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1. Lecture One: G finite or G/Z(G) finite.

Arbitrary k algebraically closed field φ : Z(G) −→ k∗

Ĝ = Hom(G, k∗) continuous homomorphisms

hyperHecke algebra Hcmc(G)

H k-vector space on triples [(K,ψ), g, (H,φ)] such that Z(G) ⊆ H,K, φ, ψ
restrict to give φ on Z(G)

(K,ψ) ≤ (g−1Hg, (g)∗(φ))

which means that K ≤ g−1Hg and that ψ(k) = φ(h) where k = g−1hg for
h ∈ H, k ∈ K.

product

[(H,φ), g1, (J, µ)] · [(K,ψ), g2, (H,φ)] = [(K,ψ), g1g2, (J, µ)]

and zero otherwise.

Hcmc(G) is algebra given by H modulo relations

[(K,ψ), gk, (H,φ)] = ψ(k−1)[(K,ψ), g, (H,φ)]

and
[(K,ψ), hg, (H,φ)] = φ(h−1)[(K,ψ), g, (H,φ)].

The usual Hecke algebra HG is the subalgebra of Hcmc(G) where all the
φ’s and ψ’s are trivial.

Date: 10 September 2019.
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Induced representations and Comparison of inductions

In the case of finite groups this Appendix compares the “tensor product
of modules” model of an induced representation with the “function space”
model1.

Suppose that H ⊆ G are finite groups and that W is a vector space over
an algebraically closed field k together with a left H-action given by a homo-
morphism

φ : H −→ Autk(W ).

In this case the functional model for the induced representation is given by
the k-vector space of functions X(H,φ) consisting of functions of the form
f : G −→ W such that f(hg) = φ(h)(f(g)). The left G-action on these
functions is given by (g · f)(x) = f(xg).

For w ∈ W we have a function fw, supported in H and satisfying
(h · fw) = fφ(h)(w) for h ∈ H so that fw(1) = w. We have a left k[H]-module
map

f : W −→ X(H,φ)

defined by w 7→ fw.

The map f induces a left k[G]-module map, which is an isomorphism,

f̂ : IndGH(W ) = k[G]⊗k[H] W
∼=−→ X(H,φ)

given by f̂(g ⊗k[H] w) = g · fw.

Henceforth, in this Appendix, I shall consider only the case when
dimk(W ) = 1. In this case W = kφ will denote the H-representation given
by the action h · v = φ(h)v for h ∈ H, v ∈ k.

As in Definition §2, write [(K,ψ), g, (H,φ)] for any triple consisting of g ∈
G, characters φ, ψ on subgroups H,K ≤ G, respectively such that

(K,ψ) ≤ (g−1Hg, (g)∗(φ))

which means that K ≤ g−1Hg and that ψ(k) = φ(h) where k = g−1hg for
h ∈ H, k ∈ K.

We have a well-defined left k[G]-module homomorphism

[(K,ψ), g, (H,φ)] : k[G]⊗k[K] kψ −→ k[G]⊗k[H] kφ

given by the formula [(K,ψ), g, (H,φ)](g′ ⊗k[K] v) = g′g−1 ⊗k[H] v.

1In ([19] Chapter Two, Definition 1.1) my unreliable typography resulted in a superfluous
suffix “-1” which gives the right action. This this essay I have been more careful to give
the correct formula for the left action, since left actions are my usual preference.
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In order to define a left k[G]-homomorphism

[(K,ψ), g, (H,φ)] : X(K,ψ) −→ X(H,φ)

satisfying the relation

f̂ · [(K,ψ), g, (H,φ)] = [(K,ψ), g, (H,φ)] · f̂ : k[G]⊗k[K] kψ −→ X(H,φ)

we set
[(K,ψ), g, (H,φ)](g1 · fv) = (g1g

−1) · fv.

It is easy to see that transporting the map [(K,ψ), g, (H,φ)] from the tensor
product model of the induced representation to the function space model gives
the left k[G]-homomorphism whose well-definedness we have just verified.

Among the left k[G]-maps

k[G]⊗k[K] kψ −→ k[G]⊗k[H] kφ

we have the relations, h ∈ H, k ∈ K
[(K,ψ), gk, (H,φ)] = [(K,ψ), g, (H,φ)] · (1⊗k[K] ψ(k−1))

and
[(K,ψ), hg, (H,φ)] = (1⊗k[H] φ(h−1)) · [(K,ψ), g, (H,φ)].

Theorem Let M be the k-vector space which is given by the direct sum of
copies of the X(H,φ)’s. Then M is a left module over the hyperHecke algebra
Hcmc(G).

We shall be interested in the case when M contains at let one copy of X(H,φ)

for each (H,φ).

Roughly: k[G]mon, the monomial category of G has objects given
by the these M ’s and morphisms given by the hyperHecke algebra

The Double Coset Formula ([18] Theorem 1.2.40) is a functorial isomor-
phism describing the restriction of an induced representation. It is a conse-
quence of the J-orbit structure of the left action of a subgroup J ⊆ G on
G/H. This is a left k[J ]-isomorphism of the form

ResGJ IndGH(kφ)
α−→ ⊕z∈J\G/H IndJJ T

zHz−1((z−1)∗(kφ))

given by α(g ⊗H v) = j ⊗J T
zHz−1 φ(h)(v) for g = jzh, j ∈ J, h ∈ H. The

inverse of α is given by α−1(j ⊗J T
zHz−1 v) = jz ⊗H (v).

Remark: (i) For finite groups we can forget about the conditions on
(H,φ) relating to the centre and φ. This is only needed when Z(G) is infinite.

(ii) The objective is to define what we mean by an resolution of a left
k[G]-representation by an exact complex in k[G]mon.
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(iii) A natural construct as in (ii) would be of interest when G is finite
and k has positive characteristic, even though the resolution would have in-
finite length in that case, but be of finite type. For a finite group and k of
characteristic zero the resolution will be finite.

(iv) The irreducible (admissible) modular representations of a p-adic GLn
were classified in [11]. As we shall see, such representations also have mono-
mial resolutions (presumably of infinite length in general) whose behaviour
would be interesting.

2. Lecture Two: The bar-monomial resolution: I. finite
modulo the centre case

The poset ofMφ(G) of pairs (H,φ) admits a left G-action by conjugation

for which the G-orbit of (H,φ) will be denoted by (H,φ)G.

Definition
A finite (G, φ)-lineable left k[G]-module M2 is a left k[G]-module together

with a fixed finite direct sum decomposition

M = M1 ⊕ · · · ⊕Mm

where each of the Mi is a free k-module of rank one on which Z(G) acts via
φ and the G-action permutes the Mi. The Mi’s are called the lines of M . For
1 ≤ i ≤ m let Hi denote the subgroup of G with stabilises the line Mi. Then
there exists a unique φi ∈ Ĥiφ such that h · v = φi(h)v for all v ∈Mi, h ∈ Hi.

The pair (Hi, φi) ∈Mφ(G) is called the stabilising pair of Mi.

The k-submodule of M given by

M ((H,φ)) = ⊕1≤i≤m, (H,φ)≤(Hi,φi) Mi

is called the (H,φ)-fixed points of M .

A morphism between (G, φ)-lineable modules from M to N = N1⊕· · ·⊕Nn

is defined to be a k[G]-module homomorphism f : M −→ N such that

f(M ((H,φ))) ⊆ N ((H,φ))

for all (H,φ) ∈Mφ(G).

The (left) finite (G, φ)-lineable modules and their morphisms define an
additive category denoted by k[G],φmon.

By definition each (G, φ)-lineable module is a k-free k[G]-module so there
is a forgetful functor

V : k[G],φmon −→ k[G],φmod.

2Here I have taken my own terminological advice given in the footnote to ([19] Chapter
One, Definition 1.2).
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The usual natural operations and constructions for modules have analogues
in k[G],φmon.

The Mi’s are isomorphic to X(H,φ)’s and the morphisms are given by the
equivalence classes of the triples [(K,ψ), g, (H,φ)] in the hyperHecke algebra.
In fact they are the k[G],φmon-indecomposables.

Proposition
(i) The set of (G, φ)-lineeable modules given by

{X(H,φ) = IndGH(kφ) | (H,φ) ∈ G\Mφ(G)}

is a full set of pairwise non-isomorphic representatives for the isomorphism
classes of indecomposable objects in k[G],φmon. Moreover any object in

k[G],φmon is canonically isomorphic to the direct sum of objects in this set.

(ii) Let [(K,ψ), g, (H,φ)] be one of the basic generators of the hyperHecke
algebra Hcmc)(G) of §2 then we have a morphism

[(K,ψ), g, (H,φ)] ∈ Hom
k[G],φmon(IndGK(kψ), IndGH(kφ))

defined by the same formula as in the case of induced modules (see, Appendix:
Comparison of Inductions). In addition the composition of morphisms in

k[G],φmon coincides with the product in the hyperHecke algebra.

(iii) Let (K,ψ) ∈Mφ(G) and let N be an object of k[G],φmon. Then there
is a k-linear isomorphism

Hom
k[G],φmon(IndGK(kψ), N)

∼=−→ N ((K,ψ))

given by f 7→ f(1⊗K 1). The inverse isomorphism is given by

n 7→ ((g ⊗K v 7→ vg · n)).

Lemma Projectivity in k[G],φmon

Consider the diagram

M
h−→ N

f←− P

in which M,P ∈k[G],φ mon and N ∈k[G],φ mod with h, f being morphisms in

k[G],φmod. Assume, for all (H,φ) ∈Mφ(G), that

f(P ((H,φ))) ⊆ h(M ((H,φ))).

Then there exists j ∈ Hom
k[G],φmon(P,M) such that h · j = f .
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In particular we include the situation where N ′ ∈k[G],φ mon with h, f

being morphisms to N ′ in k[G],φmon and the diagram above being the result

of applying the forgetful functor V with N = V(N ′).

For V ∈k[G],φ mod and (H,φ) ∈ Mφ(G) define the (H,φ)-fixed points of
V by

V (H,φ) = {v ∈ V | h · v = φ(h)v for all h ∈ H}.

Definition ([19] Chapter One §2)
Let V ∈k[G],φ mod. A k[G],φmon-resolution of V is a chain complex

M∗ : . . .
∂i+1−→ Mi+1

∂i−→Mi
∂i−1−→ . . .

