idempotents will show up again in §6.
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6. Shintani base change

Let us recall the main result of [6] which, for our notation for the semi-direct
product, is stated in the following form:

Theorem 6.1. ([6] Theorem 1; see also Lemmas 2.7 and 2.11)
(i) Let ρ be a finite-dimensional complex irreducible representation of

GLnFq. Then there exists an irreducible representation ρ̃ of the semi-direct
product Gal(Fqm/Fq) ∝ GLnFqm which satisfies, for all g ∈ GLnFqm ,

χρ̃(Σ, g) = εχρ([gΣ(g) . . .Σm−1(g)])

where ε = ±1 is independent of g. Here [gΣ(g) . . .Σm−1(g)] denotes the
unique conjugacy class in GLnFq given by the intersection of the conjugacy
class of gΣ(g) . . .Σm−1(g) in GLnFqm with GLnFq.

(ii) The Shintani base change correspondence (see [9] Appendix I, §4)

Sh : Irr(GLnFqm)Gal(Fqm/Fq) ∼=−→ Irr(GLnFq)

is given by

Sh(Res
Gal(Fqm/Fq)∝GLnFqm

GLnFqm
(ρ̃)) = ρ.

In this Theorem χρ denotes the character function of ρ. In part (ii) of
the theorem it should be noted that ρ̃ is an irreducible of the first kind
because the χρ̃(Σ, g)’s are not identically zero ([6] Lemma 1.1(i)) and therefore

Res
Gal(Fqm/Fq)∝GLnFqm

GLnFqm
(ρ̃) is an irreducible representation.

Given ρ̃ as in part (i) of the theorem write ρ̃(z, 1) = Xz for z ∈ Gal(Fqm/Fq)
and ρ̃(1, g) = ρ̂(g) for g ∈ GLnFqm . Since (1, g)(z, 1) = (z, g) we have

Xzρ̂(g) = ρ̂(z(g))Xz

so that χρ̃(Σ, g) = Trace(ρ̃(1, g)XΣ) (see [6] Theorem 1)3.
For ρ̃ and ρ̂ as in Theorem 6.1 the matrix XΣ will satisfy Xm

Σ = 1. How-
ever, as mentioned in the statement of ([6] Theorem 1), for a general Galois
invariant ρ̂ there exists a choice satisfying Xm

Σ = ±1. When Xm
Σ = 1 the

extension ρ̃ of ρ̂ may be constructed as in Theorem 6.1 but when Xm
Σ = −1

the extension of ρ̂ must be a representation of Gal(Fq2m/Fq) ∝ GLnFqm .
Given a choice of ρ̂ the irreducible extension ρ̃ to the semi-direct product,

which we may take to be Gal(Fq2m/Fq) ∝ GLnFqm in general, is unique up to
twists by Galois characters.

Next we shall examine the multiplicative property of the Shintani corre-
spondence.

Suppose that ρ1 ∈ Irr(GLaFq) and ρ2 ∈ Irr(GLbFq). By Theorem 6.1 there
exist ρ̃1 ∈ Irr(Gal(Fqm/Fq) ∝ GLaFq) and ρ̃2 ∈ Irr(Gal(Fqm/Fq) ∝ GLbFq)
such that for i = 1, 2

χρ̃i
(Σ, g) = εiχρi

([gΣ(g) . . .Σm−1(g)])

3The formula of [6] differs from mine because we have used different formulae for the
multiplication in a semi-direct product.
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where εi = ±1 is independent of g.
Therefore, by ([6] Definition 2.4 and Lemma 2.9),

χm(ρ̃1,ρ̃2)(Σ, g) = ε1ε2χm(ρ1,ρ2)([gΣ(g) . . .Σm−1(g)])

where on the left-hand side m denotes the multiplication in R̃ of §5 and on
the right-hand side the multiplication in R of §3.

If ρ1 6= ρ2 then by the Shintani correspondence the restrictions of ρ̃1 and
ρ̃2 to the general linear groups are distinct so that ρ̃1 and ρ̃2 are distinct
irreducible representations. Therefore m(ρ̃1, ρ̃2) and m(ρ1, ρ2) are both irre-
ducible and

Sh(Res
Gal(Fqm/Fq)∝GLa+bFqm

GLa+bFqm
(m(ρ̃1, ρ̃2))) = m(ρ1, ρ2).