∂1−→ M1
∂0−→M0

with Mi ∈k[G],φ mon and ∂i ∈ Hom
k[G],φmon(Mi+1,Mi) for all i ≥ 0 together

with ε ∈ Hom
k[G],φmod(V(M0), V ) such that

. . .
∂i−→M

((H,φ))
i

∂i−1−→ . . .
∂1−→ M

((H,φ))
1

∂0−→M
((H,φ))
0

ε−→ V (H,φ) −→ 0

is an exact sequence of k-modules for each (H,φ) ∈ Mφ(G). In particular,

when (H,φ) = (Z(G), φ) we see that

. . .
∂i−→Mi

∂i−1−→ . . .
∂1−→ M1

∂0−→M0
ε−→ V −→ 0

is an exact sequence in k[G],φmod.

Proposition
Let V ∈k[G],φ mod and let

. . . −→Mn
∂n−1−→Mn−1

∂n−2−→ . . .
∂0−→M0

ε−→ V −→ 0

be a k[G],φmon-resolution of V . Suppose that

. . . −→ Cn
∂′n−1−→ Cn−1

∂′n−2−→ . . .
∂′0−→ C0

ε′−→ V −→ 0

a chain complex where each ∂′i and Ci belong to k[G],φmon and ε′ is a k[G],φmod

homomorphism such that ε′(C
((H,φ))
0 ) ⊆ V (H,φ) for each (H,φ) ∈Mφ(G).

Then there exists a chain map of k[G],φmon-morphisms {fi : Ci −→Mi, i ≥
0} such that

ε · f0 = ε′, fi−1 · ∂′i = ∂i · fi for all i ≥ 1.

In addition, if {f ′i : Ci −→ Mi, i ≥ 0} is another chain map of k[G],φmon-

morphisms such that ε·f0 = ε·f ′0 then there exists a k[G],φmon-chain homotopy

{si : Ci −→ Mi+1, for all i ≥ 0} such that ∂i · si + si−1 · ∂′i = fi − f ′i for all
i ≥ 1 and f0 − f ′0 = ∂0 · s0.

Remark
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(i) Needless to say, the proposition has an analogue to the effect that
every k[G],φmod-homomorphism V −→ V ′ extends to a k[G],φmon-morphism

between the monomial resolutions of V and V ′, if they exist, and the extension
is unique up to k[G],φmon-chain homotopy.

(ii) The category k[G],φmon is additive but not abelian. Homological al-

gebra (e.g. a projective resolution) is more conveniently accomplished in an
abelian category. To overcome this difficulty we shall embed k[G],φmon into
more convenient abelian categories. This is reminiscent of the Freyd-Mitchell
Theorem which embeds every abelian category into a category of modules.

A complex of functors
Let M ∈k[G],φ mon, V ∈k[G],φ mod and let AM = Hom

k[G],φmon(M,M), the

ring of endomorphisms on M under composition. For i ≥ 0 define M̃M,i ∈
kmod by (i copies of AM)

M̃M,i = Hom
k[G],φmod(V(M), V )⊗k AM ⊗k . . .⊗k AM

and set
MM,i = M̃M,i ⊗k Hom

k[G],φmon(−,M).

Hence MM,i ∈ functok(k[G],φmon,k mod) and in fact the values of this functor
are not merely objects in kmod because they have a natural right AM -module
structure, defined as in §??.

If i ≥ 1 we defined natural transformations dM,0, dM,1, . . . , dM,i in the fol-
lowing way. Define

dM,0 : MM,i −→MM,i−1

by
dM,0(f ⊗ α1 ⊗ . . .⊗ αi ⊗ u) = f(− · α1)⊗ α2 . . .⊗ αi ⊗ u.

The map f(− · α1) : V(M) −→ V is a k[G],φmod- homomorphism since αi
acts on the right of M .

For 1 ≤ j ≤ i− 1 we define

dM,j : MM,i −→MM,i−1

by

dM,j(f ⊗ α1 ⊗ . . .⊗ αi ⊗ u) = f ⊗ α1 . . .⊗ αjαj+1 ⊗ . . .⊗ αi ⊗ u.
Finally

dM,i : MM,i −→MM,i−1

is given by

di(M)(f ⊗ α1 ⊗ . . .⊗ αi ⊗ u) = f ⊗ α1 ⊗ . . .⊗ αi−1 ⊗ αi · u.
Since u is a k[G],φmon-morphism so is αi · u because

(αi · u)(αm) = αi(u(αm)) = αi(αu(m)) = ααi(u(m)) = α(αi · u)(m)

since αi is a k[G],φmon endomorphism of M .
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Next we define a natural transformation

εM : MM,0 −→ I(V ) = Hom
k[G],φmod(V(−), V )

by sending f ⊗ u ∈MM,0 to f · V(u) ∈ I(V ).
Finally we define

dM =
i∑

j=0

(−1)jdM,j : MM,i −→MM,i−1.

Theorem (Relation with the bar resolution)
The sequence

. . .
dM−→MM,i(M)

dM−→MM,i−1(M) . . .
dM−→MM,0(M)

εM−→ I(V )(M) −→ 0

is the right AM -module bar resolution of I(V )(M).
Proposition (The abelian category)
Let I denote the functor of introduced above and define a functor

J :k[G],φ mon −→ functok(k[G],φmon,k mod)

by J (M) = Hom
k[G],φmon(−,M).

Then the category functok(k[G],φmon,k mod) is abelian. Furthermore both

I and J are full embeddings (i.e. bijective on morphisms and hence injective
on isomorphism classes of objects).

Proposition (Projectivity)
For M ∈k[G],φ mon the functor J (M) in

functok(k[G],φmon,k mod) is projective.

Definition KM,V

Let M ∈k[G],φ mon, V ∈k[G],φ mod. Define a k-linear isomorphism KM,V

of the form

Hom
k[G],φmod(V(M), V )

KM,V−→ Homfunctok(k[G],φmon,kmod)(J (M), I(V ))

by sending f : V(M) −→ V to the natural transformation

KM,V (N) : J (M)(N) −→ I(V )(N)

given by h 7→ f · V(h) for all N ∈k[G],φ mon

J (M)(N) = Hom
k[G],φmon(N,M) −→ Hom

k[G],φmod(V(N), V ) = I(V )(N).

The inverse isomorphism is given by K−1
M,V (φ) = φ(M)(1M) where 1M de-

notes the identity morphism on M .
In fact K is a functorial equivalence of the form

K : Hom
k[G],φmod(V(−),−)

∼=−→ Homfunctok(k[G],φmon,kmod)(J (−), I(−))
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Recognising a monomial resolution

Theorem
Let

. . .
∂i−→Mi

∂i−1−→ . . .
∂1−→ M1

∂0−→M0
ε−→ V −→ 0

be a chain complex with Mi ∈k[G],φ mon for i ≥ 0, V ∈k[G],φ mod,

∂i ∈ Hom
k[G],φmon(Mi+1,Mi) and ε ∈ Hom

k[G],φmod(V(M0), V ). Then the

following are equivalent:
(i) M∗ −→ V is a k[G],φmon-resolution of V .

(ii) The sequence

. . .
J (∂i)−→ J (Mi)

J (∂i−1)−→ . . .
J (∂1)−→ J (M1)

J (∂0)−→ J (M0)
KM0,V (ε)
−→ I(V ) −→ 0

is exact in functok(k[G],φmon,k mod).

The functor ΦM

Let M ∈k[G],φ mon and let AM = Hom
k[G],φmon(M,M), the ring of endo-

morphisms on M under composition. In the present contextAM is a finitely
generated k-algebra.

I shall show that there is an equivalence of categories between
functok(k[G],φmon,k mod) and the category of right modules modAM

for a
suitable choice of M .

We have a functor

ΦM : functok(k[G],φmon,k mod) −→modAM

given by Φ(F) = F(M). Right multiplication by z ∈ AM on v ∈ F(M) is
given by

v#z = F(z)(v)

where F(z) : F(M) −→ F(M) is the left k-module morphism obtained by
applying F to the endomorphism z. This is a right-AM action since

v#(zz1) = F(zz1)(v) = (F(z1) · F(z))(v) = F(z1)(F(z)(v)) = (v#z)#z1.

In the other direction define a functor

ΨM : modAM
−→ functok(k[G],φmon,k mod),

for P ∈modAM
, by

ΨM(P ) = HomAM
(Hom

k[G],φmon(M,−), P ).

Here, for N ∈k[G],φ mon, Hom
k[G],φmon(M,−) is a right AM -module via pre-

composition by endomorphisms of M . For a homomorphism of AM -modules
f : P −→ Q the map ΨM(f) is given by composition with f .

Next we consider the composite functor

ΦM ·ΨM : modAM
−→modAM

.
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This is given by P 7→ HomAM
(Hom

k[G],φmon(M,M), P ) = HomAM
(AM , P ) so

that there is an obvious natural transformation η : 1
∼=−→ ΦM ·ΨM such that

η(P ) is an isomorphism for each module P .
Now consider the composite functor

ΨM · ΦM : functok(k[G],φmon,k mod) −→ functok(k[G],φmon,k mod).

For a functor F we shall define a natural transformation

εF : F −→ HomAM
(Hom

k[G],φmon(M,−),F(M)) = ΨM · ΦM(F).

For N ∈k[G],φ mon we define

εF(N) : F(N) −→ HomAM
(Hom

k[G],φmon(M,N),F(M))

by the formula v 7→ (f 7→ F(f)(v)).

Theorem (Functors to modules and back)
Let S ∈k[G],φ mon be the finite (G, φ)-lineable k-module given by

S = ⊕(H,φ)∈Mφ(G) IndGH(kφ).

Then
ΦS : functok(k[G],φmon,k mod) −→modAS

and
ΨS : modAS

−→ functok(k[G],φmon,k mod)

are inverse equivalences of categories. In fact, the natural transformations η
and ε are isomorphisms of functors when M = S.

Remark
The theorem remains true when S is replaced by any M which is the direct

sum of IndGH(kφ)’s containing at least one pair (H,φ) from each G-orbit of
Mφ(G). That is, for any (G, φ)-lineable k-module containing

⊕(H,φ)∈G\Mφ(G) IndGH(kφ)

as a summand. This remark is established by Morita theory.

Let V be a finite rank left k[G]-module. LetM ∈ k[G],φmon andW ∈ klat.
Define another object W ⊗kM ∈ k[G],φmon by letting G act only on the M -

factor, g(w ⊗m) = w ⊗ gm, and defining the Lines of W ⊗k M to consist of
the one-dimensional subspaces 〈w⊗L〉 where w ∈ W , runs through a k-basis
of W , and L is a Line of M .

Theorem (Existence of the bar-monomial resolution)
Let k be a field. The chain complex, which we met earlier in connection

with the “chain complex of functors” paragraph,

. . .
d−→ M̃S,i ⊗k S

d−→ . . .
d−→ M̃S,1 ⊗k S

d−→ M̃S,0 ⊗k S
ε−→ V −→ 0

is a k[G],φmon-resolution of V .
10



Remark
(i) Since the theorem “from functors to modules and back” remains true

when S is replaced by any M ∈ k[G],φmon which contains S as a summand
one may replace S by such an M in the above theorem to maintain another

k[G],φmon-resolution of V .

(ii) The bar-monomial resolution of bar-monomial resolution possesses a
number of the usual naturality properties, as an object in the derived category
of k[G],φmon.

(iii) As mentioned earlier for finite groups we may forget about the central
character φ.

3. Lecture Three: GLnFq analogues of the Langlands
Programme

PSH-algebras over the integers

3.1. A PSH-algebra is a connected, positive self-adjoint Hopf algebra over
Z. The notion was introduced in [20]. Let R = ⊕n≥0 Rn be an augmented
graded ring over Z with multiplication

m : R⊗R −→ R.

Suppose also that R is connected, which means that there is an augmentation
ring homomorphism of the form

ε : Z
∼=−→ R0 ⊂ R.

These maps satisfy associativity and unit conditions.
Associativity: m(m⊗ 1) = m(1⊗m) : R⊗R⊗R −→ R.

Unit: m(1⊗ ε) = 1 = m(ε⊗ 1);R⊗ Z ∼= R ∼= Z⊗R −→ R⊗R −→ R.

R is a Hopf algebra if, in addition, there exist comultiplication and counit
homomorphisms m∗ : R −→ R⊗R and ε∗ : R −→ Z such that

Hopf m∗ is a ring homomorphism with respect to the product (x⊗ y)(x′⊗
y′) = xx′ ⊗ yy′ on R ⊗ R and ε∗ is a ring homomorphism restricting to an
isomorphism on R0. The homomorphism m is a coalgebra homomorphism
with respect to m∗.

The m∗ and ε∗ also satisfy
Coassociativity: (m∗⊗1)m∗ = (1⊗m∗)m∗ : R −→ R⊗R⊗R −→ R⊗R⊗R

Counit: m(1⊗ ε) = 1 = m(ε⊗ 1);R⊗Z ∼= R ∼= Z⊗R −→ R⊗R −→ R.

R is a cocomutative if
Cocommutative: m∗ = T ·m∗ : R −→ R ⊗ R where T (x ⊗ y) = y ⊗ x on

R⊗R.
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Suppose now that each Rn (and hence R by direct-sum of bases) is a free
abelian group with a distinguished Z-basis denoted by Ω(Rn). Hence Ω(R)
is the disjoint union of the Ω(Rn)’s. With respect to the choice of basis the
positive elements R+ of R are defined by

R+ = {r ∈ R | r =
∑

mωω, mω ≥ 0, ω ∈ Ω(R)}.

Motivated by the representation theoretic examples the elements of Ω(R) are
called the irreducible elements of R and if r =

∑
mωω ∈ R+ the elements

ω ∈ Ω(R) with mω > 0 are called the irreducible constituents of r.
Using the tensor products of basis elements as a basis for R ⊗ R we can

similarly define (R⊗R)+ and irreducible constituents etc.
Positivity:
R is a positive Hopf algebra if m((R ⊗ R)+) ⊂ R+,m∗(R+) ⊂ (R ⊗

R)+, ε(Z+) ⊂ R+, ε∗(R+) ⊂ Z+.

Define inner products 〈−,−〉 on R, R ⊗ R and Z by requiring the chosen
basis (Ω(Z) = {1}) to be an orthonormal basis.

A positive Hopf Z-algebra is self-adjoint if
Self-adjoint: m and m∗ are adjoint to each other and so are ε and ε∗.

The subgroup of primitive elements P ⊂ R is given by

P = {r ∈ R | m∗(r) = r ⊗ 1 + 1⊗ r}

Let {Rα | α ∈ A} be a family of PSH algebras. Define the tensor product
PSH algebra

R = ⊗α∈A Rα

to be the inductive limit of the finite tensor products ⊗α∈S Rα with S ⊂ A
a finite subset. Define Ω(R) to be the disjoint union over finite subsets S of∏

α∈S Ω(Rα).

The following result of the PSH analogue of a structure theorem for Hopf
algebras over the rationals due to Milnor-Moore.
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Theorem (The Decomposition Theorem)
Any PSH algebra R decomposes into the tensor product of PSH algebras

with only one irreducible primitive element. Precisely, let C = Ω
⋂
P denote

the set of irreducible primitive elements in R. For any ρ ∈ C set

Ω(ρ) = {ω ∈ Ω | 〈ω, ρn〉 6= 0 for some n ≥ 0}
and

R(ρ) = ⊕ω∈Ω(ρ) Z · ω.
Then R(ρ) is a PSH algebra with set of irreducible elements Ω(ρ), whose
unique irreducible primitive is ρ and

R = ⊗ρ∈C R(ρ).

The PSH algebra R = ⊕n R(GLnFq)
Let R(G) denote the complex representation ring of a finite group G. Set

R = ⊕m≥0 R(GLmFq) with the interpretation that R0
∼= Z, an isomorphism

which gives both a choice of unit and counit for R.
Let Uk,m−k ⊂ GLmFq denote the subgroup of matrices of the form

X =

 Ik W

0 Im−k


where W is an k× (m−k) matrix. Let Pk,m−k denote the parabolic subgroup
of GLmFq given by matrices obtained by replacing the identity matrices Ik
and Im−k in the condition for membership of Uk,m−k by matrices from GLkFq
and GLm−kFq respectively. Hence there is a group extension of the form

Uk,m−k −→ Pk,m−k −→ GLkFq ×GLm−kFq.
If V is a complex representation of GLmFq then the fixed points V Uk,m−k is a
representation of GLkFq×GLm−kFq which gives the (k,m−k) component of

m∗ : R −→ R⊗R.
Given a representation W of GLkFq ×GLm−kFq so that W ∈ Rk ⊗Rm−k we
may form

Ind
GLmFq

Pk,m−k
(Inf

Pk,m−k

GLkFq×GLm−kFq
(W ))

which gives the (k,m− k) component of

m : R⊗R −→ R.

We choose a basis for Rm to be the irreducible representations of GLmFq so
that R+ consists of the classes of representations (rather than virtual ones).
Therefore it is clear that m,m∗, ε, ε∗ satisfy positivity. The inner product on
R is given by the Schur inner product so that for two representations V,W
of GLmFq we have

〈V,W 〉 = dimC(HomGLmFq(V,W ))
13



and for m 6= n Rn is orthogonal to Rm. As is well-known, with these choice of
inner product, the basis of irreducible representations for R is an orthonormal
basis.

The irreducible primitive elements are represented by irreducible complex
representations of GLmFq which have no non-zero fixed vector for any of the
subgroups Uk,m−k. These representations are usually called cuspidal.

The decomposition theorem shows how all representations are derived from
cuspidal ones. This fact has an analogue ([3] and [4]) for GLn of a local field.

Shintani base change/Shintani coorespondence ([19] Chapter Nine

§6)
Let Irr(G) denote the set of irreducible complex representations of G.

Theorem ([16] Theorem 1)
There is a bijection

Sh : Irr(GLnFqm)Gal(Fqm/Fq) ∼=−→ Irr(GLnFq).

This fact also has an analogue, called “base change” [1], for GLn of a local
field.

Theorem ([19] Chapter Nine §6.4)
The Z-linear extension of the inverse Shintani correspondence yields an

injective algebra homomorphism

Sh−1 : R′ = ⊕n R(GLnFq) −→ R = ⊕n R(GLnFqm)

between the PSH-Hopf algebras introduced above.

NOT A HOMOMORPHISM OF HOPF ALGEBRAS!!

Remark: In ([19] Chapter Eight §3.12) it is shown that the existence of
the Shintani correspondence is equivalent to an integrality property of certain
numbers derived from monomial-resolutions.
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Kondo-Gauss sums for GLnFq
Definition
Let ρ : H −→ GLnC denote a representation of a subgroup H of GLnFq.

If q is a power of the prime p we have the (additive) trace map

TrFq/Fp : Fq −→ Fp.

In addition we have the matrix trace map

Trace : GLnFq −→ Fq.

Define a measure map Ψ on matrices X ∈ GLnFq by

Ψ(X) = e
2π
√
−1TrFq/Fp

(Trace(X))

p

which is denoted by e1[X] in [12]. Let χρ denote the character function of ρ
which assigns to X the trace of the complex matrix ρ(X).

Define a complex number WH(ρ) by the formula

WH(ρ) =
1

dimC(ρ)

∑
X∈H

χρ(X)Ψ(X).

When H = GLnFq and ρ is irreducible WGLnFq(ρ) = w(ρ), the Kondo-
Gauss sum which is introduced and computed in [12].

Theorem 3.2.
Let σ be a finite-dimensional representation of H ⊆ GLnFq. Then for any

subgroup J such that H ⊆ J ⊆ GLnFq

WH(σ) = WJ(IndJH(σ)).

Remark:
(i) The Kondo-Gauss sum has an analogue, called the epsilon factor, in

the case of admissible representations of p-adic GLn.
(ii) In the case of the field of one element (i.e. GLn is the symmetric

group Σn) the associated PSH algebra is particularly simple [20]. Furthermore
there is a very nice formula, which I learned from Francesco Mezzadri, for the
Kondo-Gauss sum of an irreducible representation in terms of the partition
representing it ([19] Appendix III §1.7).

The Bernstein centre
Let A be an abelian category then its centre Z(A) is the ring of endomor-

phisms of the identity functor of A. Explicitly, for each object A of A there is
given an endomorphism zA ∈ HomA(A,A) such that for any f ∈ HomA(A,B)
one has zBf = fzA.

If the category A is the product of abelian categories (Ai)i∈I then one has
Z(A) =

∏
i∈I Z(Ai).
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Suppose the category A admits direct sums indexed by I such that any
morphism f : X −→ ⊕i∈I Yi is zero if and only if all the projections

X
f−→ ⊕i∈I Yi

pri−→ Yi

are zero.
This property holds for the category of algebraic (i.e. smooth) representa-

tions of a reductive group over a non-Archimedean local field ([9] p.5).
Under the above condition A is the product of full subcategories Ai for

i ∈ I such that
(i) if X ∈ Ai and Y ∈ Aj then HomA(X, Y ) = 0 if i 6= j and
(ii) for all objects X we have X = ⊕i∈I Xi with Xi in Ai.