However

Res
Gal(Fqm/Fq)∝GLa+bFqm

GLa+bFqm
(m(ρ̃1, ρ̃2))

= m(Res
Gal(Fqm/Fq)∝GLaFqm

GLaFqm
(ρ̃1),Res

Gal(Fqm/Fq)∝GLbFqm

GLbFqm
(ρ̃2)).

Therefore, if ρ̂1 = Res
Gal(Fqm/Fq)∝GLaFqm

GLaFqm
(ρ̃1) and ρ̂2 = Res

Gal(Fqm/Fq)∝GLbFqm

GLbFqm
(ρ̃2),

then
Sh(m(ρ̂1, ρ̂2)) = m(Sh(ρ̂1), Sh(ρ̂2)).

If a = b and ρ1 = ρ2 and (see §5 on “multiplication”) m(ρ1, ρ1) is not
irreducible but there is an idempotent e of the symmetric group on two letters
such that

m(ρ1, ρ1) = em(ρ1, ρ1) + (1− e)m(ρ1, ρ1)

and the two summands on the right are irreducible. Similarly

m(ρ̃1, ρ̃1) = em(ρ̃1, ρ̃1) + (1− e)m(ρ̃1, ρ̃1)

where the two summands on the right are irreducible. In addition

χem(ρ̃1,ρ̃1)(Σ, g) = ε1ε1χem(ρ1,ρ1)([gΣ(g) . . .Σm−1(g)])

and
χ(1−e)m(ρ̃1,ρ̃1)(Σ, g) = ε1ε1χ(1−e)m(ρ1,ρ1)([gΣ(g) . . .Σm−1(g)]).

Therefore
Sh(em(ρ̂1, ρ̂1)) = em(Sh(ρ̂1), Sh(ρ̂1))

and
Sh((1− e)m(ρ̂1, ρ̂1)) = (1− e)m(Sh(ρ̂1), Sh(ρ̂1))

and adding these relations yields

Sh(m(ρ̂1, ρ̂1)) = m(Sh(ρ̂1), Sh(ρ̂1)).

Set R′ = ⊕t≥0 R
′
t where R′

t = Z[Irr(GLtFqm)Gal(Fqm/Fq)], the subgroup of
R(GLtFqm) spanned by Z-linear combination of irreducible representations
which are invariant under the Galois action. In Theorem 5.1 we saw that R′′

is a subalgebra of R̃ and a similar argument shows that R′ is a subalgebra of
⊕t≥0 R(GLtFqm).
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Theorem 6.2.
With the notation introduced above R′ is a graded subalgebra of the algebra

⊕t≥0 R(GLtFqm). Furthermore the restriction map

R̃ = ⊕t≥0 R(Gal(Fqm/Fq) ∝ GLtFqm) −→ ⊕t≥0 R(GLtFqm)

restricts to a surjective algebra homomorphism of the form R′′ −→ R′.

The Shintani correspondence of Theorem 6.1 is a bijection of set of irre-
ducible representations. Extending it by additivity yields an isomorphism of
abelian groups

Sh : R′ ∼=−→ R.

The preceding discussion concerning the multiplicativity of the Shintani
correspondence establishes the following result.

Theorem 6.3.
The Z-linear extension of the Shintani correspondence of Theorem 6.1

yields an algebra isomorphism

Sh : R′ ∼=−→ R

between the Hopf algebras R′ introduced above and R of §3.

The algebra isomorphism Sh−1 of Theorem 6.3 yields an injective algebra
homomorphism

R
∼=−→ R′ ⊂ ⊕t≥0 R(GLtFqm)

between two Hopf algebras is not a Hopf algebra homomorphism. This is
illustrated by the following GL2Fq2p example of ([6] p.412; see also [9] Chapter
Eight, §1.3).

Suppose that m = 2p. Consider the Galois extension Fq2p/Fq and the irre-
ducible representation of GL2Fq2p given by m(χ1, χ2) (in [9] this is denoted by
is R(χ1, χ2)) with χi : F∗q2p −→ C∗ and Frobenius action Σ(χ1) = χ2,Σ(χ2) =
χ1 so that

Σ∗R(χ1, χ2) = R(χ1, χ2).