Resolutions and the centre of A
Suppose that A is an abelian category and that B is an additive category

together with a forgetful functor ν : B −→ A and suppose that for each object
V ∈ Ob(A) we have a B-resolution of V . This means a chain complex in B

d−→Mi
d−→Mi−1

d−→ . . .
d−→M0 −→ 0

such that

−→ ν(Mi) −→ ν(Mi−1) −→ . . . −→ ν(M0) −→ V −→ 0

is exact in A. In addition suppose that the association V 7→M∗ is functorial
into the derived category of B.

Thus any two choices of B-resolution for V are chain homotopy equivalent
in B and any morphism f : V −→ V ′ in A induces a B-chain map, f∗ unique
up to chain homotopy, between the resolutions.

Now consider a family giving an element in the centre of A which yields
zV : V −→ V and zV ′ : V ′ −→ V ′ satisfying fzV = zV ′f for all f . Fix
resolutions for V and V ′. Then zV induces a chain map (zV )∗ on M∗ and
another (zV ′)∗ on M ′

∗. The morphism f induces a chain map f∗ : M∗ −→M ′
∗

and because f∗(zV )∗ is chain homotopic to (zV ′)∗f∗ the pair of A-morphisms
ν(fi)ν(zV )i and ν(zV ′)iν(fi) for i = 0, 1 induce fzV = zV ′f and so ν(zV )i and
ν(zV ′)i for i = 0, 1 induce the elements zV , zV ′ of the central family.

Conversely the degree 0 and 1, for any choice of resolution of V determine
a central morphism zV . When A is the category of (smooth) representations
of G the morphisms (zV )i for i = 0, 1 are described in terms of elements of the
hyperHecke algebra satisfying certain commutativity conditions (I call them
the monocentric conditions), -which I shall now describe.
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The monocentre of a group

As (K,ψ) varies overMcmc,φ(G) suppose that we have a family of elements

of G, {x(K,ψ) ∈ stabG(K,ψ)} indexed by pairs (K,ψ) where stabG(K,ψ)
denotes the stabiliser of (K,ψ)

stabG(K,ψ) = {z ∈ G | zKz−1 = K,ψ(zkz−1) = ψ(k) for all k ∈ K}.
This is equivalent to K ≤ x−1

(K,ψ)Kx(K,ψ) and, for all k ∈ K,

ψ(x−1
(K,ψ)kx(K,ψ)) = ψ(k) = x∗(K,ψ)(ψ)(x−1

(K,ψ)kx(K,ψ))

so that [(K,ψ), x(K,ψ), (K,ψ)] is one of the basis vectors for H of §2.
Next suppose that (H,φ) ∈ Mcmc,φ(G) and x(H,φ) are similar data for

another pair and that [(K,ψ), g, (H,φ)] is another basis element of H.

The monocentre condition relating these elements is defined by

(i) gx(K,ψ)g
−1 ∈ stabG(H,φ)

and

(ii) gx(K,ψ)g
−1 = x(H,φ) ∈ stabG(H,φ)/Ker(φ).

Observe that Ker(φ) is a normal subgroup of stabG(H,φ). Therefore if
[(K,ψ), g, (H,φ)], x(K,ψ) and x(H,φ) satisfy the monocentre condition then so
do [(K,ψ), g, (H,φ)], x−1

(K,ψ) and x−1
(H,φ).

Furthermore, if [(K,ψ), g, (H,φ)], x(K,ψ) and x(H,φ) satisfy the monocen-
tre condition and w ∈ Ker(ψ) ≤ K then [(K,ψ), g, (H,φ)], x(K,ψ)w and
x(H,φ)gwg

−1 also satisfy the condition and gwg−1 ∈ Ker(φ) ≤ H.

Proposition
The monocentre condition implies that the two compositions

[(K,ψ), g, (H,φ)] · [(K,ψ), x(K,ψ), (K,ψ)]

and
[(H,φ), x(H,φ), (H,φ)] · [(K,ψ), g, (H,φ)]

are equal in the algebra Hcmc(G).

Definition (The monocentre group of G)
The monocentre of G, denoted by ZM(G), is the set of families {x(K,ψ) ∈

stabG(K,ψ)/Ker(ψ)} such that for every x(K,ψ), x(H,φ) and g such that (K,ψ) ≤
(g−1Hg, (g)∗(φ)) the monocentre condition holds, as introduced above.

Multiplication in G induces a group structure on ZM(G).
As we shall see in more detail, because the monocentre condition includes a

central character which is common to the pairs (K,ψ) and (H,φ), ZM(G) is
the product of subgroups ZMcmc,φ

(G) indexed by the set of central characters,

φ.
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Theorem
The monocentre group, ZM(G), is the product of the subgroups ZMcmc,φ

(G)

as φ varies over the central characters. Also the set of elements in a family
{x(K,ψ) ∈ stabG(K,ψ)/Ker(ψ)} representing an element of ZMcmc,φ

(G) are

determined by the

x(Z(G),φ) ∈ G/Ker(φ)

such that the image of x(Z(G),φ) represents an element

x(K,ψ) ∈ stabG(K,ψ)/Ker(ψ) for every (K,φ) ∈Mcmc,φ.
Example
The dihedral group of order eight is given by

D8 = 〈x, y | x4 = 1 = y2, yxy = x3〉.

Therefore we obtain

ZM(D8) = ZMcmc,1(D8)× ZMcmc,χ(D8) ∼= D8/〈x2〉 × 〈x2〉.

Remark
(i) The monocentre group is an entertaining construction, but it will turn

out to be too restrictive for our purposes. Although it might be less trivial -
even useful! - in the case of modular representations.

(ii) More important is the situation “resolutions and the centre of A”.
Fix a central character φ as usual.

In terms of monocentric conditions this situation is equivalent to the fol-
lowing:

Suppose, for i = 1, 2, that we are given

[(Ki, ψi), gi, (Hi, φi)] and

{x(Ki,ψi) ∈ stabG(Ki, ψi)/Ker(ψi)} and

{x(Hi,φi) ∈ stabG(Hi, φi)/Ker(φi)}

which satisfy both

[(H1, φ1), x(H1,φ1), (H1, φ1)] · [(K1, ψ1), g1, (H1, φ1)]

= [(K1, ψ1), g1, (H1, φ1)] · [(K1, ψ1), x(K1,ψ1), (K1, ψ1)]

and
[(H2, φ2), x(H2,φ2), (H2, φ2)] · [(K2, ψ2), g2, (H2, φ2)]

= [(K2, ψ2), g2, (H2, φ2)] · [(K2, ψ2), x(K2,ψ2), (K2, ψ2)].

Under these conditions we require that for all

[(H1, φ1), g3, (H2, φ2)] and [(K1, ψ1), g4, (K2, ψ2)]
18



such that

[(H1, φ1), g3, (H2, φ2)] · [(K1, ψ1), g1, (H1, φ1)]

= [(K2, ψ2), g2, (H2, φ2)] · [(K1, ψ1), g4, (K2, ψ2)]

the {x(Ki,ψi), x(Hi,φi)} satisfy

[(H2, φ2), x(H2,φ2), (H2, φ2)] · [(H1, φ1), g3, (H2, φ2)]

= [(H1, φ1), g3, (H2, φ2)] · [(H1, φ1), x(H1,φ1), (H1, φ1)]

and also that

[(K2, ψ2), x(K2,ψ2), (K2, ψ2)] · [(K1, ψ1), g4, (K2, ψ2)]

= [(K1, ψ1), g4, (K2, ψ2)] · [(K1, ψ1), x(K1,ψ1), (K1, ψ1)].

4. Lecture Four: Smooth representations of locally p-dic
groups

Extending the definition of admissibility

If G is a locally profinite group and k is an algebraically closed field then a
k-representation of G is a vector space V with a left, k-linear G-action. Let
φ : Z(G) −→ k∗ be a continuous character on the centre of G. LetMcmc,φ(G),

as in §2, denote the poset of pairs (H,φ) where H is a subgroup of G, such
that Z(G) ⊆ H, which is compact open modulo the centre and φ : H −→ k∗

is a continuous character which extends φ.
Suppose that V is acted upon by g ∈ Z(G) via multiplication by φ(g). The

representation V is called smooth if

V =
⋃

K⊂G, K compact,open

V K .

V is called admissible if dimk(V
K) < ∞ for all compact open subgroups K.

Define a subspace of V , denoted by V (H,φ), for (H,φ) ∈Mcmc,φ(G) by

V (H,φ) = {v ∈ V | g · v = φ(g)v for all g ∈ H}.
Hence V K = V (Z(G)·K,φ) if φ is a continuous character which is trivial on K.

We shall say that V isMcmc,φ(G)-smooth if

V =
⋃

(H,φ)∈Mcmc,φ(G)

V (H,φ).

In addition we shall say that V is Mcmc,φ(G)-admissible if dimkV
(H,φ) < ∞

for all (H,φ) ∈Mcmc,φ(G).

Proposition 4.1.
Let G be a locally profinite group and let k be an algebraically closed field.

Let V be a k-representation of G with central character φ. Suppose that
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every continuous, k-valued character of a compact open subgroup of G has
finite image. Then V isMcmc,φ(G)-admissible if and only if it is admissible.

Proof:

If K is compact open then K
⋂
Z(G) is also compact open. It is certainly

compact, being a closed subset of a compact subspace. For G = GLnF with
F a p-adic local field the assumption it true. More generally, it holds if the
quotient of Z(G) by its maximal compact subgroup is discrete3.

Suppose that V is admissible. If H is a subgroup of G which is compact
open modulo the centre then H = Z(G) ·K for some compact open subgroup.
In this case supose that φ is a character of H extending the central character.
Then V (H,φ) = V (K,µ) where µ = ResHK(φ). Since the image of µ is finite the
kernel of µ is compact open and V (K,µ) ⊆ V Ker(µ), which is finite-dimensional.

Next suppose that 0 6= v ∈ V . There exists a compact open subgroup K
such that v ∈ V K . Set H = Z(G) ·K, which is compact open modulo Z(G) ⊂
H. If g ∈ Z(G)

⋂
K then v = g · v = φ(g) · v so that the central character is

trivial on Z(G)
⋂
K. Hence the central character induces a character λ on H

which factors through K/Z(G)
⋂
K ∼= Z(G) ·K/K and so v ∈ V (H,λ), which

completes the proof ofMcmc,φ(G)-admissibility.

Assume that V is Mcmc,φ(G)-admissible. If 0 6= v ∈ V belongs to V (H,φ)

where H is compact open modulo the centre then H = Z(G) ·K where K is
compact open. Hence v ∈ V J where J is the compact open subgroup given
by J = Ker(ResHK(φ)).

Next suppose that K is a compact open subgroup. If V K is non-trivial
then V K ⊆ V (Z(G)·K,λ) where λ : H = Z(G) ·K −→ k∗ is the character which
was constructed in the first half of the proof. Since V (Z(G)·K,λ) is assumed to
be finite-dimensional this concludes the proof of admissibility. �

Question 4.2. Di-p-adic Langlands
In the last 20 years I believe that several authors have studied the “p-adic

Langlands programme”. This is the situation where, for example, one studies
“admissible” representations of a locally p-adic Lie group on vector spaces
over the algebraic closure of a p-adic local field (or its residue field).

I intend to called this the di-p-adic situation since it is no more complicated
to say and indicates the involvement of p-adic fields twice. In addition to [2]
there are lots of papers on this subject4 and a useful source for these (brought
to my attention by Rob Kurinczuk) is the bibliography of [8].

The question arises: Are the sort of representations considered by the di-
p-adic professionalsMcmc,φ(G)-admissible?

3If this condition is not true in general it is true in the main cases of interest. Therefore
let us treat it as an unimportant assumption for the time being!

4Regrettably I have not got round to reading any of them!
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Smooth representations and Hecke modules

In this Appendix, for my convenience, representations are complex repre-
sentations.

Now let Γ be a compact totally disconnected group. Denote by Γ̂ the set
of equivalence classes of finite-dimensional irreducible representations of Γ
whose kernel is open - and hence of finite index in Γ.

Suppose now that Γ is finite and (π, V ) is a representation of Γ on a possible

infinite dimensional vector space V . If ρ ∈ Γ̂ let V (ρ) be the sum of all
invariant subspaces of V that are isomorphic as Γ-modules to Vρ. V (ρ) is the
ρ-isotypic subspace of V . We have

V ∼= ⊕ρ∈Γ̂ Vρ.

Now we generalise this to smooth representations of a totally disconnected
locally compact group. Choose a compact open subgroup K of G. The
compact open normal subgroups of K form a basis of neighbourhoods of the
identity in K. Let ρ ∈ K̂ then the kernel of ρ is Kρ a compact open normal
subgroup of finite index.

Proposition 4.3. ([7] Proposition 4.2.2)
Let (π, V ) be a smooth representation of G. Then

V ∼= ⊕ρ∈K̂ Vρ.

The representation π is admissible if and only if each V (ρ) is finite-dimensional.

Let (π, V ) be a smooth representation of G. If v̂ : V −→ C is a linear
functional we write 〈v, v̂〉 = v̂(v) for v ∈ V . We say v̂ is smooth if there exists
an open neighbourhood U of 1 ∈ G such that for all g ∈ U

〈π(g)(v), v̂〉 = v̂(v).

Let V̂ denote the space of smooth linear functionals on V .
Define the contragredient representation (π̂, V̂ ) is defined by

〈v, π̂(g)(v̂)〉 = 〈π(g−1)(v), v̂〉.
The contragredient representation of a smooth representation is a smooth
representation. Also

V̂ ∼= ⊕ρ∈K̂ V ∗
ρ

where V ∗
ρ is the dual space of Vρ.

Since the dual of a finite-dimensional Vρ is again finite-dimensional the

contragredient of an admissible representation is also admissible. Also ˆ̂π = π.
If X is a totally disconnected space a complex valued function f on X is

smooth if it is locally constant. Let HG be, as before, the space of smooth
compactly supported complex-valued functions on X = G. Assuming G is
unimodular HG is an algebra without unit under the convolution product

(φ1 ∗ φ2)(g) =

∫
G

φ1(gh
−1)φ2)(h)dh.
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This is the Hecke algebra - an idempotented algebra (see §6).
If φ ∈ H define π(φ) ∈ End(V ) with V as above

π(φ)(v) =

∫
G

φ(g)π(g)(v)dg.

Then

π(φ1 ∗ φ2) = π(φ1) · π(φ2)

so that V is an H-representation.
The integral defining φ may be replaced by a finite sum as follows. Choose

an open subgroupK0 fixing v. ChoosingK0 small enough we may assume that
the support of φ is contained in a finite union of left cosets {giK0 | 1 ≤ i ≤ t}.
Then

π(φ)(v) =
1

vol(K0)

t∑
i=1

φ(gi)π(gi)(v).

Finite group example:
Let (π, V ) be a finite-dimensional representation of a finite group G. Write

H for the space of functions from G to C. If φ1, φ2 ∈ H define φ1 ∗φ2 ∈ H by

(φ1 ∗ φ2)(g) =
∑
h∈G

φ1(gh
−1)φ2(h).

For φ ∈ H define π(φ) ∈ EndC(V ) by

π(φ)(v) =
∑
g∈G

φ(g)π(g)(v).

Hence
π(φ1(π(φ2)(v))

= π(φ1)(
∑

g∈G φ2(g)π(g)(v))

=
∑

g∈G φ2(g)π(φ1(π(g)(v))

=
∑

g∈G φ2(g)
∑

g̃∈G φ1(g̃)(π(g̃(π(g)(v))

=
∑

g,g̃∈G φ2(g)φ1(g̃)(π(g̃g)(v)).

Now
π(φ1 ∗ φ2)(v)

=
∑

g1∈G (φ1 ∗ φ2)(g1)π(g1)(v)

=
∑

g1,h∈G φ1(h1h
−1)φ2(h)π(g1)(v).

Setting g = h, g̃g = g1 shows that

π(φ1 ∗ φ2) = π(φ1 · π(φ2).
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Also H ∼= C[G] because if fg(x) = 0 if g 6= x and fg(g) = 1 then

fg ∗ fg′ = fgg′ .

Proposition 4.4. ([7] Proposition 4.2.3)
Let (π, V ) be a smooth non-zero representation of G. Then equivalent are:
(i) π is irreducible.
(ii) V is a simple H-module.
(iii) V K0 is either zero or simple as an HK0-module for all open subgroups

K0. Here HK0 = eK0 ∗ H ∗ eK0 .

Schur’s Lemma holds ([7] §4.2.4)for (π, V ) an irreducible admissible repre-
sentation of a totally disconnected group G.

Proposition 4.5. ([7] Proposition 4.2.5)
Let (π, V ) be an admissible representation of the totally disconnected lo-

cally compact group G with contragredient (π̂, V̂ ). Let K0 ⊆ G be a compact

open subgroup. Then the canonical pairing between V and V̂ induces a non-
degenerate pairing betweem V K0 and V̂ K0 .

The trace
As with representations of finite groups the character of an admissible rep-

resentation of a totally disconnected locally compact group G is an important
invariant. It is a distribution. It is a theorem of Harish-Chandra that if G
is a reductive p-adic group then the character is in fact a locally integrable
function defined on a dense subset of G.

We shall define the character as a distribution on HG = C∞
c (G). Suppose

that U is a finite-dimensional vector space and let f : U −→ U be a linear
map. Suppose Im(f) ⊆ U0 ⊆ U . Then we have

Trace(f : U0 −→ U0) = Trace(f : U −→ U).

Therefore we may define the trace of any endomorphism f of V which has
finite rank by choosing any finite-dimensional U0 such that Im(f) ⊆ U0 ⊆ V
and by defining

Trace(f) = Trace(f : U0 −→ U0).

Now let (π, V ) be an admissible representation of G. Let φ ∈ HG. Since
φ is compactly supported and locally constant there exists a compact open
K0 such that φ ∈ HK0 . The endomorphism π(φ) has image in V K0 which is
finite-dimensional - by admissibility - so we define the trace distribution

χV : H −→ C
by

χV (φ) = Trace(π(φ)).

Proposition 4.6. ([7] Proposition 4.2.6)
Let R be an algebra over a field k. Let E1 and E2 be simple R-modules

that are finite-dimensional over k. For each φ ∈ R if

Trace((φ · −) : E1 −→ E1) = Trace((φ · −) : E2 −→ E2)
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then the Ei are isomorphic R-modules.

Proposition 4.7. ([7] Proposition 4.2.7)
Let (π1, V1) and (π2, V2) be irreducible admissible representations of G (as

above) such that, for each compact open K1, V
K1
1
∼= V K1

2 as HK1-modules
then (π1, V1) ∼= (π2, V2).

Theorem 4.8. ([7] Theorem 4.2.1)
Let (π1, V1) and (π2, V2) be irreducible admissible representations of G (as

above) such that χV1 = χV2 then (π1, V1) ∼= (π2, V2).

From this one sees that the contragredient of an admissible irreducible
(π, V ) of GLnK (K a p-adic local field) is given by π1(g) = π((g−1)tr) on the
same vector space V .

Induced representations and locally profinite groups

Let G be a locally profinite group. In this section we are going to study
admissible representations of G and its subgroups in relation to induction.
These representations will be given by left-actions of the groups on vector
spaces over k, which is an algebraically closed field of arbitrary characteristic.

Let us begin by recalling, from ([19] Chapter Two §1), induced and com-
pactly induced smooth representations.

Definition 4.9.
Let G be a locally profinite group and H ⊆ G a closed subgroup. Thus H

is also locally profinite. Let

σ : H −→ Autk(W )

be a smooth representation of H. Set X equal to the space of functions
f : G −→ W such that (writing simply h · w for σ(h)(w) if h ∈ H,w ∈ W )

(i) f(hg) = h · f(g) for all h ∈ H, g ∈ G,
(ii) there is a compact open subgroup Kf ⊆ G such that f(gk) = f(g) for

all g ∈ G, k ∈ Kf .
The (left) action of G on X is given by (g · f)(x) = f(xg) and

Σ : G −→ Autk(X)

gives a smooth representation of G.
The representation Σ is called the representation of G smoothly induced

from σ and is usually denoted by Σ = IndGH(σ).

4.10.

(g · f)(hg1) = f(hg1g) = hf(g1g) = h(g · f)(g1)

so that (g · f) satisfies condition (i) of Definition 4.9.
Also, by the same discussion as in the finite group case, the formula will

give a left G-representation, providing that g · f ∈ X when f ∈ X. However,
condition (ii) asserts that there exists a compact open subgroup Kf such

24



that k · f = f for all k ∈ Kf . The subgroup gKfg
−1 is also a compact open

subgroup and, if k ∈ Kf , we have

(gkg−1) · (g · f) = (gkg−1g) · f = (gk) · f = (g · (k · f)) = (g · f)

so that g · f ∈ X, as required.
The smooth representations of G form an abelian category Rep(G).

Proposition 4.11.
The functor

IndGH : Rep(H) −→ Rep(G)

is additive and exact.