This is decomposable in the Hopf algebra ⊕t≥0 R(GLtFq2p) and therefore
is not primitive and therefore it is not primitive in R.

Hence Gal(Fq2p/Fq2) = 〈Σ2〉 fixes χ1 and χ2 so that, by Hilbert’s Theorem
90,

χ1 = Θ · Norm : F∗q2p −→ F∗q2 −→ C∗

and
χ2 = Σ∗(Θ) · Norm : F∗q2p −→ F∗q2 −→ C∗.

Therefore Θ 6= Σ∗(Θ).
From ([6]; [8], Chapter Two) Sh(R(χ1, χ2)) = R(Θ), the Weil representa-

tion associated to Θ, which is an irreducible representation of GL2Fq. How-
ever the Weil representation is an example of a irreducible cuspidal represen-
tation of GL2Fq and, as explained in [11], these are the same as the positive
primitive irreducibles in the PSH-algebra for GLFq.
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The character Θ is an example of a regular character of the multiplicative
group of a finite field. In fact, as a consequence of the Shintani correspondence
together with ([10] Theorem 8-6), the character functions of all the cuspidal
representations of the GLtFq’s are calculated in ([6] Theorem 2) and, in addi-
tion, these cuspidals are shown to be in one-one correspondence with regular
characters4.

7. Counting cuspidals irreducibles of GLnFq

This comes from ([6] §3) which culminates in the proof of ([6] Theorem 2).
Let Bt ⊂ GLtFqn denote the Borel subgroup of upper triangular matrices so

that Bt = DtUt, the semi-direct product of the diagonal and the unitriangular
matrices, Dt and Ut, respectively.

Suppose that Fq ⊂ Fqn ⊂ Fqm where m = nd. A character χ : F∗qn −→ C∗

is regular if g ∈ Gal(Fqn/Fq) and g(χ) = χ implies that g = 1 (i.e. χ 6= Σl(χ)
for l = 1, . . . , n− 1).

Define χ̃ to be the composition χ̃ = χ · NormFqm/Fqn : F∗qm −→ C∗.
Define a character φχ : BnFqm −→ C∗ by the formula

φχ(Xi,j) =
n∏

i=1

Σi−1(χ) · NormFqm/Fqn (Xi,i).

Therefore, by the regularity of χ, the character φχ is regular in the sense that
φχ 6= w∗(φχ), the conjugate of φχ by a permutation matrix w.

Define a function ψχ on GLnFqm by the formula

ψχ(g) =

 φχ(Xi,j) if g = (Ui,j)w(Xi,j)

0 otherwise

where (Ui,j) ∈ Un, (Xi,j) ∈ B and w is the permutation matrix given by

w−1 =


0 1 0 . . . . . . 0
0 0 1 . . . 0
...

...
...

...
...

...
0 0 0 . . . . . . 1
1 0 0 . . . . . . 0

 .

4There are other ways to prove ([6] Theorem 2). For example, in ([3] Theorem 13 p.439)
the cuspidals are classified and denoted by gλ’s. Also the result can be derived from ([2]
Theorem 9.3.2) which asserts that the irreducible Deligne-Lusztig characters ±RG

T (θ), for
regular θ will be cuspidal if and only if the torus T does not lie in any proper Frobenius-
stable Levi subgroup of G. I am grateful to Alexander Stasinski for explaining the latter
argument to me.
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Theorem 7.1. ([6] Theorem 2)5

(i) If χ is a regular character of F∗qn there exists an m-th root of unity ξm
and an irreducible cuspidal representation ρχ of GLnFq such that

ξmρχ(NFqn/Fq(g)) =
q−m(n−1)/2

|BnFqm|
∑

X∈GLnFqm

ψχ(XgΣ(X)−1).

(ii) For two regular characters χ1, χ2 ρχ1 = ρχ2 if and only if χ1 = Σl(χ2)
for some l. Moreover any cuspidal of GLnFq is equal to ρχ for some regular
character χ of F∗qn .

Sketch proof of Theorem 7.1
By Mackey’s irreducibility criterion (proved by Frobenius reciprocity and

the Double Coset Formula for the restriction of an induced representation)

Ind
GLnFqm

BnFqm
(φχ) is irreducible. This uses the fact that the permutation matrices

are the double coset representatives of BnFqm\GLnFqm/BnFqm .
In the tensor product notation for this induced representation as a left

GLnFqm we have g ⊗BnFqm 1 = gb ⊗BnFqm φχ(b−1) so that we may think of
g ⊗BnFqm 1 as the complex-valued function fg which is defined by f(x) = 0

unless x ∈ gBnFqm and if x = gb with b ∈ BnFqm then fg(x) = φχ(x−1g) =
φχ(b−1).

This makes sense because

x⊗BnFqm fg(x) = gb⊗BnFqm φχ(b−1) = g ⊗BnFqm 1.

Note that if b′ ∈ BnFqm then fg(xb
′) = fg(gbb

′) = φχ((b′)−1b−1g−1g) =
φχ(b′)−1fg(x).

In the tensor-product notation for the induced representation the function
fg, transforming as above, corresponds to

g ⊗BnFqm 1 =
∑

h∈GLnFqm/BnFqm

h⊗BnFqm fg(h) ∈ C[GLnFqm ]⊗BnFqm Cφχ .

To switch from Shintani’s conventions to mine we need to define a function
f sh

g−1 by f sh
g−1(x) = fg(x

−1). Then, if b, b′ ∈ BnFqm , f sh
g−1(bx) = fg(x

−1b−1) is

zero unless x−1b−1 = gb′ and in the latter case

f sh
g−1(bx) = fg(x

−1b−1) = φχ(bxg) = φχ(b)fg(x
−1) = φχ(b)f sh

g−1(x).

Following Shintani if w is a permutation matrix write U−
w = U

⋂
w−1U−w

where U = UnFqm and U− is the transpose of U (i.e. the lower unitriangular

5This result is stated in the conventions for semi-direct products, GL-norms etc of [9]
rather than those of [6].
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matrices). For the permutation matrix introduced above one finds that

U−
w−1 = {u =


1 u1,2 u1,3 . . . . . . u1,n

0 1 0 . . . . . . 0
0 0 1 . . . . . . 0
...

...
...

...
...

...
0 0 0 . . . . . . 1

}.

Now consider the product of a matrix in U−
w−1 and an unitriangular matrix(

1 α
0 In−1

) (
1 β
0 B

)
=

(
1 β + αB
0 B

)
=

(
1 0
0 B

) (
1 β + αB
0 In−1

)
where β, α are row vectors and B is upper unitriangular (n − 1) × (n − 1)
matrix. Also we have the matrix relation

w−1

(
1 0
0 B

)
w =

(
B 0
0 1

)
.

Suppose that b is the upper triangular matrix

b = D

(
1 β
0 B

)
where D is the diagonal matrix D = diag(d1, d2, . . . , dn). Then there exist
matrices u, u′, u′′ ∈ U−

w−1 where

u =

(
1 α
0 In−1

)
such that

w−1uΣ(b) = w−1Σ(D)ww−1u′
(

1 Σ(β)
0 Σ(B)

)
= w−1Σ(D)w

(
Σ(B) 0

0 1

)
w−1u′′.

Notice that

w−1Σ(D)w

(
Σ(B) 0

0 1

)
∈ BnFqm

and that

φχ(w−1Σ(D)w

(
Σ(B) 0

0 1

)
) = φχ(b).

In addition, as u runs through U−
w−1 so does u′′.

Then Shintani defines IΣ by the formula

(IΣf
sh
g )(x) = q−m(n−1)/2

∑
u∈U−

w−1

f sh
g (w−1uΣ(x)).

and the above discussion explains why (IΣf
sh
g )(bx) = φχ(b)(IΣf

sh
g )(x).

Therefore, in my conventions, the right hand side of the above equation is

(IΣfg−1)(x−1) = q−m(n−1)/2
∑

u∈U−
w−1

fg−1(Σ(x−1)uw).
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In the tensor product notation this is equivalent to

IΣ(g ⊗BnFqm 1) =
∑

h∈GLnFqm/BnFqm

∑
u∈U−

w−1

h⊗BnFqm fg(Σ(h)uw).