Proposition 4.12. (Frobenius Reciprocity)
There is an isomorphism

HomG(π, IndGH(σ))
∼=−→ HomH(π, σ)

given by φ 7→ α · φ where α is the H-map

IndGH(σ) −→ σ

given by α(f) = f(1).

4.13. In general, if H ⊆ Q are two closed subgroups there is a Q-map

IndGH(σ) −→ IndQH(σ)

given by restriction of functions. Note that α in Proposition 4.12 is the special
case where H = Q.

4.14. The c-Ind variation
Inside X let Xc denote the set of functions which are compactly supported

modulo H. This means that the image of the support

supp(f) = {g ∈ G | f(g) 6= 0}

has compact image in H\G. Alternatively there is a compact subset C ⊆ G
such that supp(f) ⊆ H · C.

The Σ-action on X preserves Xc, since supp(g ·f) = supp(f)g−1 ⊆ HCg−1,
and we obtain Xc = c− IndGH(W ), the compact induction of W from H to G.

This construction is of particular interest when H is open. There is a
canonical left H-map (see the Appendix in induction in the case of finite
groups)

f : W −→ c− IndGH(W )

given by w 7→ fw where fw is supported in H and fw(h) = h ·w (so fw(g) = 0
if g 6∈ H).
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For g ∈ G we have

(g · fw)(x) = fw(xg) =

 0 if xg 6∈ H,

(xg−1) · w if xg ∈ H,

=

 0 if x 6∈ Hg−1,

(xg−1) · w if x ∈ Hg−1.

We shall be particularly interested in the case when dimk(W ) = 1. In this
case we write W = kφ where φ : H −→ k∗ is a continuous/smooth character
and, as a vector space with a left H-action W = k on which h ∈ H acts
by multiplication by φ(h). In this case αc is an injective left k[H]-module
homomorphism of the form

f : kφ −→ c− IndGH(kφ).

Lemma 4.15.
Let H be an open subgroup of G. Then
(i) f : w 7→ fw is an H-isomorphism onto the space of functions f ∈

c− IndGH(W ) such that supp(f) ⊆ H.
(ii) If w ∈ W and h ∈ H then h · fw = fh·w.
(iii) IfW is a k-basis of W and G is a set of coset representatives for H\G

then
{g · fw | w ∈ W , g ∈ G}

is a k-basis of c− IndGH(W ).

Proof

If supp(f) is compact modulo H there exists a compact subset C such that

supp(f) ⊆ HC =
⋃
c∈C

Hc.

Each Hc is open so the open covering of C by the Hc’s refines to a finite
covering and so

C = Hc1
⋃

. . .
⋃

Hcn

and so
supp(f) ⊆ HC = Hc1

⋃
. . .

⋃
Hcn.

For part (i), the map f is an H-homomorphism to the space of functions
supported in H with inverse map f 7→ f(1).

For part (ii), from §?? we have

(h · fw)(x) = fw(xh) =

 0 if x 6∈ H,

xh · w if x ∈ H.
so that, for all x ∈ G, (h · fw)(x) = fh·w(x), as required.
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For part (iii), the support of any f ∈ c−IndGH(W ) is a finite union of cosets
Hg where the g’s are chosen from the set of coset representatives G of H\G.
The restriction of f to any one of these Hg’s also lies in c − IndGH(W ). If
supp(f) ⊆ Hg then (g · f)(z) 6= 0 implies that zg ∈ Hg so that g · f has
support contained in H. Hence g · f on H is a finite linear combination of
the functions fw with w ∈ W . Therefore f is a finite linear combination of
g · fw’s where w ∈ W , g ∈ G. Clearly the set of functions g · fw with g ∈ G
and w ∈ W is linearly independent. �

Example 4.16. Let K be a p-adic local field with valuation ring OK and
πK a generator of the maximal ideal of OK . Suppose that G = GLnK and
that H is a subgroup containing the centre of G (that is, the scalar matrices
K∗). If H is compact, open modulo K∗ then there is a subgroup H ′ of finite
index in H such that H ′ = K∗H1 with H1 compact, open in SLnK. This
can be established by studying the simplicial action of GLnK on a suitable
barycentric subdivision of the Bruhat-Tits building of SLnK (see [19] Chapter
Four §1).

To show that H is both open and closed it suffices to verify this for H ′.
Firstly H ′ is open, since it is H ′ =

⋃
z∈K∗ zH1 =

⋃
s∈Z πsKH1.

Also H ′ = K∗H1 is closed. Suppose that X ′ 6∈ K∗H1. K∗H1 is closed
under mutiplication by the multiplicative group generated by πK so that
πmKX

′ 6∈ K∗H1 for allm. By conjugation we may assume thatH1 is a subgroup
of SLnOK , which is the maximal compact open subgroup of SLnK, unique
up to conjugacy. Choose the smallest non-negative integer m such that every
entry of X = πmKX

′ lies in OK . Therefore we may write 0 6= det(X) = πsKu
where u ∈ O∗K and 1 ≤ s. Now suppose that V is an n×n matrix with entries
in OK such that X + πtKV ∈ K∗H1. Then

det(X + πtKV ) ≡ πsKu (modulo πtK).

So that if t > s then s must have the form s = nw for some integer w and
π−wK (X + πtKV ) ∈ GLnOK

⋂
K∗H1 = H1. Therefore all the entries in π−wK X

lie in OK and π−wK X ∈ GLnOK . Enlarging t, if necessary, we can ensure that
π−wK X ∈ H1, since H1 is closed (being compact), and therefore X ′ ∈ K∗H1,
which is a contradiction.

Since H is both closed and open in GLnK we may form the admissible
representation c − IndGLnK

H (kφ) for any continuous character φ : H −→ k∗

and apply Lemma ??.
If g ∈ GLnK,h ∈ H then (g · f1)(x) = φ(xg) if xg ∈ H and zero other-

wise. On the other hand, (gh · f1)(x) = φ(xgh) = φ(h)φ(xg) if xg ∈ H and
zero otherwise. Therefore as a left GLnK-representation c − IndGLnK

H (kφ) is
isomorphic to

k[GLnK]/(φ(h)g − gh | g ∈ GLnK, h ∈ H)

with left action induced by g1 · g = g1g.
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This vector space is isomorphic to the k-vector space whose basis is given
by k-bilinear tensors over H of the form g ⊗k[H] 1 as in the case of finite
groups. The basis vector g · f1 corresponds to g ⊗H 1 and GLnK acts on the
tensors by left multiplication, as usual (see Appendix §4 in the finite group
case).

Proposition 4.17.
The functor

c− IndGH : Rep(H) −→ Rep(G)

is additive and exact.

Proposition 4.18.
Let H ⊆ G be an open subgroup and (σ,W ) smooth. Then there is a

functorial isomorphism

HomG(c− IndGH(W ), π)
∼=−→ HomH(W,π)

given by F 7→ F · f , the composition with the H-map f of Lemma 4.15.

Example 4.19. c− IndGH(φ)
Suppose that φ : H −→ k∗ is a continuous character (i.e. a one-dimensional

smooth representation of H).
Suppose that we are in a situation analogous to that of Example 4.16.

Namely suppose that H is open and closed, contains Z(G),the centre of G,
and is compact open modulo Z(G). A basis for k is given by 1 ∈ k∗ and we
have the function f1 ∈ Xc given by f1(h) = φ(h) if h ∈ H and f1(g) = 0 if
g 6∈ H.

If, following Lemma 4.15, G is a set of coset representatives for H\G then
a k-basis for c− IndGH(φ) is given by

{g · f1 | g ∈ G}.
For g ∈ G we have

(g · f1)(x) = f1(xg) =

 0 if xg 6∈ H,

φ(xg) if xg ∈ H,

=

 0 if x 6∈ Hg−1,

φ(xg) if x ∈ Hg−1.

Before going further let us introduce the presence of (H,φ) into the nota-
tion.

Definition 4.20. Let H be a closed subgroup of G containing the centre,
Z(G), which is compact open modulo Z(G). Let φ : H −→ k∗ be a continuous
character of H. Denote by Xc(H,φ) the k-vector space of functions f : G −→
k such that
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(i) f(hg) = φ(h)f(g) for all h ∈ H, g ∈ G,
(ii) there is a compact open subgroup Kf ⊆ G such that f(gk) = f(g) for

all g ∈ G, k ∈ Kf ,
(ii) f is compactly supported modulo H.
As in §4.14, the left action of G on Xc(H,φ) is given by (g · f)(x) = f(xg)

and therefore

Σ : G −→ Autk(Xc(H,φ))

gives a smooth representation of G - denoted by Σ = c− IndGH(φ).
Henceforth we shall denote the map written as f1 in Example 4.19 by

f(H,φ) ∈ Xc(H,φ).
Therefore, for g ∈ G, we have

(g · f(H,φ))(x) = f(H,φ)(xg) =

 0 if xg 6∈ H,

φ(xg) if xg ∈ H,

=

 0 if x 6∈ Hg−1,

φ(xg) if x ∈ Hg−1.

Definition 4.21. For (H,φ) and (K,ψ) as in Definition 4.20, write
[(K,ψ), g, (H,φ)] for any triple consisting of g ∈ G, characters φ, ψ on sub-
groups H,K ≤ G, respectively such that

(K,ψ) ≤ (g−1Hg, (g)∗(φ))

which means that K ≤ g−1Hg and that ψ(k) = φ(h) where k = g−1hg for
h ∈ H, k ∈ K.

Let H denote the k-vector space with basis given by these triples. Define
a product on these triples by the formula

[(H,φ), g1, (J, µ)] · [(K,ψ), g2, (H,φ)] = [(K,ψ), g1g2, (J, µ)]

and zero otherwise. This product makes sense because
(i) if K ≤ g−1

2 Hg2 and H ≤ g−1
1 Jg1 then K ≤ g−1

2 Hg2 ≤ g−1
2 g−1

1 Jg1g2

and
(ii) if ψ(k) = φ(h) = µ(j), where k = g−1

2 hg2, h = g−1
1 jg1 then

k = g−1
2 g−1

1 jg1g2.
This product is clearly associative and we define an algebra Hcmc(G) to be

H modulo the relations

[(K,ψ), gk, (H,φ)] = ψ(k−1)[(K,ψ), g, (H,φ)]

and

[(K,ψ), hg, (H,φ)] = φ(h−1)[(K,ψ), g, (H,φ)].

We observe that

[(K,ψ), g, (H,φ)] = [(g−1Hg, g∗φ), g, (H,φ)] · [(K,ψ), 1, (g−1Hg, g∗φ)]
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We shall refer to this algebra as the compactly supported modulo the centre
(CSMC-algebra) of G.