Therefore

g′IΣ(g ⊗BnFqm 1)

=
∑

h∈GLnFqm/BnFqm

∑
u∈U−

w−1
g′h⊗BnFqm fg(Σ(h)uw)

=
∑

h′∈GLnFqm/BnFqm

∑
u∈U−

w−1
h′ ⊗BnFqm fg(Σ((g′)−1)Σ(h′)uw)

=
∑

h′∈GLnFqm/BnFqm

∑
u∈U−

w−1
h′ ⊗BnFqm fΣ(g′)g(Σ(h′)uw)

= IΣ(Σ(g′)g ⊗BnFqm 1).

Set ρ = Ind
GLnFqm

BnFqm
(φχ). By ([6] Lemma 3.2) Im

Σ = 1 and

ρ(Σ(g′)) · I−1
Σ = I−1

Σ · ρ(g′).

The multiplication in my convention for semi-direct products is given by
(c, g)(c′, g′) = (cc′, gc(g′)). With this convention

(Σ, 1)(1, g) = (Σ,Σ(g)) = (1,Σ(g))(Σ, 1)

so the irreducible representation ρ extends to an irreducible ρ̃ on Gal(Fqm/Fq) ∝
GLnFqm in which (Σ, g) acts via I−1

Σ · ρ(g) = IΣ−1 · ρ(g). Therefore, by ([6]
p.409),

Trace(ρ̃(Σ, g) =
q−m(n−1)/2

|BnFqm|
∑

X∈GLnFqm

ψχ(XgΣ(X)−1).

To show that Sh(ρ) = ρχ is a cuspidal irreducible of GLnFq it suffices to
show that for any pair of irreducibles ρ1 ∈ Irr(GLaFq) and ρ2 ∈ Irr(GLn−aFq)
that ρχ is not an irreducible constituent of m(ρ1 ⊗ ρ2). By Theorem 6.3,
applying the Shintani correspondence up to Fqm , Sh−1(ρ1) must be equivalent
to the PSH algebra product of Σij(χ)’s as ij ranges over some a proper subset
of 1, 2, . . . , n. However this is impossible because any such product is not
Galois invariant.

Similarly, applying the Shintani correspondence up to Fqm , Sh−1(ρχ1) =
Sh−1(ρχ2) implies that the Galois orbits of χ1 and χ2 coincide.

Finally, the discussion shows that the number of distinct regular characters
of F∗qn is less than or equal to the number of inequivalent irreducible cuspidal
representations of GLnFq. The fact that these numbers are in fact equal
follows from a counting argument given in ([10] Theorem 8.6). �
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8. Appendix: An example of w(k∗,∗)Pα,m−α)w(k∗,∗)
−1

⋂
Pa,m−a

In the notation of the discussion of Double Cosets in §3 let

m = 7, a = 3, α = 4, k11 = 1 = k22, k21 = 2, k12 = 3

and consider the double coset representative

w(k∗,∗) =



1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1


.

If (aij) ∈ G7 then the conjugate by w = w(k∗,∗) takes the form

w(aij) =



a11 a15 a16 a12 a13 a14 a17

a51 a55 a56 a52 a53 a54 a57

a61 a65 a66 a62 a63 a64 a67

a21 a25 a26 a22 a23 a24 a27

a31 a35 a36 a32 a33 a34 a37

a41 a45 a46 a42 a43 a44 a47

a71 a75 a76 a72 a73 a74 a77


.

In order that w(aij) = w(aij)w
−1 lies in wG4 × G3w

−1 it must have the
form

w(aij) =



a11 0 0 a12 a13 a14 0
0 a55 a56 0 0 0 a57

0 a65 a66 0 0 0 a67

a21 0 0 a22 a23 a24 0
a31 0 0 a32 a33 a34 0
a41 0 0 a42 a43 a44 0
0 a75 a76 0 0 0 a77


and so to lie in the intersection w(G4 ×G3)

⋂
G3 ×G4 it must have the form

w(aij) =



a11 0 0 0 0 0 0
0 a55 a56 0 0 0 0
0 a65 a66 0 0 0 0
0 0 0 a22 a23 a24 0
0 0 0 a32 a33 a34 0
0 0 0 a42 a43 a44 0
0 0 0 0 0 0 a77


= A′′.

Therefore in this example

wG4 ×G3w
−1

⋂
G3 ×G4 = Gk11 ×Gk21 ×Gk12 ×Gk22 .
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In order that w(aij) = w(aij)w
−1 lies in wP4,3w

−1 it must have the form

w(aij) =



a11 a15 a16 a12 a13 a14 a17

0 a55 a56 0 0 0 a57

0 a65 a66 0 0 0 a67

a21 a25 a26 a22 a23 a24 a27

a31 a35 a36 a32 a33 a34 a37

a41 a45 a46 a42 a43 a44 a47

0 a75 a76 0 0 0 a77


and so to lie in the intersection wP4,3w

−1
⋂
P3,4 it must have the form

w(aij) =



a11 a15 a16 a12 a13 a14 a17

0 a55 a56 0 0 0 a57

0 a65 a66 0 0 0 a67

0 0 0 a22 a23 a24 a27

0 0 0 a32 a33 a34 a37

0 0 0 a42 a43 a44 a47

0 0 0 0 0 0 a77


= C.

A matrix in wP4,3w
−1

⋂
G3 ×G4 has the form

w(aij) =



a11 a15 a16 0 0 0 0
0 a55 a56 0 0 0 0
0 a65 a66 0 0 0 0
0 0 0 a22 a23 a24 a27

0 0 0 a32 a33 a34 a37

0 0 0 a42 a43 a44 a47

0 0 0 0 0 0 a77


= A

and a matrix in wP4,3w
−1

⋂
U3,4 has the form

w(aij) =



1 0 0 b12 b13 b14 b17
0 1 0 0 0 0 b57
0 0 1 0 0 0 b67
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


= B.

Choosing

b12 =
a12

a11
, b13 =

a13

a11
, b14 =

a14

a11

X =

 a11 a15 a16
0 a55 a56
0 a65 a66

 , X

 b17
b57
b67

 =

 a17
a57
a67


shows that AB = C and therefore

P3,4

⋂
wP4,3w

−1 = ((G3 ×G4)
⋂
wP4,3w

−1 · (U3,4

⋂
wP4,3w

−1).
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In order that w(aij) = w(aij)w
−1 lies in wU4,3w

−1 it must have the form

w(aij) =



1 a15 a16 0 0 0 a17

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 a25 a26 1 0 0 a27

0 a35 a36 0 1 0 a37

0 a45 a46 0 0 1 a47

0 0 0 0 0 0 1


and to lie in wU4,3w

−1
⋂
G3 ×G4 it must have the form

w(aij) =



1 a15 a16 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 a27

0 0 0 0 1 0 a37

0 0 0 0 0 1 a47

0 0 0 0 0 0 1


= A′.

To lie in wU4,3w
−1

⋂
U3,4 a matrix must have the form

w(bij) =



1 0 0 0 0 0 b17
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


= B′

and to lie in wU4,3w
−1

⋂
P3,4 it must have the form

w(aij) =



1 a15 a16 0 0 0 a17

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 a27

0 0 0 0 1 0 a37

0 0 0 0 0 1 a47

0 0 0 0 0 0 1


= C ′.

Therefore, choosing A′, B′, C ′ in a similar manner to the case of A,B,C
shows that

P3,4

⋂
wU4,3w

−1 = ((G3 ×G4)
⋂
wU4,3w

−1) · (U3,4

⋂
wU4,3w

−1).
23



From the matrix immediately preceding A′′ in order that a matrix lies in
wG4 ×G3w

−1
⋂
U3,4 it must have the form

w(bij) =



1 0 0 b12 b13 b14 0
0 1 0 0 0 0 b57
0 0 1 0 0 0 b67
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


= B′′

and to lie in to lie in wG4 ×G3w
−1

⋂
P3,4 it must have the form the form

w(aij) =



a11 0 0 a12 a13 a14 0
0 a55 a56 0 0 0 a57

0 a65 a66 0 0 0 a67

0 0 0 a22 a23 a24 0
0 0 0 a32 a33 a34 0
0 0 0 a42 a43 a44 0
0 0 0 0 0 0 a77


= C ′′.

Therefore, choosing A′′, B′′, C ′′ in a similar manner to the case of A,B,C
shows that

P3,4

⋂
wG4 ×G3w

−1 = ((G3 ×G4)
⋂
wG4 ×G3w

−1) · (U3,4

⋂
wG4 ×G3w

−1).
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