Lemma 4.22.
Let [(K,ψ), g, (H,φ)] be a triple as in Definition 4.21. Associated to this

triple define a left k[G]-homomorphism

[(K,ψ), g, (H,φ)] : Xc(K,ψ) −→ Xc(H,φ)

by the formula g1 · f(K,ψ) 7→ (g1g
−1) · f(H,φ).

For a proof, which is the same as in the case when G is finite, can be found
in (the Appendix on induction in the case of finite groups).

Theorem 4.23.
Let Mc(G) denote the partially order set of pairs (H,φ) as in Definitions

4.20 and 4.21 (so that Xc(H,φ) = c− IndGH(φ)). Then, when each nα = 1,

Mc(n,G) = ⊕α∈A,(H,φ)∈Mc(G)underlinenαXc(H,φ)

is a left k[G] ×Hcmc(G)-module. For a general distribution of multiplicities
{nα} it is Morita equivalent to a left k[G]×Hcmc(G)-module.

Proof
We have only to verify associativity of the module multiplication, which is

obvious. �

Definition 4.24. k[G]mon, the monomial category of G
The monomial category of G is the additive category (non-abelian) whose

objects are the k-vector spaces given by direct sums of Xc(H,φ)’s of §4.23
and whose morphisms are elements of the hyperHecke algebra Hcmc(G). In
other words the subcategory of the category of k[G] × Hcmc(G)-modules of
which one example is Mc(n,G) in §4.23.

The bar-monomial resolution: II. The compact, open modulo the
centre case

Let G be a locally profinite group and let k be an algebraically closed field.
Let V be a k-representation of G with central character φ and that V is a
Mcmc,φ(G)-admissible representation as in Proposition 4.9.

GOT TO HERE
Let Hcmc(G) be the hyperHecke algebra, introduced earlier. Let

Mc(n,G) = ⊕α∈A,(H,φ)∈Mc(G)nαXc(H,φ)

be the left k[G] × Hcmc(G)-module of Theorem 4.23 form some family of
strictly positive integers, {nα}.

Theorem 4.25. Replacing the previous S by Mc(n,G) and replacing the
ringAM (whenM = S) byHcmc(G) we may imitate the previous construction
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to make a k[G],φmon-resolution of V

. . .
d−→ M̃Mc(n,G),i ⊗k Mc(n,G)

d−→ . . .
d−→ M̃Mc(n,G),1 ⊗k Mc(n,G)

d−→ M̃Mc(n,G),0 ⊗k Mc(n,G)
ε−→ V −→ 0

This result is proved using the analogues of the earlier ones.

Remark 4.26. In [19] this result was proved5 by reduction to the finite
modulo the centre case. Also an explicit bare hands homological construction
was given in the case of GL2 of a local field. I think that the use of the
hyperHecke algebra simplifies the construction both in the compact, open
modulo the centre case of this section and the general case of the next.

The monomial resolution in the general case

Once again let G be a locally profinite group and let k be an algebraically
closed field. Let V be a k-representation of G with central character φ and
that V is aMcmc,φ(G)-admissible representation as in Proposition 4.9.

First I shall recall the properties of Tammo tom Dieck’s space E(G, C) ([19]
Appendix IV) which is defined for a group G and a family of subgroups C
which is closed under conjugation and passage to subgroups. This space is
a simplicial complex on which G acts simplicially in such a way that for any
subgroup H ∈ C the fixed-point set E(G, C)H is non-empty and contractible.
In our case C will be the family of compact, open modulo the centre subgroups.
E(G, C) is unique up to G-equivariant homotopy equivalence. In the case

of GLn of a local field, for example, the Bruhat-Tits building gives a finite-
dimensional model for the tom Dieck space.

If the set of conjugacy classes maximal compact, open modulo the centre
subgroups of G is finite, as in the case of GLnK for example, one can find
a local system which assigns to each compact, open modulo the centre J a

k[J ],φmon-resolution of ResGJ V

. . .
d−→ M̃Mc(n,J),i ⊗k Mc(n, J)

d−→ . . .
d−→ M̃Mc(n,J),1 ⊗k Mc(n, J)

d−→ M̃Mc(n,J),0 ⊗k Mc(n, J)
ε−→ ResGJ V −→ 0.

Next one forms the double complex ([19] Chapter Four Theorem 3.2) given
by the simplicial chain complex of the tom Dieck space in one grading and the
compact, open modulo the centre k[J ],φmon-resolutions in the other grading.
The contribution of the resolutions corresponding to the orbit of one J-fixed
simplex gives the compactly supported induction of that resolution.

5I believe!
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Theorem 4.27. ([19] Chapter Four Theorem 3.2)
Let V be a Mcmc,φ(G)-admissible representation as in Proposition 4.9.

Then the total complex of the above double complex is k[G],φmon-resolution
of V .

Idempotented algebras ([7] p.309)

Definition 4.28. Let k be a field and H a k-algebra. Let E denote a set of
idempotents of H. Assume that if e1, e2 ∈ E then there exists e0 ∈ E such
that e0e1 = e1e0 = e1 and e0e2 = e2e0 = e2. In addition assume for every
φ ∈ H that there exists e ∈ E such that eφ = φe = φ.

With these assumptions H is called an idempotented k-algebra.
Write f ≤ e if ef = fe = f . This gives E the structure of a partially

ordered set (i.e. a poset).
If R is a ring and e an idempotent denote eRe by R[e]. If M is a left R-

module write M [e] for the R[e]-module eM . If H is an idempotented algebra
then H[e] is a k-algebra with unit e and M [e] is an H[e]-module.
M is smooth if M =

⋃
e∈E M [e] and is admissible if it is smooth and for

each e ∈ E we have dimk(M [e]) <∞.
If (Hi, Ei) are idempotented algebras for i = 1, 2 then so is H1 ⊗ H2 with

idempotents e1 ⊗ e2 for ei ∈ Ei.

4.29. The idempotented algebra Hcmc(G)
Let E be the collection of finite additive combinations in Hcmc(G), the

algebra of Definition 4.21, of the form

e =
n∑
i=1

[(Hi, φi), 1, (Hi, φi)]

in which (Hi, φi) = (Hj, φj) if and only if i = j. Then e · e = e and all the
idempotents in Hcmc(G) have this form.

We shall write e(H,φ) for the idempotent [(H,φ), 1, (H,φ)].

Define the homomorphism

[(K ′, ψ′), g, (H ′, φ′)] : Xc(K,ψ) −→ Xc(H,φ)

to be zero unless K ′, ψ′) = (K,ψ) and (H,φ) = (H ′, φ′). The following result
is clear.

Theorem 4.30.
(i) In §4.29 (Hcmc(G), E) is an idempotented algebra and Mc(G) is an

Hcmc(G)-module in the category of smooth k[G]-modules.
(ii) In this idempotented algebra e =

∑n
i=1 [(Hi, φi), 1, (Hi, φi)] and f

satisfy ef = fe = f in and only if the idempotent f is a subsum of e, which
fits very nicely with the f ≤ e notation.

(iii) If Mc(n,G) is the module of Theorem 4.23 then Mc(n,G)[e] is the
direct sum of the nαXc(H,φ)’s for which e(H,φ) appears in the sum for e.
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4.31. Hecke algebras
The Hecke algebra of a locally compact, totally disconnected group is a

related idempotented algebra.

Let G be a locally compact, totally disconnected group. Assume that G is
unimodular - that is, the left invariant Haar measure equals the right-invariant
Haar measure of G ([7] p.137).

The Hecke algebra of G, denoted by HG is the space C∞
c (G) of locally

constant,compactly supported k-valued functions on G with the convolution
product ([7] p.140 and p.255)

(φ1 ∗ φ2)(g) =

∫
G

φ1(gh)φ2(h
−1)dh =

∫
G

φ1(h)φ2(h
−1g)dh.

This integral requires only one of φ1, φ2 to be compactly supported in order
to land in HG.

Suppose that K0 ⊆ G is a compact, open subgroup. Define an idempotent

eK0 =
1

vol(K0)
· χK0

where χK0 is the characteristic function of K0. If K0 ⊆ K1 then eK0 ∗ eK1 =
eK1 .

This is seen using left invariance of the Haar measure∫
G

χK(zh)

vol(K)

χH(h−1)

vol(H)
=

∫
G

χK(h)

vol(K)

χH(h−1z)

vol(H)
.

The integrand is zero unless h ∈ K and then it is zero unless z ∈ H. When
z ∈ H we are integrating∫

G

χK(h)

vol(K)

1

vol(H)
=

χH(z)

vol(H)
,

as required.
HG is an idempotented algebra because G has a base of neighbourhoods

consisting of compact open subgroups.
A function f ∈ HG is called K-finite if the subspace spanned by all its

(left) translates by K is finite-dimensional ([7] p.299).
Monomial morphisms as convolution products

It is my belief and eventual intention that the material of this section will
remain true for the general G as in §2 provided that all continuous k-valued
characters on compact, open subgroups have finite image.

However, throughout this section I shall assume that G is a locally profinite
group whose centre Z(G) is compact. Let H be a subgroup which is compact,
open modulo the centre. Let k be an algebraically closed field for which all
continuous characters φ : H −→ k∗ have finite image when H is compact,
open.

The following two results give some examples of G for which Z(G) is com-
pact.
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Lemma 4.32.
Let K be a p-adic local field. Then Z(SLnK) is finite. In particular it is

compact.

Proof
Consider the relation

x1 0 · · · · 0
0 x2 · · · · 0
0 0 · · · · · · 0
...

...
...

...
...

0 0 · · · xn−1 0
0 0 · · · 0 xn





a1,1 a1,2 · · · · a1,n

a2,1 a2,2 · · · · a2,n

a3,1 a3,2 · · · · · · a3,n
...

...
...

...
...

an−1,1 an−1,2 · · · an−1,n−1 an−1,n

an,1 an,2 · · · an,n−1 an,n



=



a1,1 a1,2 · · · · a1,n

a2,1 a2,2 · · · · a2,n

a3,1 a3,2 · · · · · · a3,n
...

...
...

...
...

an−1,1 an−1,2 · · · an−1,n−1 an−1,n

an,1 an,2 · · · an,n−1 an,n





x1 0 · · · · 0
0 x2 · · · · 0
0 0 · · · · · · 0
...

...
...

...
...

0 0 · · · xn−1 0
0 0 · · · 0 xn


In the (i, j) entry we find xiai,j = ai,jxj and since we may suppose ai,j 6= 0
we see that x1 = x2 = . . . = xn and xn1 = 1. Therefore Z(SLnK) = µn(K),
the group of n-th roots of unity in K. �

Lemma 4.33.
Let K be a p-adic local field with ring of integers OK and prime πK . Then

Z(GLnK/〈πK〉) ∼= O∗K . In particular it is compact. Here 〈πK〉 denotes the
centre subgroup generated by πK times the identity matrix.

Proof
The relation used in the proof of §4.32 implies that for each (i, j) we have

παKxiai,j = ai,jxjπ
β
K for some pair α, β. Therefore we may suppose that x1 ∈

O∗K and that xj = x1π
ej

K . Now taking a matrix with a1,jaj,1 6= 0 for j =

2, 3, . . . , n we find that παKx1 = xjπ
β
K = x1π

β+ej

K for j = 2, 3, . . . , n. This
implies that x1π

e
K = x2 = x3 = . . . = xn which implies that e = 0. �

The next two results ensure that we are free to use convolution products
in our context.

Lemma 4.34.
Let G be a locally profinite group whose centre Z(G) is compact. If H is a

subgroup of G, containing Z(G), which is compact, open modulo the centre
then H is compact, open.

Proof
The is a compact open subset C of G such that H = Z(G) ·C. Multiplica-

tion is a continuous map from the compact space Z(G) × C onto H so that
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H is compact. Furthermore any point of H may be written as h = z · c with
z ∈ Z(G) and c ∈ C. Therefore z ·N ⊆ H for any open neighbourhood of c
in C is an open neighbourhood of h in H, which is therefore open. �

Lemma 4.35.
Let G be a locally profinite group whose centre Z(G) is compact and let

H be a subgroup which is compact, open modulo the centre. Let k be an
algebraically closed field for which all continuous characters φ : H −→ k∗

have finite image when H is compact, open. Then the vector space, Xc, of
§4.14 on which c− IndGH(kφ) is defined is a subspace of the Hecke algebra of
G, HG, the space of locally constant,compactly supported k-valued functions
on G.

Proof:
By §4.15 it suffices to verify that the function fw of §4.14 is locally constant,

compactly supported for w = 1 ∈ k∗. This function is given by the formula

f1(x) =

 0 if x 6∈ H,

φ(x) if x ∈ H,

By §4.34 H, the support of f1, is compact. Since the image of φ is finite the
function f1 is locally constant. �

Recall from §§4.21-4.22 that we have defined

[(K,ψ), g, (H,φ)] : Xc(K,ψ) −→ Xc(H,φ)

by the formula g1 · f(K,ψ) 7→ (g1g
−1) · f(H,φ).

If χW is the characteristic function of W ⊆ G we may define g1 · f(K,ψ)

using characteristic functions in the following manner. By definition

g1 · f(K,ψ)(x) =

{
ψ(xg−1

1 ) if xg−1
1 ∈ K,

0 if xg−1
1 6∈ K.

Suppose that v1, . . . , vt are coset representatives for K/Ker(ψ). Then, if
xg−1

1 ∈ K we must have xg−1
1 ∈ Ker(ψ)vj(xg−1

1 ) for some 1 ≤ j(xg−1
1 ) ≤ t

and therefore ψ(xg−1
1 ) = ψ(vj(xg−1

1 )). Hence we have the fomula

g1 · f(K,ψ) =
t∑

j=1

ψ(vj)χKer(ψ)vjg1

because
⋃

Ker(ψ)vjg1 = Kg1 so that the right hand side is zero unless
xg−1

1 ∈ K and is ψ(vj0) precisely when j0 = j(xg−1
1 ).

Next, from Definition 4.21

(K,ψ) ≤ (g−1Hg, (g)∗(φ))

implies that ψ(k) = φ(h) where k = g−1hg for h ∈ H, k ∈ K. Therefore if
k ∈ Ker(ψ) then h ∈ Ker(φ) and so Ker(ψ) ≤ g−1Ker(φ)g.
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Consider the convolution product

χg1Ker(ψ) ∗ χg−1Ker(φ)(z) =

∫
G

χg1Ker(ψ)(h)χg−1Ker(φ)(h
−1z)dh.

The integrand is zero unless h ∈ g1Ker(ψ) in addition to the condition

z ∈ hg−1Ker(φ) ⊆ g1Ker(ψ)g−1Ker(φ) = g1g
−1gKer(ψ)g−1Ker(φ) ⊆ g1g

−1Ker(φ)

and conversely. Therefore

χg1Ker(ψ) ∗ χg−1Ker(φ) = vol(g1Ker(ψ))χg1g−1Ker(φ).

Similarly, if v ∈ K and u ∈ H, we have a convolution product

χg1Ker(ψ)v ∗ χg−1Ker(φ)u(z) =

∫
G

χg1Ker(ψ)v(h)χg−1Ker(φ)u(h
−1z)dh.

The integrand is zero unless h ∈ g1Ker(ψ)v in addition to the condition

z ∈ hg−1Ker(φ)u ⊆ g1Ker(ψ)vg−1Ker(φ)u ⊆ g1g
−1Ker(φ)(gvg−1) · u

and conversely. Therefore

χg1Ker(ψ)v ∗ χg−1Ker(φ)u = vol(g1Ker(ψ)v)χg1g−1Ker(φ)gvg−1u.

Lemma 4.36.
Suppose that v1, . . . , vt ∈ K is a set of coset representatives for K/Ker(ψ).

Then

g1 · f(K,ψ) =
t∑

j=1

ψ(vj) · χKer(ψ)vjg
−1
1
.

Proof:
Consider the functions in the equation applied to x ∈ G. The left hand

side is zero if xg1 6∈ K which is equivalent to there being no j such that xg1 ∈
Ker(ψ)vj or x ∈ Ker(ψ)vjg

−1
1 . Under these conditions every characteristic

function on the right hand side also vanishes on x. On the other hand if xg1 ∈
K there exists a unique j0 such that x ∈ Ker(ψ)vj0g

−1
1 and so, evaluated at

xg1, there is one and only one term on the right hand side which contributes.
It yields ψ(vj0) which is the value of g1 · f(K,ψ) at x, as required. �

4.37. The image φ(H) is a finite cyclic group, being a finite subgroup of k∗,
which contains φ(gKg−1) = ψ(K). Therefore there exist v1, . . . , vt which are
coset representatives for K/Ker(ψ) and u1, . . . , us which give distinct cosets
in H/Ker(φ) such that the set {(gvig−1)uj | 1 ≤ i ≤ t, 1 ≤ j ≤ s} is a set of
coset representatives for H/Ker(φ).

Definition 4.38. Define an involution T : C∞
c (G) −→ C∞

c (G) by
T (F )(x) = F (x−1). For example T (χKer(ψ)vjg

−1
1

) = χg1Ker(ψ)v−1
j

.

In the notation of §4.37 set

Φ[(K,ψ),g,(H,φ)] =
s∑
j=1

φ(uj) · χg−1Ker(φ)uj
.
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Theorem 4.39.
In the notation of Definition 4.38

[(K,ψ), g, (H,φ)](g1 · f(K,ψ)) = g1g
−1 · f(H,φ)

= 1
vol(Ker(ψ))

T (T (g1 · f(K,ψ)) ∗ Φ[(K,ψ),g,(H,φ)]).

Proof:
We observe that ψ(vi)(χKer(ψ)vig

−1
1

)(x) = ψ(vi) = ψ(xg1) if x ∈ Ker(ψ)vig
−1
1 =

viKer(ψ)g−1
1 and zero otherwise. Therefore

T (ψ(vi)(χKer(ψ)vig
−1
1

))(x) = ψ(vi)(χKer(ψ)vig
−1
1

)(x−1) = ψ(vi)

if x−1 ∈ Ker(ψ)vig
−1
1 and zero otherwise. In the non-zero case x ∈ g1Ker(ψ)v−1

i

and ψ(vi) = ψ(g−1
1 x)−1 so that

T (ψ(vi)(χKer(ψ)vig
−1
1

)) = ψ(vi)
−1χg1Ker(ψ)v−1

i
.

From Lemma 4.32 we have

T (g1 · f(K,ψ)) =
∑t

i=1 ψ(vi)
−1 · χg1Ker(ψ)v−1

i
.

Therefore

T (g1 · f(K,ψ)) ∗ Φ[(K,ψ),g,(H,φ)]

=
∑t

i=1

∑s
j=1 ψ(vi)

−1φ(uj)(χg1Ker(ψ)v−1
i
∗ χg−1Ker(φ)uj

)

=
∑t

i=1

∑s
j=1 ψ(vi)

−1φ(uj)vol(Ker(ψ))χg1g−1Ker(φ)(gv−1
i g−1)uj

.

Hence

T (T (g1 · f(K,ψ)) ∗ Φ[(K,ψ),g,(H,φ)])

= T (
∑t

i=1

∑s
j=1 ψ(vi)

−1φ(uj)vol(Ker(ψ))χg1g−1Ker(φ)(gv−1
i g−1)uj

)

= T (
∑t

i=1

∑s
j=1 φ(gvig

−1)−1φ(uj)vol(Ker(ψ))χg1g−1Ker(φ)(gv−1
i g−1)uj

)

= vol(Ker(ψ))
∑t

i=1

∑s
j=1 T (φ((gv−1

i g−1)uj)χg1g−1Ker(φ)(gv−1
i g−1)uj

)

= vol(Ker(ψ))
∑t

i=1

∑s
j=1 φ((gv−1

i g−1)uj)
−1χu−1

j (gvig−1)Ker(φ)gg−1
1

= vol(Ker(ψ))g1g
−1 · f(H,φ),

by Lemma 4.32. �

Remark 4.40. (i) Theorem 4.39 has shown that, under the special condi-
tions which were stated at the start of this section, the morphisms of the
monomial category k[G]mon of Definition 4.24 are given in terms of the con-
volution product of §4.31 of the Hecke algebra HG.
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(ii) My belief is that Theorem 4.39 remains true in general, in some sense,
providing that all continuous characters φ : H −→ k∗ have finite image when
H is compact, open. This belief is based on the following: [19] claims to con-
struct for each admissible representation V of G a monomial resolution in the
derived category k[G]mon6 and (see §9; also [9] pp.2-3) such V are intimately
related to Hecke modules. Therefore one should expect a connection between
the morphisms in that resolution and convolutions products.

The difficulty, in the case of a general locally profinite group G, with the
treatment of this section is that Xc(H,φ)’s are spaces of locally constant
functions which are compactly supported modulo H, rather than actually
being compactly supported.

It might be that I can get away with using the Schwartz space of locally
constant, compactly supported functions of G/Z(G), but I have not yet had
time to examine this generalisation7.
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